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Table 1 BEIZFEHAURY—LHFOMEK

DC-Chol :

DOPE(E/LH) DNA (ug) " *
3:2 B-1 25 Sucrose 16:1
3:2 B-2 25 Isomaltose 16:1
3:2 B-3 25 Isomaltotriose 16:1
1:2 C-1 100 Sucrose 2:1
1:2 C-2 100 Isomaltose 2:1
1:2 C-3 100 Isomaltotriose 2:1
1:2 C4 12.5 Sucrose 16:1
1:2 C-5 12.5 Isomaltose 16:1
1:2 C-6 12.5 Isomaltotriose 16:1
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Table 2 BEFHAURY—LEFOBEKNEDORFFAX

DC-Chol :

DOPE(EJLLE) EHHALX(nm) DB (%)g EHHALX(nm)  HE %
3:2 B-1 179 62 | 1274 38
3:2 B-2 178 69 i 1269 31
3:2 B-3 191 70 i 1558 30
1:2 c-1 448 10 3495 90
1:2 c-2 364 8 i 3826 92
12.. -3 481 L SRR 11 N .- N
12 c-4 238 30 i 1451 70
1:2 c-5 256 32 i 1591 68
1:2 c-6 205 32 i 1130 68
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ABSTRACT: The relative influences of chemical activation energy and molecular
mobility in determining chemical reactivity were evaluated for insulin lyophilized with
o, B-poly(N-hydroxyethyl)-L-aspartamide (PHEA), and compared with that for insulin
lyophilized with trehalose, which had been found to have the ability to decrease the
molecular mobility of insulin at low humidity. The ratio of the observed rate constant ks
to the chemical activation energy-controlled rate constant k.. (Bobs/Ract) at glass
transition temperature (T) was estimated to be approximately 0.6 and 0.8 at 6% RH
and 12% RH, respectively, indicating that the degradation rate is significantly affected by
molecular mobility at lower humidity conditions. However, these kops/Ract values at Ty
were larger than those for the insulin-trehalose system, and changes in the temperature-
dependent slope around T, were less obvious than those for the insulin-trehalose system.
Thus, the contribution of molecular mobility to the degradation rate in the insulin-PHEA
system appeared to be less intense than that in the insulin-trehalose system. The subtle
change in the temperature-dependent slope around T, observed in the insulin-PHEA
system brought about a significant bias in shelf-life estimation when the reaction rate
was extrapolated from temperatures above T according to the Arrhenius equation.

© 2006 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 95:2684—2691, 2006
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molecular mobility

INTRODUCTION

It is generally thought that the chemical reactiv-
ity of amorphous pharmaceutical formulations is
controlled not only by chemical activation energy
but also by molecular mobility.>? An understand-
ing of which factor is the domindnt influence on
the chemical reactivity of a given system (via
quantitative assessment of the relative signifi-
cance of chemical activation energy and molecular
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mobility as a determinant of chemical reaction
rate) would provide some practical benefit for
stabilization strategy during formulation develop-
ment. Furthermore, such an assessment would
allow us to examine the feasibility of extrapolat-
ing the reaction rate obtained under accelerated
conditions in order to determine the reaction rate
at lower temperatures.

For a chemical reaction that involves a diffusive
step for the reactants, as for a bimolecular
reaction, a decrease in molecular mobility results
in a decrease in reaction rate. The degree of
reduction in degradation rate caused by reduced
molecular mobility can be evaluated using the
indicator kgns/kact (the ratio of the observed rate
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constant ks to the chemical activation energy-
controlled rate constant k.., the latter being the
rate constant in a system in which the reactants
have sufficiently high molecular mobility). In
previous studies, we determined Egpe/kact values
for insulin degradation via formation of the cyclic
anhydride intermediate in lyophilized formula-
tions containing various excipients, and demon-
strated that k., was dominantly controlled by
chemical activation energy and was unaffected by
molecular mobility for insulin lyophilized with
poly(vinylpyrrolidone)3’4 or dextran® under a
wide range of conditions of temperature and
humidity. In contrast, ks for insulin lyophilized
with trehalose was substantially affected by
molecular mobility under conditions of lower
humidity®; it was found that B-relaxation of the
insulin molecule, as determined by NMR relaxa-
tion time, was inhibited by addition of trehalose
resulting in a decrease in the degradation rate.’

In this study, the effect of excipients on the
relative influences of molecular mobility and
chemical aGtivation energy on insulin degradation
rate was further examined using insulin Iyophi-
lized with o,B-poly(N-hydroxyethyl)-L-asparta-
mide (PHEA), which is expected to inhibit
B-relaxation of the insulin molecule through
hydrogen-bonding in a manner similar to treha-
lose. kops/kact, 2 parameter representing the degree
of reduction in degradation rate caused by reduced
molecular mobility, was calculated for the insulin-
PHEA system, and assessed for the reliability
by simulation studies. In addition, the practical
meaning of the estimated kops/kact Was considered
in terms of shelf-life estimates which may be
biased by ignoring the effect of molecular mobility.

BACKGROUND

Eq. 1 was proposed to calculate the degree of
reduction in degradation rate caused by reduced
molecular mobility in amorphous solids (Rgbe/

Racy).
WOk
kobs = kact "‘—O"Q——E (1)
kact + QT(%) ’

Eq. 1is derived from the Collins and Kimball (CK)
equation,®” which describes ks for bimolecular
reactions as a function of k.. and the diffusion-
controlled rate represented using the diffusion
coefficient. The CK equation was modified by
describing the diffusion-controlled rate in terms
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of structural relaxation time (r) instead of the
diffusion coefficient, assuming that the diffusion
coefficient is inversely correlated to 7. « is a
constant that represents the correlation between
7 and the diffusion-controlled rate, and ¢ is a
constant that represents the degree of coupling
between ¢ and the diffusion coefficient.® 7 in Eq. 1
can be calculated from T, and fragility parameter
(m) using the Vogel-Tammann—Fulcher (VTF)
and Adam—Gibbs—Vogel (AGV) equations above
and below Tg, respectively, as described pre-
viously.? st in Eq. 1 is described as follows:

kact e Aexp< RET > (2)

where A, E,, and R are the frequency factor,
activation energy, and gas constant. For a first-
order reaction, the time required for 10% degra-
dation {¢g0) can be calculated from kg as:

teo = —In(0.9)/kobs

The previous article briefly described how the
contribution of molecular mobility to chemical
reactivity is affected by E, and ,® but it was not
easily understandable what combination of E,
and o yields a chemical reaction exhibiting a
greater contribution of molecular mobility to the
reactivity. Therefore, comprehensible figures are
presented for a better understanding of the effects
of E, and « on the values of kops/Ract, which were
calculated using a model system with T of 70°C,
m of 50 and A of 1 x 10™/s.

As shown in Figure 1, koue/kact and tgo at Ty
largely depend on E, and «. When E, increases
beyond the value at which kgbe/kact is equal to 0.5
(i.e., kops is reduced to half of &, due to reduced
mobility), kops/Ract: gradually approaches unity,
indicating a decrease in the effect of molecular
mobility and an increase in the effect of E.. Thus,

tooat T (ts0(rg)) becomes dependent onlyon E,, and

increases with increasing E,. In contrast, when E,
decreases below the value at which kgo/Racet is
equal to 0.5, keps/kact gradually approaches zero,
indicating an increase in the effect of molecular
mobility and a decrease in the effect of E,. Thus, £go
becomes independent of E,, and is controlled only
by molecular mobility. The E, value at which &qps/
ket is equal to 0.5 increases with decreasing o.

As shown in Figure 2, when o increases beyond
the value at which kope/Eact is equal t0 0.5, Rope/Fact
gradually approaches unity, indicating a decrease
in the effect of molecular mobility. Thus, tgocrg)
becomes independent of o, and is controlled only by
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Figure 1. Effectof E, onthe values oftg at Ty (A) and
Eobs/kact at T (B). Ty 70°C; m:50; A:1 x 10*%/s.

E,. In contrast, when « decreases below the value
at which &qpe/Bact 15 equal £0 0.5, koye/kact gradually
approaches zero, indicating an increase in the
effect of molecular mobility. Thus, ¢go(rg becomes
independent of E,, and increases with decreasing
0. The o value at which kgps/kact is equal to 0.5
increases with decreasing E,.

Some equations for describing the relationship
between molecular mobility and chemical reactiv-
ity in amorphous solids have been described in
the literature. Pikal® presented Eq. 3 to describe
the temperature dependence of the degradation
rate constant for a diffusion-controlled reaction,
using a coupling constant (g), the strength para-
meter for structural relaxation (D), and the
temperature at which the configurational entropy
is zero (To):

(3)

k = Aiexp (— DT >

T —(T/T5)To
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Figure 2. Effect of « on the values of £55 at T; (A) and
kops/kact at Ty (B). T 70°C; m:50; A:1 x 10%/s.

where. Ay is a pre-exponential constant that
depends on the details of the degradation mechan-
ism. Ax would be expected to decrease as the
number of diffusional jumps needed to complete a
reaction increases. Eq. 3 may be written in the
form k=Ap(to/t)? using a value for structural
relaxation time (z). On the other hand, Eq. 1 may
be written in ‘the form kgs=0oT/c* when the
reaction is diffusion-controlled such that the rate
is independent of E,. Therefore, the terms «T and
¢ in Eq. 1 correspond to Axt§ and g, respectively,
in Eq. 3. Therefore, a decrease in ¢, a parameter
representing the degree of inverse correlation
between t and the diffusion-controlled rate, may
correspond to an increase in the number of jumps
required for the reaction to proceed, leading to a
greater degree of reduction in degradation rate
due to reduced molecular mobility.

Craig et al.” presented Eq. 4 to describe
the relationship between degradation rate and
viscosity () for diffusion-controlled bimolecular
reaction:

% = 8RT/3n (4)

DOI 10.1002/jps



where R is the gas constant. Eq. 4 may be written
in the form k& = 8RTtry/3n7,7 , using values of trq
and e (t and n at T, respectively) as well as 1.
Therefore, the term o in Eq. 1 corresponds to
8R1re/3117s.

EXPERIMENTAL

Materials

Human zinc insulin was purchased from Eli Lilly
& Co (Humulin® RU-100. PHEA was prepared
via polysuccinimide by polycondensation of aspar-
tic acid as reported.®

Lyophilization of Insulin

Lyophilization was carried out in a similar
manner as reported previously.® Human zinc
insulin was converted into the zine-free neutral
form by dialysis. PHEA was added to the solution
to make a 5 mg/mL of PHEA solution and pH was
adjusted to 4.0. The ratio of insulin to PHEA was
1:1.5 w/w. Four hundred microliters of the solu-
tion were frozen in a polypropylene sample tube
(10 mm diameter), and then dried at a vacuum
level below 5 Pa for 23.5 h in a lyophilizer
(Freezevac C-1, Tozai Tsusho Co., Tokyo, Japan).
The shelf temperature was between —35 and
—30°C for the first 1 h, 20°C for the subsequent
19 h, and 30°C for the last 3.5 h.

Lyophilized samples were stored at 15°C for
24 h in a desiccator with a saturated solution of
LiBr HsO0 (6% relative humidity (RH)), LiCl
(12% RH), potassium acetate (23% RH), K2CO3
2H,0(43% RH), or NaBr 2H,0 (60% RH) to obtain
samples with various T values.

Determination of T, by Differential
Scanning Calorimetry (DSC)

Modulated temperature DSC experiments were
performed using a commercial system (2920; TA
Instruments, Newcastle, DE, USA) attached to a
refrigerated cooling accessory. The conditions
were as follows: modulation period of 100 s, a
modulation amplitude of £0.5°C, and an under-
lying heating rate of 1°C/min. Samples were put
in a hermetic pan. Temperature calibration was
performed using indium. The samples, pre-equili-
brated at 6% RH, 12% RH, 23% RH, 43% RH, and
60% RH, exhibited a T value of 70°C, 60°C, 36°C,
17°C, and —17°C, respectively.
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Measurement of Insulin Degradation

Lyophilized samples with various Ty values in
tubes with a tight screw-cap were stored at a
constant temperature (40-95°C), removed at
various times, and stored in liquid nitrogen until
assayed. Samples were dissolved in 1.5 mL of 0.01
M (NH,)»SO, (pH 2.2, adjusted with concentrated
H,S0,) and each 20 pL aliquot of the solution
(insulin concentration was 0.9 mg/mL) was sub-
jected to reverse phase HPLC, as reported
previously.® The column used was Inertsil WP-
300 (C8, 4.6 mm x 250 mm, GL Science, Inc.,
Tokyo, Japan) maintained at 35°C. Elutions were
performed using a mixture of 0.01 M (NHy)2SO4
(pH 2.2) and acetonitrile solution of 0.07%(v/v)
trifluoroacetic acid (72.5:27.5) for 1 min. The ratio
of the acetonitrile solution increased linearly from
27.5% to 30% in 15 min, 30% to 35% in 22 min.

‘The detection wavelength was 214 nm.

Decreases in intact insulin with storage
time was due to the formation of the cyclic
anhydride intermediate followed by formation of

~A21-desamido insulin and insulin dimer, as

previously reported for insulin degradation in
lyophilized formulations containing trehalose,
poly(vinylpyrrolidone), and dextran.®~®

RESULTS AND DISCUSSION

Figure 38 shows the degradation time courses for
insulin lyophilized with PHEA at 6% RH. Similar
time courses were obtained at 12% RH, 23% RH,
43% RH, and 60% RH. The initial stage of

105 < 30C
X 40C

100 +50C

> AS55C
g 95 @ 60C
© X65C
g 9 B70C
2 -75C
A80C

85 r £185C
©90C

80 : ' ' ' ! 095C

00 02 04 06 08 10 12

Figure 3. Degradation time courses of insulin Iyophi-
lized with PHEA at 6% RH and various temperatures.
Solid line represents the theoretical line calculated
according to the first-order kinetics.
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degradation was describable with first-order
kinetics under all the temperature and humidity
conditions studied. The solid line in Figure 3
represents the theoretical time course of first-
order kinetics.

The obtained k., was used to calculate £g¢, and
the temperature dependence of tgq is shown in
Figure 4. Regression analysis according to Eq. 1
was performed assuming that formation of the
cyclic anhydride intermediate involves a diffusive
step for the reaction site (i.e., molecular mobility
required for the intermediate formation is related
to diffusion coefficient). The values of A and ¢ were
assumed to be 10'/s and 0.75, respectively. ¢ of
0.75 has been obtained for wvarious organic
glasses.'® The value of t was calculated according
tothe VIF and AGV equations above and below T,
respectively, using Ty values measured by DSC
and m of 50 (m value estimated for insulin
lyophilized with trehalose in the previous study).®
Lines in Figure 4 represent regression curves
for the tg9 obtained under various humidity
conditions. The values of « and E, were estimated
tobe 5 x 1078 deg™! and 32 keal/mol, respectively,
for degradation at 6% RH. Although the tempera-
ture dependence of fgy appeared to be linear
under all humidity conditions investigated,
regression analysis according to Eq. 1 provided
kobs/kact values at T of approximately 0.6 and 0.8
at 6% RH and 12% RH, respectively, as shown
in Figure 5. This finding indicates that the
degradation rate is significantly affected by
molecular mobility at lower humidity cofiditions.

1.E+09 z .
1.E+08
1.E+07
@
o 1-B+08 ©60%RH
1.E+05 A 43%RH
023%RH
1.E+04 A12%RH
@ 6%RH
1E+03 ¢ T L
07 08 09 1 11 12

T4T

Figure 4. Temperature dependence of gy calculated
from apparent first-order rate constant for insulin
degradation. Solid lines represent the regression lines
obtained according to Eq. 1.
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Figure 5. Temperature dependence of koo/kact, @
parameter representing the degree of reduction in
degradation rate caused by reduced molecular mobility,
obtained at 6% RH (solid line) and 12% RH (dotted line).

As previously reported, 3~ insulin lyophilized with
trehalose exhibited a kgue/kaer value at T, of
approximately 0.05, and insulin lyophilized with
PVP or dextran exhibited a kqpe/kacs value at T of
unity for degradation at 12% RH. Therefore, the
effect of molecular mobility on degradation rate in
the insulin-PHEA system appeared to be less
intense than that in the insulin-trehalose system,
but not negligible compared to the insulin-PVP
and insulin-dextran systems.

The reliability of the values of « and E,
estimated for insulin degradation at 6% RH in
the insulin-PHEA system (5 x 1078 deg™! and 32
kcal/mol, respectively) was examined from
changes in the temperature dependence of tgq
accompanied by changes in « and E,. Figure 6A
shows the effect of changes in E, on the tempera-
ture dependence of tgo. The temperature depen-
dence of fy9 obtained by curve fitting of the
observed degradation data to Eq. 1 is represented
by the bold solid line (E,: 32 keal/mol), along with
that of the values of tg¢ derived from k..t (Fooract)),
indicated by symbol +. Although the difference
between Z99 and #go(act) Was slight even at T, the
value of kopg/kact was approximately 0.6 at Ty
(Fig. 6B). When E, increases by 2 kcal/mol (E,:
34 kcal/mol), the difference between tgq (solid line)
and Zggeacty (circle symbol) becomes unnoticeable,
with a kops/kact value greater than 0.9. Conversely,
when E, decreases by 2 kcal/mol (E,: 30 keal/mol),
the difference between £y (dotted line) and tgo(act)
(star symbol) becomes substantial, such that ¢4 is
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Figure 6. Divergence of temperature dependence for
too and fogiact (A), and for kops/kact (B) from that obtained
at 6% RH, associated with changes in E,. o:5 x 1078,

affected by E, only at temperatures well below or
well above the T, with akops/Ract value at Ty of less
than 0.1. A further decrease in E, (E ,: 26 kcal/mol)
causes a further decrease in fgpacty, but no
significant change in tgo around T'g. Figure 7 shows
changes in the temperature dependence of tgo
accompanied by changes in «. When o becomes
about one order of magnitude less than the
estimated o value, the degree of reduction in
degradation rate caused by reduced molecular
mobility becomes obvious. Thus, the estimated
values of « and E, appeared to be reliable with
errors of one order of magnitude and 2 kecal/mol of
magnitude, respectively. The ¢ value of 0.75 used
in regression analysis was validated in terms of
changes in the temperature dependence of £go with
varying ¢. With ¢ of unity, as shown in Figure 8, a
change in the temperature-dependent slope
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Figure 7. Divergence of temperature dependence for
290 (A) and for kope/kacy (B) from that obtained at 6% RH,
associated with changes in o. E;:32 keal/mol.

around T is more obvious than that with £ of 0.75,
and diverged from the observed data of Zgo.

For an understanding of the practical implica-
tion of the kops/kact (degree of reduction in degrada-
tion rate caused by réduced molecular mobility) of
0.6 obtained at 6% RH, tg¢ at 25°C (¢go25c)) wWas
estimated from only the degradation data obtained
at temperatures above T, using the Arrhenius
equation, with the subtle change in temperature-
dependent slope ignored. Table 1 compares £50(25¢)
obtained according to the Arrhenius equation,
along with the theoretical £90250) obtained accord-
ing to Eq. 1. The estimates of tgo at 25°C were
greater than the theoretical values by factors of 2.7
and 1.3 at 6% RH and 12% RH, respectively. To
gain a further insight into the practical meaning of
the Egu/kact value, bias in the fggsc) estimate
obtained by neglecting the effect of molecular
mobility was calculated as a function of kgps/Eact for
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Figure 8. Divergence of temperature dependence for
tgo (A) and for keps/kact (B) from that obtained at 6% RH,
associated with changes in £. E,:32 keal/mol; a:5 x 1078,

a degradation model with an E, value correspond-
ing to a tgy of 1 year for reaction-controlled
degradation, and the results are shown in
Figure 9. The bias of the tgg(25c) estimate increased
as kops/kact decreased (i.e., as the effect of molecular
mobility increased), with a tgosc) estimate of
approximately 3 years at a Rgpe/Ract of 0.6. These
findings indicate that even a subtle change in
the temperature dependence of g around T, as

Table 1. Effect of Ignored Contribution of Molecular
Mobility on the £ Estimates at 25°C

Humidity tooEq. 1 L90(Arrh) toncarrhy/
(%RH) (Year) (Year) tgoEq. 1
6 10.3 27.6 2.7
12 7.2 9.7 1.3
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Figure 9. Effect of kobs/kact 01 tgosc) estimated by
neglecting the effect of molecular mobility. Triangle
represents the ratio of tgoc25¢) estimate to the theoretical
t90(25C)-

shown for degradation at 6% RH (Fig. 4), can lead
to significantly biased shelf-life prediction.

CONCLUSION

Chemical degradation of insulin lyophilized with
PHEA under low humidity conditions exhibited a
temperature dependence with a less obvious
change around T, than that of insulin lyophilized
with trehalose. The contribution of molecular
mobility to the degradation rate was found to be
less than that for the insulin-trehalose system.
However, the subtle change in slope resulted in a
significant bias in shelf-life estimation when the
reaction rate was extrapolated from temperatures
above T, according to the Arrhenius equation.
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