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Abstract: A source of morphologically and functionally
available human cartilagenous tissue for implantation is re-
quired in the field of tissue engineering. To achieve this goal,
we evaluated the effects of hyaluronic acid (HA-810 and
1680 kDa), and chondroitin sulfate (CS-A 16 and C-34 kDa)
on human articular chondrocytes (HC) in micromass and
rotation culture conditions. Cell proliferation was increased
by CS-A 16 kDa under micromass and rotation cultures,
while cell differentiation was increased under rotation but
not micromass conditions. Proliferation and differentiation
due to CS-C 34 kDa were very similar to the control under
both culture conditions. With HA, cell proliferation was in-
creased depending on the molecular weight under micromass

and rotation conditions. In contrast, chondrocyte differentia-
tion was enhanced under rotation conditions, but decreased
under micromass conditions depending on the molecular
weight of HA. In both culture conditions, aggrecan gene was
continuously expressed. However, the collagen type II gene
was more weakly expressed in rotation than the micromass
culture conditions. Thus, the chemical structures of polysac-
charides, and the culture condition, rotation or micromass,
caused differences in chondrogenesis. © 2006 Wiley Periodi-
cals, Inc. J Biomed Mater Res 80A: 257-267, 2007

Key words: human articular cartilage; hyaluronic acid;
chondroitin sulfate; chondrogenesis; in vitro culture

INTRODUCTION

The limited potential of human hyaline cartilage for
self-renewal has encouraged research in autologous
chondrocyte transplantation for the regeneration of
hyaline cartilage following traumatic cartilage dam-
age.’? The development of bioengineered cartilagi-
nous implants is being studied in the field of tissue en-
gineering. A primary approach in tissue engineering
involves the regeneration of tissue by growing isolated
chondrocytes on polymorphic scaffolds to produce a
three-dimensional articular cartilage tissue suitable for
implantation.’ Cell seeded scaffolds were tested in
the in vitro engineering of three-dimensional (3-D)
hyaline cartilage, although production of hyaline car-
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tilage remains a challenge. Different non-biodegrad-
able materials tested for cartilage tissue repair in dif-
ferent experimental animals include polytetrafluoroeth-
ylene (PTFE)® polyethylene terephthalate (Dacron),”®
polyurethanes,9 polyhydroxyethyl methacrylate (PHEMA),*
polyvinyl alcohol (PVA, Ivalon™),' and a variety of
other hydrogels.'*** Many studies have evaluated the
potential of various natural bioabsorbable polymers
such as collagen,*** alginates,'®™'® fibrin,***! and gel-
atin?® In recent years, extensive experiments have
been performed that support the growth of chondro-
cytes by using various synthetic bioabsorbable materi-
als in animal models to facilitate the regeneration of
cartilage tissue.”>

Hyaluronic acid (HA) is a negatively charged glycos-
aminoglycan (GAG) composed of repeated disaccha-
rides of p-glucuronic acid and N-acetyl-D-glucosamine
monomers that is considered the “backbone” of the
extra-cellular ground substance. By interacting with
other matrix molecules, HA provides stability and elas-
ticity to the extra-cellular matrix (ECM).>**" Among
many biochemical regulators of articular cartilage, HA
of animal origin plays an important role in maintaining
the articular chondrocyte morphology and prolifera-
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tion® and it enhanced proliferation, as well as chondroi-
tin sulfate (CS) synthesis, of rabbit articular cartﬂage.33

CS is an important ECM component of native carti-
lage tissue.** Two types of CS were used in this
experiment, CS-A [sulphated on the C6 position of
the N-acetylglucosamine (GlcNAc)] and CS-C (sulph-
ated on the C4 position of the GlcNAc). Recently, CS
was shown to stimulate the bioactivity of seeded chon-
drocytes in vitro® and to increase matrix component
production by human articular chondrocytes (HC) cul-
tivated in clusters in vitro.>® A recent study suggested
that the hydrodynamic conditions in tissue culture
bioreactors could modulate the composition, morphol-
ogy, mechanical properties, and electromechanical
function of engineered cartilage.” Although compre-
hensive studies have been done with animal cells
using bioabsorbable materials, little information is
available on the chondrogenic effects of HA and CS
on HC. We know of no studies that have assessed the
effects of different molecular weights of HA obtained
from bacteria and CS using HC in both micromass and
3-D honeycomb rotation culture conditions. The aim of
the present in vitro study was to investigate the effects
of HA and CS on HC in the generation of a 3-D human
hyaline cartilage that imitates native cartilage. For this
purpose, bacterially produced HA of different molecu-
lar weights, and CS with different molecular structures
were used in culturing HC under micromass and rota-
tion conditions.

MATERIALS AND METHODS

Chondrocytes and medium

Human articular chondrocytes (HC) of the knee joint and
chondrocyte growth medium were commercially obtained
from Cambrex Bio Science Walkersville (Walkersville, MD).
The chondrocyte growth medium contained basal medium
(CC-3217) and growth supplement (CC-4409) which in-
cludes 25 mL of fetal bovine serum, 1.0 mL of R3-insulin-
like growth factor-1, 2.5 mL of basic fibroblast growth fac-
tor, 1.0 mL of insulin, 0.5 mL of transferrin, and 0.5 mL of
gentamicin/amphotericin-B.

Preparation of materials

The C5 of two different molecular weights and structures
(CS-A 16 kDa, CS-C 34 kDa) and HA of two different molecular
weights (HA 810 kDa, HA 1680 kDa) used in this experiment
were obtained from Lifecore Biomedical, (Minneapolis, MIN).
HA was of bacterial origin. The collagen honeycomb used in
this experiment as 3-D scaffolds was obtained from Koken,
Japan.

Both kinds of CS and HA (810 kDa) were dissolved in chon-
drocyte growth medium at a final concentration of 0.5 mg/mL.
HA (1680 kDa) was dissolved in chondrocyte growth medium
at concentrations of 0.1, 0.2, and 0.5 mg/mL.
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Preparation of siliconized vessel

One-hundred-milliliter glass bottles for use as culture
vessels were siliconized using AquaSil™ siliconizing agent
(Pierce, Illinois) according to the manufacturer’s protocol
with slight modification. Briefly, the bottles were thor-
oughly washed with soap and water, rinsed with distilled
water to remove all residues, and then dried in an oven at
100°C for at least 1 h. A 0.5% solution of AquaSil™ silico-
nizing agent was made with Milli-Q water, and all glass
bottles were completely filled with freshly prepared silico-
nizing solution and agitated for 1 min to coat the inner sur-
face with a thin film of silicon. The bottles were then rinsed
with 100% methanol to remove excess siliconizing fluid,
dried at 100°C for 1 h, rinsed with distilled water, dried
again at 100°C for 1 h, and autoclaved.

Cell culture

The HC were seeded in monolayers at a density of 2 x
10* cells/cm? in Corning 75-cm? cell culture flasks (Corning,
type 430720, Corning, NY). When subconfluent, the cells
were trypsinized (trypsin-EDTA [Gibco, Grand Island, NY]
in phosphate-buffered saline [PBS]) and again subcultured
in monolayers. After adequate growth, chondrocytes from
passage three (P3) were collected by trypsinization and pre-
pared for micromass and rotation cultures. In one set of the
micromass cultures, 4 x 10° cells in 20 pL of medium were
spotted onto Costar 24-well microplates for tissue culture
(Costar type 3526, Corning), and media was added after 2 h
of cell attachment at 37°C in a CO, incubator. Medium was sup-
plemented with four different kinds of CS and HA (0.5 mg/
mL); control cultures were grown with medium only. In
another set of cultured chondrocytes, media was supple-
mented with HA (1680 kDa) of different concentrations (0.1,
0.2, and 0.5 mg/mL). The medium was changed twice a
week. For 3-D honeycomb rotation culture, chondrocytes (4 x
10° cells /20 pL) were spotted on each scaffold inside the sili-
conized glass bottles. To allow the cells to settle and attach to
the scaffolds, culture vessels were incubated in a CO, incuba-
tor for 2 h at 37°C before 6 mL of medium with HA or CS
(0.5 mg/mL) was added to each bottle. Cell-free scaffolds
that were similarly cultured and rotated served as blanks.
Half of the medium was changed every 3 days, and fresh CS
and HA were added each time. Both cultures were incubated
in 5% CO, and 95% air at 37°C for 4 weeks. In the rotation
culture, all bottles rested on the platform of a shaker (Shaker
SRR-3, Tuchi, Tokyo, Japan), which was placed inside a 37°C
cell culture incubator and rotated electrically to develop a
flow condition in the media. The clockwise rotation main-
tained equal intensity of turbulence for the cells and scaf-
folds, and all constructs were dynamically suspended in a
laminar flow. Gas exchange was allowed by surface aeration
by loosely capping the bottles.

Cell morphology assay

Cell morphology was determined by inverted light micro-
scopy. Twice weekly observations were done, and photo-
graphs were taken with Fuji film.
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Measurement of wet weight

After 4 weeks of 3-D honeycomb rotation culture, scaf-
folds were taken out of the siliconized bottle, and extra me-
dium attached with them was wiped with sterile gauge.
Then wet weights were measured using a scale.

Proliferation assay

Alamar blue method

Cell proliferation was quantitatively measured by alamar
blue (Biosource International, Camarillo, CA} assay after
4 weeks of culture, as previously described.®® The assay re-
veals the metabolic activity of cells by detecting mitochon-
drial activity. Alamar blue used as an indicator dye is incor-
porated into the cells, reduced, and excreted as a fluorescent
product. In the micromass culture, medium was discarded
from all wells after 4 weeks of culture, and each well was filled
with 1 mL of a 20-fold dilution of alamer blue solution with
the fresh medium. For the rotation culture, the newly formed
cartilaginous constructs were placed in the wells (a single con-
struct per well, at least four samples in each group) of 24-well
tissue culture plates. The wells were filled with a 20-fold dilu-
tion of alamer blue solution, similar to the micromass condi-
tion. The culture plates were incubated at 37°C for 4 h.

After the incubation period, two 100-uL aliquots of the
solution in each well were transferred to wells of a Costar
96-well tissue culture microplate (Costar type 3595, Corn-
ing). An equal volume of fresh medium per well (total four
wells) served as blanks. The extent of cell proliferation was
quantitated using a Cytofluor II fluorescence multiwell cell
reader (PerSeptive Biosystems, Framingham, MA) at 535-
nm excitation and 590-nm emission. The intensity of the
blue color obtained was directly proportional to the meta-
bolic activity of the cell populations. Blank values were sub-
tracted from the experimental values to exclude back-
ground activity.

Crystal violet staining

Cell proliferation was quantitatively estimated by crystal
violet (Wako Pure Chemical Industries, Osaka, Japan) stain-
ing as previously described.® Briefly, medium from all wells
in the micromass culture was discarded after the culture pe-
riod, and cells were fixed with 100% methanol at room tem-
perature. After fixation, cells were stained with 0.1% crystal
violet in methanol for 20 min. After a proper wash, methanol
was again applied and incubated for 10 min. Hundred
microliters from each well was transferred to a new 96-well
plate, and the absorbance was measured at a wavelength
of 590 nm using an ELISA reader (Bio-Tek Instruments,
Winooski, VT). Blank values were subtracted from experi-
mental values to exclude background activity.

Differentiation assay

Proteoglycans are known components of the cartilage
matrix. The degree of chondrogenesis was determined by

259

staining the cartilage specific proteoglycan with alcian blue
solution (Wako Pure Chemical Industries, Osaka, Japan) as
described earlier®® Following the alamar blue assay, the
medium was discarded from the 24 well plates containing
the newly formed cartilaginous constructs and from the
micromass culture plates. The plates were then washed
once with 0.5 mL/well of PBS at room temperature and
stained in 0.5 mL/well with 1% (v/v) alcian blue, pH 1.0,
overnight at 4°C. The alcian blue solution was then re-
moved, and wells were rinsed with 3% (v/v) acetic acid
and distilled water to completely remove the free dye. The
cartilage proteoglycan was extracted using 4M guanidine
hydrochloride, and the absorbance was measured at a
wavelength of 600 nm using an ELISA reader (Bio-Tek
Instruments). A 100-uL sample of fresh 4M guanidine hy-
drochloride per well in a total of four wells served as
blanks. Blank values were subtracted from experimental
values to exclude background activity.

Reverse transcription and polymerase
chain reaction

The matrix molecules were confirmed, as part of this
study, to be collagen type II and aggrecan. For detection of
the presence of these proteoglycans, single stranded cDNA
was prepared from 1 g of total RNA by reverse transcription
(RT) using a commercially available First-Strand cDNA kit
(Amersham Pharmacia Biotech, Uppsala, Sweden). Subse-
quent PCR was performed with 1 pL of cDNA in a 24.75 pL
of reaction mixture (10x PCR buffer 2.5 uL, dNTP 2 ulL,
MgCl, 2 pL, forward and reverse, each primer 0.5 uL, Taq
DNA polymerase 0.25 pL, and distilled water 17 pL). The
codon sequence used for the primer sets was as follows:

Collagen type II: forward 5-GGCAATAGCAGCAGGTT-
CACGTACA-¥

reverse 5-CGATAACAGTCTTGCCCCACTT-3

Aggrecan: forward 5-TCGAGGACAGCGAGGCC-3'

reverse 5-TCGAGGGTGTAGCGTGTAGAGA-3'.

An initial denaturation step at 94°C for 5 min, followed
by 25 cycles (94°C for 30 s, 60°C for 30 s, 72°C for 30 s), and
a final extension at 72°C for 5 min for collagen type II, and
an initial denaturation at 95°C for 5 min, followed by 33
cycles (95°C for 5 min, 60°C for 1 min, 72°C for 1 min), and
a final extension at 72°C for 5 min for aggrecan were carried
out. Electrophoresis of PCR products was performed on 3%
agarose gel and visualized with SYBR Green I (Bio Whit-
taker Molecular Applications, Rockland, ME). The relative
intensity of signals from each lane was analyzed using a

- computerized scanner. For relative quantitation, the signal

intensity of each lane was standardized to that of a house-
keeping gene, glyceraldehydes-3-phosphate dehydrogenase
(GAPDH):
forward 5-CCCATCACCATCTTCCAGGAGCGAGA-3'
reverse 5-TGGCCAAGGTCATCCATGACAACTTTGG-3'.

Statistical analysis

Student’s t tests were used to assess whether differences
observed between the polymers treated and the control
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@A)

B)

Figure 1. Light microscopic appearance of cultured HC in (A) micromass and (B) 3-D honeycomb rotation conditions spot-
ted as high density cultures treated with different molecular weights and molecular structures of HA and CS for 4 weeks
(after alcian blue staining, original magnification x200).
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samples were statistically significant. For comparison of
groups of means, one-way analysis of variance was carried
out. When significant differences were found, Tukey’s pair-
wise comparisons were used to investigate the nature of the
difference. Statistical significance was accepted at p < 0.05.
Values were presented as the mean * SD (standard devia-
tion). Four samples were run for each case. All experiments
were repeated at least twice, and similar results were
obtained.

RESULTS
Cell morphology

The morphology of chondrocytes in micromass cul-
ture and chondrocyte constructs grown on a 3-D col-
lagen honeycomb under rotation was determined by
inverted light microscopy after alcian blue staining
and is shown in Figure 1. In micromass culture, the
cartilage-specific proteoglycans were comparatively
less stained with alcian blue in cultures treated with
HA 1680 kDa than in the other culture conditions
[Fig. 1(A)]. In contrast, in the rotation culture, the car-
tilage-specific proteoglycans were more prominently
stained with alcian blue in cultures treated with HA
1680 kDa than in the other cultures, and the intensity
of the blue color obtained was directly proportional
to the amount of specific proteoglycans present in the
cartilage constructs [Fig. 1(B)].

Wet weight

To obtain the actual weight of the newly formed
cartilaginous constructs, the wet weights of 4-week-
cultured cell-free scaffolds were subtracted from the
wet weights of all cells-seeded constructs. After 4 weeks
of culture, the wet weight of the constructs grown with
CS-A 16, CS-C 34, HA 810, and HA 1680 kDa were
increased 1.6,1.2,2.2 (p < 0.05), and 2.9 (p < 0.01) times
compared with control (Fig. 2).

Cell proliferation assay

The proliferation rates of all cultures done both in
micromass [Fig. 3(A)] and rotation conditions [Fig. 3(B)]
are shown in Figure 3, with error bars representing the
SD of the mean. All values of the samples exposed to
the factors are expressed as a percentage of the average
control value, which was calculated as 100%. Under
micromass condition, cell proliferation of the cultures
treated with CS-A 16, HA 810, and HA 1680 kDa at
0.5 mg/mL was increased 1.3 (p < 0.01), 1.34 (p < 0.01),
and 1.5 (p < 0.01) times, respectively, compared with
the control culture [Fig. 3(A)]. The same figure shows
that CS-C 34 kDa treatment caused a 1.1-fold increase
of cell proliferation, but this was not significant com-
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Weight (mg)

Control
CS-A 16kDe
CS-C 34kDe
HaA 810kDa

HA 1680 kDa

Figure 2. Wet weight of tissue constructs obtained by cul-
turing HC on collagen honeycomb in rotation condition
and treated with different molecular weights and structures
of HA and CS for a period of 4 weeks. HA 810 kDa (*p <
0.05), and HA 1680 kDa (*'p < 0.01) are significantly differ-
ent compared with controls. All experiments were run in
quadruplicate for two separate times.

pared with the control culture. Under the rotation
condition, cell proliferation of the cultures treated
with CS-A 16, HA 810, and HA 1680 kDa at 0.5 mg/mL
was increased to 1.3 (p < 0.01), 1.2 (p < 0.05), and 1.5
(p < 0.01) times, respectively, compared with the con-
trol culture. CS-C 34 kDa treatment also caused a 1.1-
fold increase in cell proliferation, which was not statis-
tically significant compared with the control culture
[Fig. 3(B)].

Cell differentiation

The form of proteoglycan bound with alcian blue
was extracted with 4M guanidine hydrochloride. The
amounts were expressed as a percentage of the average
control value, which was calculated as 100%. Under
micromass culture, differentiation of chondrocytes
treated with HA 1680 kDa was 87% (p < 0.05) of that
of the control culture. At the same time, cultures treated
with CS-A 16, CS-C 34, and HA 810 kDa showed a
slight but not significant increase in cell differentiation
[Fig. 4(A)]. The intensity of alcian blue staining was
found to be higher in all cultures under the rotation
condition than that found with the control culture.
Here, cultures treated with CS-A 16, HA 810, and HA
1680 kDa were increased to 1.4 (p < 0.05), 2.1 (p <
0.05), and 2.4 (p < 0.05) times compared with the con-
trol culture. CS-C 34 kDa treatment caused a 1.1-fold
nonsignificant increase in cell differentiation com-
pared with control culture [Fig. 4(B)].
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Figure 3. Cell proliferation of HC estimated by alamar blue method. (A) Under micromass conditions in control, CS-A
16 kDa, CS-C 34 kDa, HA 810 kDa, and HA 1680 kDa for 4 weeks. CS-A 16 kDa, HA 810 kDa, and HA 1680 kDa are signifi-
cantly different compared with control (**p < 0.01). (B) In rotation conditions, cultures were treated with four different types
of CS and HA for 4 weeks. CS-A 16 kDa (**p < 0.01), HA 810 kDa (*p < 0.05), HA 1680 kDa (**p < 0.01) are significantly dif-
ferent compared with controls. All experiments were run in quadruplicate for two separate times.

Chondrogenic effect of HA (1680 kDa) in different
concentrations

To examine the chondrogenic effect of HA (1680 kDa)
in different concentrations, we again performed
proliferation and differentiation assays under the
micromass culture condition. Cell proliferation was
increased about 1.5-, 1.6-, and 2-fold when treated

with 0.1, 0.2, and 0.5 mg/mL of HA 1680 kDa, re-
spectively, compared with the control culture [Fig. 5(A)].
On the other hand, cell differentiation was significantly
decreased to about 70% (p < 0.05) when treated with
0.5 mg/mL compared with control culture. How-
ever, cultures treated with 0.1 and 0.2 mg/mL of HA
1680 kDa also showed slight but nonsignificant de-
creases in cell differentiation [Fig. 5(B)].
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Figure 4. Cell differentiation of HC estimated by alcian blue method. (A) Under micromass conditions in control, CS-A
16 kDa, CS-C 34 kDa, HA 810 kDa, and HA 1680 kDa for 4 weeks. HA 1680 kDa is significantly different compared with
control (*p < 0.05). (B) In rotation conditions, cultures were treated with four different types of CS and HA for 4 weeks. CS-
A 16 kDa, HA 810 kDa, and HA 1680 kDa are significantly different compared with controls (*p < 0.05). All experiments
were run in quadruplicate for two separate times.
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Figure 5. Chondrogenic effect of HA (1680 kDa) with different concentrations under micromass conditions for 4 weeks. (A)
As demonstrated by crystal violet staining, cell proliferation was increased with 0.1, 0.2, and 0.5 mg/mL of HA 1680 kDa
respectively, compared with the control culture. (B) Cell differentiation estimated by alcian blue staining was significantly
decreased with 0.5 mg/mL (*p < 0.05) and slightly but non-significantly decreased with 0.1 and 0.2 mg/mL of HA 1680 kDa
compared with control culture. All experiments were run in quadruplicate for two separate times.

Time course of cell proliferation

Under the micromass condition, cell proliferation
was increased about 2.2 (p < 0.05)-, 2.3 (p < 0.01)-,
and 4.3 (p < 0.01)-fold after 2, 3, and 4 weeks of cul-
ture, respectively, compared with the chondrocytes
cultured for 1 week (Fig. 6).

Extracellular matrix gene expression

Under the micromass condition, RT-PCR analysis
showed that chondrocytes treated with CS-A 16, C5-
C 34, HA 810, and HA 1680 kDa at 0.5 mg/mL all
consistently expressed collagen type II and aggrecan
genes in culture [Fig. 7(A)]. On the other hand, under
rotation, all cultures expressed the aggrecan gene and
the intensity of expression was similar in all cultures,
but there was a gradual decrease in the expression of
collagen type II gene in all culture conditions. In fact,
the level of expression was even less than in the con-
trol culture [Fig. 7(B)]. Therefore, this qualitative
detection assay demonstrates that the cartilage extrac-
ellular matrix (ECM) expressed both collagen type II
and aggrecan gene molecules in all samples under
both culture conditions.

DISCUSSION

Clarification of the basic mechanisms of chondro-
cyte proliferation and differentiation is essential to

develop new biological therapies for better treatment
of patients suffering from joint diseases. Recently, au-
tologous chondrocyte transplantation (ACT) has been
introduced as a novel biological treatment.** Thorough
understanding of experimental methods that produce
adequate cell proliferation and differentiation is re-
quired for the clinical application of ACT. Here, we
examined the effects of HA and CS of different molec-
ular weights and structures by culturing HC in both
micromass and rotation culture conditions. HC were
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Figure 6. Time course of cell proliferation under micro-
mass conditions for 4 weeks, estimated by crystal violet
staining. Cell proliferation was significantly increased after
2 weeks (*p < 0.05), 3 weeks (*p < 0.01), and 4 weeks (*p
< 0.01) of culture, compared with the chondrocytes cul-

tured for 1 week. All experiments were run in quadrupli-
cate for two separate times.
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Figure 7. (A) Reverse transcription-polymerase chain reaction amplification of GAPDH, collagen type II, and aggrecan in
cultures of HC with four different types of CS and HA for 4 weeks in micromass conditions. Lane 1, control; lane 2, CS-A
16 kDa; lane 3, CS-C 34 kDa; lane 4, HA 810 kDa; and lane 5, HA 1680 kDa. (B) Reverse transcription-polymerase chain reac-
tion amplification of GAPDH, collagen type 1II, and aggrecan in cultures of HC with four different types of CS and HA for
4 weeks in rotation conditions. Lane 1, control; lane 2, CS-A 16 kDa; lane 3, CS-C 34 kDa; lane 4, HA 810 kDa; and lane 5,
HA 1680 kDa. All experiments were run in quadruplicate for two separate times.

cultured on a collagen honeycomb under rotation to
generate a 3-D human hyaline cartilage that has the
capacity to mimic native cartilage. After 4 weeks cul-
ture in this condition, the wet weight of the constructs
grown with HA and CS of different molecular weights
and structures were markedly increased compared
with controls (Fig. 2). HA obtained from an animal
source was reported to show stimulatory effects on cell
proliferation and differentiation, respectively, of chon-
drocytes of rabbit and bovine origin cultured in vitro in
a static condition*** We used HA of bacterial origin
with different molecular weights for the in vitro study
of HC and showed a similar tendency toward a marked
increase in chondrocyte proliferation both in micro-
mass and rotation culture conditions compared with
the control cultures (Fig. 3). Under rotation, cell differ-
entiation was significantly increased in cultures treated
with HA of different molecular weights, especially
with HA 1680 kDa. In contrast, in micromass culture,
the HC treated with HA 1680 kDa showed a significant
decrease in cell differentiation compared with controls,
while a slight increase was observed in the HA 810 kDa
treated cells (Fig. 4). The results obtained by morpho-
logical examination of cultured chondrocytes as well
as cartilage constructs after alcian blue staining under
micromass and rotation conditions (Fig. 1) also corre-
lated with the findings presented in Figure 4.

To find the appropriate concentration of HA 1680 kDa,
we again cultured HC under the micromass condition.
Figure 5(A,B) revealed that the cell proliferation was
increased and the differentiation was decreased in a
dose-dependent manner. These findings also corrobo-
rated the results shown in Figures 3(A) and 4(A). It is
supposed that small amounts of growth factors are
bound to HA of animal origin. In contrast, HA of bac-
terial origin, such as that used in this study, is free
from such constituents and is highly pure. Thus, we
hypothesized that HA of animal and bacteria origins
might have different effects on HC proliferation and
differentiation. In micromass culture, chondrocyte dif-
ferentiation was inhibited by HA of different molecu-
lar weights, and this inhibitory effect may have been
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overcome by the flow of turbulence occurring during
rotation culture (Fig. 8). A recent study suggested that
hydrodynamic conditions for culturing bovine articu-
lar cartilage provided efficient mass transfer essential
for cell proliferation and synthesis of matrix compo-
nents and that dynamic laminar flow patterns pro-
moted cell differentiation, retention of newly synthe-
sized macromolecules, and maintenance of cartilagi-
nous tissue.*” It was also suggested that the rotation
condition is more effective than the micromass condi-
tion when HC is cultured with or without HA (data
not shown). It was recently ascertained by immunoflu-
orescence assay that the gap-junction protein connexin
43 was localized in the cultured cartilage in vitro, fur-
ther indicating that functional gap junctions* and gap
junctional intracellular communication (GJIC) cou-
pling by connexin 43 play important roles in the carti-
lage development,* and it was demonstrated that
chondrocytes isolated from adult articular cartilage
expressed functional gap junctions.*® Neumann et al.
reported that HA can both promote and inhibit cyto-
kine expression depending on its molecular size.*¢
Recent studies suggested that the function of GJIC,*
as well as biosynthesis of growth factors, was inhib-
ited by the addition of HMW HA 800 kDa.*® The mo-
lecular weight of HA used in the present study was
1680 kDa. This higher molecular weight HA appa-
rently inhibited GJIC under the micromass condition
and caused an inhibitory effect on cell differentiation.
CS-A was reported to increase proteoglycan produc-
tion by human chondrocytes in culture media and in
clusters.®® Other experimental models have shown
that CS-A increases GAG synthesis by chondrocytes
in vitro.* It was also reported that CS linked to type 1
collagen scaffolds stimulates the bioactivity of seeded
bovine chondrocytes in vitro®> To the best of our
knowledge, no study has investigated HC prolifera-
tion and differentiation using CS of different chemical
structures in micromass and rotation culture condi-
tions. Under both micromass and rotation conditions,
CS-A 16 kDa-treated cultures showed a significant in-
crease in HC proliferation (Fig. 3) and differentiation
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Figure 8. Schematic representation of the effects of different molecular weights of HA on the differentiation of HC. (A)
Static condition (micromass). {B) Dynamic condition (rotation culture).

(Fig. 4) over CS-C 34 kDa. The substituted position of
sulfate is different between CS-A and CS-C, and their
different chemical structure played a vital role in
chondrogenesis of HC rather than their different mo-
lecular weights. A

A recent study reported consistent expression of the
aggrecan gene in cultures of bovine articular chondro-
cytes with different scaffold materials cultures or as a
monolayer, but scaffolds were weaker in inducing col-
lagen type II gene expression compared with the
monolayer culture.”® In the present study, qualitative
RT-PCR analysis demonstrated that the ECM of HC
treated with HA and CS of different molecular
weights and structures also expressed the aggrecan
gene in both culture conditions. It was found that
under the presence of CS-A, CS-C, and HA, expres-
sions of collagen type II gene were lower than that of
controls even in the rotation culture, although most re-
lating researches have reported that the culture under
fluid flow, mixin%, or physical stimulation increased
collagen contents. 152 Therefore, CS-A, CS-C, and HA

may suppress the expression of collagen type II gene
but enhance the expression of aggrecan gene under the
rotation culture [Fig. 7(B)].

CONCLUSIONS

In the present in vitro study, considering the chemi-
cal structure and culture condition in the case of CS
and the source of origin, molecular weight, and cul-
ture condition in the case of HA, it can be postulated
that both the hyaluronic acids and CS-A 16 kDa will
probably be effective in the field of HC repair under
the in vivo mechanical stimulation.
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