\'Ve eva.lua,te the )1‘ecision Of 910( it llSiH > a conﬁdence interva.l ba.sed on the delta method.
g
USill‘" a. ﬁl‘St Ol'del' TH.YIOI' Sel'iGS anp )l‘oxima.tion the 10 3 Hlo(i,, can ap )1‘oxi111a.tely be ex )a.nde(l
o R 3 2 g R

as

log, élogit = ——& ~ __ﬁ_l _ (B1— Bh) n B1(B2 — Ba)

5 "B A 7 ©)

which yields an approximate variance of logy 0jo4: as

e T . PN
02(10g2 élogit) ~ Valﬂ(gﬁﬂ L 5 V;;(ﬁz) _ 20, Coﬁéﬁl, 52).

(10)

By obtaining estimates of the variance and covariance of Bl and 52 through linear approxima-
tion in the non-linear least squares method, an estimate of o?(log, élogit) can he calculated by
substituting [;?1 and F; into (10) (Cox, 1990). We can obtain an approximate 1— o confidence
interval for logy O1ogi a8

10g2 élogit + zl—a/Z é(lng élogit)) ' (11)

which yields the confidence interval for 054 as

exp(logy Oiogit £ 21-a/2 (log, élogit))a (12)
where z1_q/9 is the (1 — a/2) quantile of the standard normal distribution.
A log-time regression method and a linear regression method

The models for a test substance and a negative control using a log-time regression method

and a linear regression method are, respectively, described as

y.ij = 164 + ﬁS lOgQ t; + igs (13)
Yo; = Bs+ecy,
7
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Yij = B+ Bats + ey, 19
Yo; = Ps+ec;

Since the absorbance corresponding to ET50 is s /2, the log, ET50 obtained from a log-time

regression method, log, 0,04, and ET50 obtained from each method, 0,5 and 6);,,, are defined

by
1
10g2 0109 = B: (% - 64) s (15)
glog - 2(ﬁ3/2—ﬁ4)//35’ (16)
_ 1P _
glz‘n, = 57 (2 ﬁﬁ) . (17)

We use the ordinary least squares method to estimate parameters, fs, f4, Bs, O and By,

in which Q,y and Q. defined as follows are minimized:

2 2
Qiog = 2357 (v~ (Ba+ Bologyts)) + 3 (v — )’ (18)
i j
2 2
Qiin = ZZ (Z/Z"j — (Bs + 57751‘)) =+ Z (y/Cj - ﬁs) . (19)
ig J
ET50 estimate are obtained by substituting acquired estimates, ﬁ};;, B4, 5’5, /3’6 and ,57, into

the definition of ET50 given by (16) and (17), respectively. Using a first order Taylor series

approximation, the log, 6;,, and 6y, can approximately be expanded as

. 1 .
logQ Hlog = = (é:i - ﬂd)

Bs \ 2 |
~ LB (Bs*ﬁs)m(@;—ﬁzx)__}_ Bs -
- %(2 ﬁJ+ 26; Bs %(2 O(s Bo), - (20)
A 1 (B
elm - E("é“‘ﬁs)
8

,.
PRy
e
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_1_(53_) (Bs — Bs) (Bs—ﬁ6)~i<p§
6 | -+ —

B\ 2 207 B, A ﬁc) (67— B7). (21)

Then approximate variances of log, 80 and Oy, are given by

o o) a1 3 ar A:‘ 2

o*(log, ézog). ~ \72[(?53) + Va;j(%m) + Valﬁ(gﬂd) (%E B ﬁ4>
ool (8 ), 22

A Var(fs)  Var(fs)  Var(B:) (B ’

o261 341;%3) N alﬁ(% ) N alﬁ(%1 7) <53—ﬁ6>
(2o ul) (@2_ - 56> . (23)

Estimates of o*(log, é;og) and az(éhn) can be calculated by substituting 33, ,54, [}5, BG and
,37, into (22) and (23). We can obtain an approximate 1 —« confidence interval for logy 810

as
10%2 élog + 21— /2 5(1Og2 élog)) (24)
which yields the confidence interval for 004 as
exp(log, é,,og + 2 _q/2 (log, é,_og)). (25)

Similarly, we can obtain an approximate 1 — « confidence interval for 6);, as

Qli'n, + Z1—a/2 0(61i17.)- (26>
A two-stage method
Parameter estimates and/or variance covariance matrices occasionally cannot be obtained

from the logistic regression method due to the small sample sizes. We consider a two-

9
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stage method in which the log-time regression method is alternatively applied if the logistic

regression method cannot construct a confidence interval for ET50.

Design of the simulation study

We evaluate the performance of each estimation method through a Monte-Carlo simu-

lation involving the following steps under the similar conditions to the validation study for

TESTSKINT™ (2002) and Vitrolife-Skin™ (2004).

Stepl.

Step2.

Step3.

Specify true ET50 value between 4 and 18 hours assuming a mild test substance.
The time point for measurement is allocated as (t;,1,3,14) = (2,4, 8, 16) in 4-

point design and is allocated as (t1,ts, 13,14, 5) = (2,4, 8, 16, 24) in 5-point design.

Generate virtual data for a test substance from the logistic curve on the time-

response defined by

B3
1+ exp(fr + fology t;)

Yy = + ey, (27)

where (5 = 2.0, 5 = 1.0 and e;; 18 mutually distributed as a normal distribution
N(0, 0.1%). Since the ET50 value, O1ogit, 1s a function of £; and By, £ is determined

from By and Ojo45. Figure 1 shows the assumed time-response curves of model (27).

Generate virtual data for a negative control from y'cj = B3 + ec;, where i3 = 1.0

and ec; is mutually distributed as a normal distribution N(0, 0.12).

10
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Step4. Estimate ET50 and construct a confidence interval for ET50 using each estimation

method.

Step5. Iterate 10,000 times Step 2 through Step 4, and calculate a proportion of estimable
cases, a bias in estimates, and a coverage probability in which each interval contains
the true ET50 values. A bias in estimates is defined as the median of the difference

of the estimate of ET50 and the true ET50 value.

The reason we assume a mild test substance in Step 1 is that estimating ET50 for clearly

strong or weak substances is not essential.

Results

We report the results of the Monte-Carlo simulation study in Tables 1 through 3 and
present the corresponding scatter plots in Figures 2 through 4 to compare the performance
of each estimation method. In these tables and figures, the left side shows the results in
4-point design and the right side shows those in 5-point design.

The characteristics of each estimation method are summarized below.
A logistic regression method

e The proportion of estimable cases decreases as low as 85% with the increase of true

ET50 values in 4-point design, whereas it is almost 100% in 5-point design.

e The bias in estimates is negligible in both 4- and 5-point designs.

11
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e The coverage probability is always below the nominal confidence level of 95% and as

low as 88% in some cases.

According to the above mentioned results, the logistic regression method is appropriate
in 5-point design, whereas another method should complementarily be used in addition to
the logistic regression method in 4-point design.

Examples of simulated data that yielded feasible and unfeasible estimates, when the
true ET50 value is 14 hours, are shown in Figure 5 together with the true and estimated
time-response curves. This figure suggests that we tend to encounter difficulty in obtaining
confidence intervals when we do not have measurements on time points around ET50.

A log-time regression method
o The proportion of estimable cases is almost 100% in both 4- and 5-point designs.
e ET50 estimates tend to be greater ltha.n the true ET50 value with the increase of true
ET50 values in 4-point design.
o The bias in estimates is within 2 hours and, therefore, negligible in 5-point design.
e Although the coverage probability tends to be greater with the increase of true ET50

values in both 4- and 5-point designs, the discrepancy from the nominal confidence

level of 95% is within +5%.

These results suggest caution in rarely adopting 4-point design because estimates tend
to be great when the true ET50 value is great, although no remarkable defects appear in

5-point design.

12

s
[R.03
T



A linear regression method

o The proportion of estimable cases is almost 100% in both 4- and 5-point designs.
o The estimates of ET50 tend to be great in both 4- and 5-point designs, when the true

ET50 value is small.

o The coverage probability is seriously low since it is as low as 50% in 4-point design or

40% in 5-point design in the worst cases.

These results suggest that the linear regression method should not be adopted due to
low coverage probabilities irrespective of design. The 5-point design is more disadvantageous
than the 4-point design because the time points for obtaining measurements in 5-point design
included Ty = 24 hour in our simulation setting. Actually, the measurement at the 24 hour

point leads to a smaller value of the gradient than the expected value.
Two-stage method

e The proportion of estimable cases is almost 100% in both 4- and 5-point designs.

e The estimates of ET50 are on average almost the same as the true ET50 value in iaotll
4 and 5-point designs.

e Although the coverage probability tends to be greater with the increase of true ET50
values in both 4- and 5-point designs, the discrepancy from the nominal confidence

level of 95% is within +5%.

13



These results indicate that the two-stage method is reasonable for obtaining a confi-
dence interval for ET50, although it should be slightly adjusted so as to keep the coverage

probability near the nominal confidence level.

Discussion

We recommend using the two-stage method for ohtaining a confidence interval for ET50.
However, further investigations are necessary to extend the conclusion to any case of the
design and analysis of experiments using 3D skin mocdels, since the adopted simulation
conditions are adaptable only for the real validation studies of TESTSKIN and Vitrolife-Skin.
When the use of refined statistical software such as SAS or R is diffienlt, we recommend using

the log-time regression method with 5-point design although the hiased estimates within 2

hours are occasionally obtained.

The condition where the proportion of estimable cases in the application of logistic re-
gression method in 4-point design realizes values below 100% depends on the number of time
points, the positioning of time points, and the scale of measurement errors (Sozu et al., 2005,
Sozu et al., 2006). Properly setting these conditions considering the convenience of workers

1s important and further studies are necessary to address this issue.
The results of this research would promote the use of 3D skin models through the achieve-

ment of adequate and quantitative evaluations of skin irritation of test substances.
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Tables and Figures

Table 1: Results of proportion of estimable cases (%) for each estimation method.

4-point design

5-point design

Estimation method

Estimation method

True ETS0 Log- Two- Log- Two-
values Logistic time Linear stage Logistic time Linear stage
4 99.2 100.0 100.0 100.0 99.1 100.0 100.0 100.0

5 100.0 100.0  100.0 100.0 99.9 100.0 100.0 100.0

6 99.8 100.0 100.0 100.0 99.7 100.0 100.0 100.0

7 99.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0

8 99.1 100.0 100.0 100.0 99.3 100.0 100.0 100.0

9 99.8 100.0 100.0 100.0 99.8 100.0 100.0 100.0
10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
11 99.9 100.0 100.0 100.0 100.0 100.0  100.0 100.0
12 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
13 98.9 100.0 100.0 100.0 100.0 100.0  100.0 100.0
14 97.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
15 94.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
16 92.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
17 88.6 100.0 100.0 100.0 100.0 100.0  100.0 100.0
18 85.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0
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Table 2: Results of bias in estimates for each estimation method.

4-point design 5-point design
Estimation method Estimation method

True ETS50 Log- Two- Log- Two-
values Logistic ~time Linear stage Logistic time Linear stage
4 —0.01 0.32 1.41 0.00 -0.01 0.46 1.16  0.00

5 -0.02  0.20 1.88 —0.02 -0.01 0.51 2.55 —0.01

6 -0.01 -0.02 1.90 —0.01 0.00 0.34 3.06 0.00

7 —-0.01 -0.27 1.71 —0.01 0.00 0.06 3.15  0.01

8 —-0.02 -0.483 1.44 —0.02 -0.01 -0.26 3.03 —0.01

9 —-0.05 —0.59 1.15 —0.05 -0.02 -0.60 2.78 —0.02
10 —0.06 —0.54 0.88 —0.06 —-0.02 -0.90 2.47 —0.02
11 -0.05 -0.27 0.67 —0.05 -0.02 -1.15 2.15 —0.02
12 —-0.04 031 0.48 —0.03 -0.02 -1.32 1.82 —0.02
13 —0.02 1.30 0.39 -0.01 -0.01 -1.39 1.50 —0.01
14 —-0.04 284 0.39 0.01 -0.01 -1.31 1.22 -0.01
15 —0.08 5.18 0.49  0.02 -0.02 -1.07 0.97 —0.02
16 -0.15 8.67 0.71 0.02 —0.02 -0.57 0.78 —0.02
17 —0.22 13.80 1.05  0.08 —0.03 0.20 0.64 —0.03
18 —-0.22 21.38 1.55  0.31 —0.05 1.32 0.55 —=0.05
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Table 3: Results of coverage probability for each estimation method.

4-point design 5-point design
Estimation method Estimation method

True ET50 Log- Two- Log- Two-
values Logistic time Linear stage Logistic time Linear stage
4 88.1 90.6 93.2 88.1 86.5 91.3 98.7 86.6

5 88.4 91.3 71.6 88.4 87.0 88.0 86.1 87.0

6 39.0 92.5 956.2  89.0 87.9 90.6 63.7 87.9

7 88.9 91.7 83.1  89.0 88.0 93.3 46.8  88.1

8 90.1 91.6 89.6 90.2 89.5 92.4 40.1 89.6

9 90.0 929 70.7  90.0 90.1 90.6 40.1  90.1
10 89.9 95.1 81.7 89.9 90.4 89.4 45.8  90.4
11 89.7 96.9 88.2  89.7 90.5 89.3 54.2  90.5
12 90.0 98.2 91.6 90.0 90.4 90.2 64.9 90.4
13 90.3 98.6 93.2 904 89.8 91.9 74.3  89.8
14 91.4 9838 93.9 917 89.1 94.0 81.7  89.1
15 93.2 984 94.2 93.6 89.6 96.1 87.5 89.6
16 94.1 97.8 94.9 945 90.6 97.7 90.4 90.6
17 93.2 96.7 95.2  94.0 91.2 985 92.1  91.3
18 91.5 95.4 95.7  92.7 92.0 99.2 93.2 92.0

20



Absorbance

Time (hour)

Fig. 1: Assumed time-response curves based on the logistic regression model.
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Study of Alternatives to Animal Testing
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Abstract

Sensitivity, specificity and accuracy are well known measures for evaluating the relevance of an in-
ter-laboratory validation study for alternative tests. It is not generally discussed that the measures are
dependent on two determining factors: a set of chemicals and the number of laboratories. Furthermore,
some alternative tests such as these for the phototoxicity test have an “Equivocal” category for judging
the toxicity of chemicals. These facts have made it difficult to interpret the value’of the measures.

Therefore, in this paper we propose new measures to evaluate the alternatives, which depend on a
set of chemicals rather than on both factors, and can treat data which have “Equivocal” category. We
also propose their confidence intervals, which are measures of their precision.

Key words: relevance, inter-laboratory validation study, sensitivity, specificity, accuracy, confidence

interval

Introduction

Recently, due .to an increasing social concern for
animal welfare, a lot of alternative animal tests
have been proposed, and in order to examine their
feasibility and practicality various inter-laboratory
validation studies have been conducted (e.g. Ray et
al., 1994; Spielmann et al., 1998). Generally, the
primary purpose of the validation study is to
evaluate both the relevance and reliability of a
proposed alternative test from the results of ex-
periments using the alternative test (Balls et al.,
1999). Sensitivity, specificity and accuracy are
measures to determine the effectiveness of the al-
ternative test when both the alternative and the
animal tests have a binary classification for judg-
ing toxicity of chemicals, as “Positive” and “Nega-
tive”. These are well known measures which have
been widely used to evaluate the relevance of the
alternative test in many validation studies (e.g.
Balls et al., 1990; Roy et al., 1994; Spielmann et
al., 1998).

25

However, two points should be taken into
consideration concerning the interpretation of the
summarized data from validation studies. The first
point is that the values in the 2 by 2 table, which
summarizes data, depend not only on a selected set
of chemicals in the study but also on the number of
participant laboratories. The other point is that a
category for “Equivocal” produced from some al-
ternative tests such as these for the photoxicity test,
which is neither a “Positive” nor “Negative” cate-
gory, is often provided. For instance, the test
guideline of the in vitro 3T3 NRU phototoxicity
test states that ‘a test substance with a PIF < 2 or
an MPE < 0.1 predicts: "no phototoxicity”. 4 PIF
>2and < 5 or an MPE > 0.1 and < 0.15 predicts:
"probable phototoxicity” and a PIF > 5 or an
MPE > 0.15 predicts: “phototoxicity”.’ where the
PIF and the MPE are measurements of phototoxic-
ity for the test (OECD, 2004). In this case, since
there was a range suggesting similar performance
when several cut-off points were examined, the
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category “probable phototoxicity” as “Equivocal”
was set (Peters and Holzhiitter, 2002). Sugiyama,
et al (1994) proposed a red blood cell hemolysis
assay to predict phototoxicity of chemicals, and

they classified photohemolysis into three catego-

ries, +, t and .

In this paper, we discuss the above two points
for the measures, sensitivity, specificity and accu-
racy, and propose new measures for evaluating the
relevance of an inter-laboratory validation study.
We also construct an equation for their confidence

intervals, which measure their precision of them
(Altman, 2000a).

Methods
Definition for sensitivity, specificity and con-
cordance

Table 1 shows a 2 by 2 table. Sensitivity is
defined as the proportion of chemicals judged as
positive by an alternative test in which the chemi-
cals are identified as positive by an animal test.
When data is summarized as in table 1, sensitivity
is calculated by a / (a + b). Specificity is defined as
the proportion of chemicals judged as negative by
the alternative test in which the chemicals are
identified as negative by the animal test. The
measure is d / (¢ + d). Accuracy is defined as the
proportion of a corresponding number of chemi-
cals by the judgment of the alternative test in

Table 1. The 2 by 2 table.

which all the chemicals are identified by the ani-
mal test. The measure is obtained as (a+ d)/(a+Db
+c+d).

It is rarely noted that the values of these
measures depend on the selected set of chemicals.
If the toxicity of the selected chemicals in a valida-
tion study has only the strongest classes and the
weakest classes, the values of these measures
would be expected to be higher when the assessed
alternative test has a good correlation to the tar-
geted animal test. If the researchers conducting the
validation study can select test chemicals before
the experiments on the alternative test, they can
control the measures. On the other hand, if they
choose many middle class chemicals in the study,
the measures may show an inferior result com-
pared to our expectation. Even if the chemicals are
selected by an external person not directly in-
volved in the study, the values of these are de-
pendent on the selected chemicals. Thus, we
should interpret the values of these as conditional
proportions dependent on the set of 'selected
chemicals in the study.

Motivated data

Table 2 shows a typical form of data from a
validation study. The symbols P”, “E” and “N” in
the Table mean “Positive”, “Equivocal” and
“Negative” to be judged by In vivo test or the al-

e Animal test
‘% Positive | Negative
Alternative i Positive a C
test : Negative b d
; a+th c+d

Table 2. A motivated exampie of a inter-laboratory validation study.

. . Labovatory

Cherricd In vivo : b . p . f
A p P E E P
B P P N p E
C N P p p P
D P P E E P
E N P P P P
F N N P N N
G P P P P P
H N N E E E
| N N N N N

Symbols: P, positive; E, equivocal; N, negative
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ternative test. This data is from an actual validation
study conducted in Japan which has not been pub-
lished vet. In the study, nine chemicals were tested
by six laboratories. In order to meet an increasing
demand for assessing test chemicals, the laborato-
ries used the alternative test for as many chemicals
as possible. However, due to time and financial
constraints, all the laboratories did not experiment
applying the alternative test for all the chemicals.
In view of animal welfare, data from animal tests
is usually obtained from some published articles
and/or databases including data from past experi-
ments; animal tests are rarely conducted in valida-
tion studies. Therefore there is usually only one
result for each chemical. On the other hand, some
results for each chemical in an alternative test are
obtained from the inter-laboratory study.

When the measures, sensitivity, specificity
and accuracy, are calculated, data, as in Table 2, is
summarized by a 2 by 2 table, in which a result
from a chemical in a laboratory for an alternative
test corresponds to a result from using the same
chemical in an animal test; total for four cells in
the 2 by 2 table is 36 as is the case in Table.

Consideration of two points

Furthermore, in addition to the fact that the meas-
ures are a conditional proportion of a set of
chemicals, we also have to consider that these de-
pend on the number of laboratories conducting
inter-laboratory validation studies. However, when
data is summarized by a 2 by 2 table, as in Table 2,
distinguishing between the two factors, the set of
selected chemicals and the number of participant
laboratories is overlooked. Then the interpretation
of the value is difficult. For instance, the sensitivity
from a laboratory which has examined ten positive
chemicals is 100% when all the chemicals are
judged positive. The sensitivity from the ten labo-
ratories which examined a positive chemical is also
100% when all laboratories judge positive for the
chemical. Should we regard both sensitivities as
the same? Some people often use only the values
of these measures from different validation studies
without taking into consideration these factors,
when they compare the alternatives.

The presence of an “Equivocal” category is
another difficulty involved in interpreting the
measures. Since these measures are based on the
assumption that the results of both tests are ex-
pressed as binary categories, often data for
“Equivocal” is artificially changed: these are
eliminated from the numerator; data for “Equivo-
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cal” is relabeled as “Positive” (e.g. Sugiyama et al.,
1994). The value of the measures depends on
which treatment is used.

Proposed methods

We propose similar measures t0 sensitivity, speci-
ficity and accuracy, which take into consideration
and deal with the previous two points,

Firstly, we consider the relationship between
two factors; chemical and laboratory. Since several
laboratories experiment using the alternative test
for a same chemical in the inter-laboratory valida-
tion study, data from the validation study has a
hierarchical structure between two factors, In the
proposed methods, the factor of chemical becomes
a basic unit.

Suppose ¥; isa variable to explain the re-

sult from an alternative test, and x; is a variable

to explain the result from an animal test, where
subscript i and j mean the i th chemical i=1,2, ...,
n) and the j th laboratory (G = 1, 2, ..., mj) respec-
tively. The variable y, take 1 for the “Positive”

result, 0 for the “Negative” and 0.5 for the
“Equivocal”, when the alternative test is experi-
mented for the i th chemical in the j th laboratory.

The variable X, is 1 for the “Positive” result of
the targeted animal test, and O for the “Negative”
result. We initially define p, as a proportion for

the number of positive results in the i th chemical
for the alternative test, that is

b; :Zyij/mi-
J

As shown the appendix A, we can calculate the
variance, V' (p,.), based on the assumption of tri-
nomial distribution.

Using p;, we also define g, as

f =xrpi+(1—xi)(1—pi)~ @
Note that g, is a measure for the reliability of the
i th chemical. The alternative test shows good re-
liability when the value of ¢;is close to 1.

Finally, we define three measures which cor-
respond to sensitivity, specificity and accuracy,

using p;, and call these measures Psn, Psp and Pac,
respectively;

PS;1=inpi/Zx,
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