We assume a logistic regression model as an approximation of the time-response curve
(Shiraishi et al., 2005, Shiraishi et al., 2006). The estimation method using a logistic re-
gression model is essentially the same as the one proposed by Omori et al. (1998). Omori
proposed, in his article, a method for estimating ED50 (50% effective dose) in the validation
study to evaluate the feasibility of cytotoxicity assay as an alternative method for the Draize
eye irritation test. According to Omori’s method, as a suitable model for the dose-response

curve for a test substance, the logistic regression model for absorbance instead of cell viability

is defined hy

B s
T1+ exp(f1 + B2 logyg di)

Yig + Bo + s, (2)
where y;; is the j-th measurement of a test substance at dose d;, fp is the effect of a blank,
B is a location parameter, (3, is a scale parameter, (s is the effect of a negative control and

e;; is a random error term peculiar to y;;. In addition to the model for a test substance, the

models for a negative control and a blank are, respectively, assumed as

yo; = Ps+ B+ e, (3)

yp; = Do+ ey, (4)

where, yo; and yp; are j-th measurements of a negative control and a blank, respectively,
ec; and ep; are random error terms peculiar to y¢; and yg;, respectively.
We modify model (2) to estimate ET50 from the time-response curve since Omori’s

method assumes the dose-response curve. First, we substitute log,?; for log;od;, on the



grounds that the time point for measurement, #;, is generally allocated at a common ratio of
2. Next, we apply a logistic regression model for a test substance to the variable ygj = vy —UB.,
since the variation in the absorbance of a blank would be negligible. Similarly, we apply a

model for a negative control to the variable y¢; = yc; —75.. The models for a test substance

and a negative control are redefined by

y/ = ’63 + €44
K 1 -+ exp(ﬁl + ﬂz 10g2 ti) o (5)

!
yC’] = ﬂ3 + ecja

Although an underestimate of the precision may become a problem by the above formulation,
it is possible to estimate the parameters stably by decreasing the number of parameter to be

estimated. Since the absorbance corresponding to ET50 is f5/2, the log,ET50 = log, Or0git

is defined by

B
logy Ologit = ~5§, (6)
which yields
elogit = 9~P1/B2 | (7)

There are various sources of measurement error that are thought to be additive and
continuous in nature. We use the non-linear least squares method to estimate parameters,

B1, B2 and s, in which Qog: defined as follows is minimized:

1+ exp(f + Bz logy t;

Qlogit = Z Z (:‘/;j - 63 )> -+ Z (ylcj - ﬁB)z . (8)

ET50 estimate, é;,,,gﬁ,, is obtained by substituting acquired estimates, Bl and ,52, into the

definition of ET50 given by (7).
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We evaluate the precision of 01,4 using a confidence interval based on the delta method.

Using a first order Taylor series approximation, the log, 6104+ can approximately be expanded

as
i ___51 %_51 _ (6, — B1) ﬁl(ﬁz—ﬁz)
10g2 el.ong- = 52 _,62 62 -+ ﬁ% , (9)

which yields an approximate variance of logy 0jogi: as

3 (B 2V ar( wolfe b
02 (1ogy Brogit) ~ Valﬁ(%ﬁl) n 51\/;13(/32) B ZﬁlCoﬁéﬁl,ﬁz).

(10)

By obtaining estimates of the variance and covariance of f; and 8, through linear approxima-
tion in the non-linear least squares method, an estimate of o%(log, O10giz) can be calculated by

substituting 61 and Bg into (10) (Cox, 1990). We can obtain an approximate 1—a confidence

interval for logy Ojogst as
logy frogit & 21-a/2 (1083 brogit), (11)
which yields the confidence interval for 0041 as
exp(log, é;_ogit + z1_q/ G(logy élogii))a (12)
where z;_q/5 is the (1 — /2) quantile of the standard normal distribution.
A log-time regression method and a linear regression method

The models for a test substance and a negative control using a log-time regression method

and a linear regression method are, respectively, described as

Yis = Ba+ Pslogyti + ey, 13)
y,C’j = 53 + €y,
7
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Y, = Bo+ Bati+ ey,
j j (14)

Yo; = Bs+ecy.

Since the absorbance corresponding to ET50 is f3/2, the log, ET50 obtained from a log-time
regression method, log, 01,4, and ET50 obtained from each method, 6,4 and 6y, are defined

by

lOg2910,9 = b‘(g— 4> (15)

Glog — 2(ﬁ3/2—ﬁ4)/ﬁs7 (16)

Oin = E(é— 6> (17)

We use the ordinary least squares method to estimate parameters, fs, 84, Os, O and (7,

in which Qo4 and @y, defined as follows are minimized:

2 2
Qlog = ZZ (v — (Ba+ Bsloga ) + > (veo; — Bs) (18)
J
2 2
Qlin = ZZ (ZJU (Bs + Bt ) + Z (y/Cj - /33> . (19>
J
ET50 estimate are obtained by substituting acquired estimates, ,33, 54, 35, ,é@ and 67, into

the definition of ETS0 given by (16) and (17), vespectively. Using a first order Taylor series

approximation, the log, 05, and 6y, can approximately be expanded as

(3

(% B 4) + (ﬁ32;,63> _ (Ba— Ba) 1 (_ﬂ_’s_ _ 4) (‘5 — ), (20)

logg 91,09 =

Q




B 2 a 2

1 (B +(33—53) (ﬁs—*ﬁﬁ)_}_ Bs
20 Br e

ﬁs) (67 — Br). (21)

Then approximate variances of log, 8i54 and 0y, are given by

) - o 2
o*(log, élog) ~ Vzlé?ﬁ n Valﬁ(g@) n Va.'lﬁ(gﬂs) (% _ @1)

200tl o) <§2z _ ) (22)
*(Oun) = 641;%3) + alﬁ(% ) + alﬁ(f} ) <'§3‘ - 56)

Estimates of 0%(log, élog) and 02(912-,,,) can be calculated by substituting 53, 34, Bg,, ﬁ(; and

Bz, into (22) and (23). We can obtain an approximate 1 — a confidence interval for log, fhog

as
1Og2 élog + —a/f2 6’(10g2 élog)a (24)
which yields the confidence interval for 6, as
exp(log, él,og + 21_4/2 0(logy 91,09)). (25)

Similarly, we can obtain an approximate 1 — o confidence interval for 0y, as

Oiin £ 21-0/2 T (Orin).- (26)
A two-stage method
Parameter estimates and /or variance covariance matrices occasionally cannot be obtained

from the logistic regression method due to the small sample sizes. We consider a two-

9
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stage method in which the log-time regression method is alternatively applied if the logistic

regression method cannot construct a confidence interval for ET50.

Design of the simulation study

We evaluate the performance of each estimation method through a Monte-Carlo simu-

lation involving the following steps under the similar conditions to the validation study for

TESTSKIN™ (2002) and Vitrolife-Skin™ (2004).

Stepl.

Step2.

Step3.

Specify true ET50 value between 4 and 18 hours assuming a mild test substance.
The time point for measurement is allocated as (f1,tq,%3,%4) = (2,4, 8,16) in 4-

point design and is allocated as (t1, 2, 13,14, t5) = (2,4, 8, 16, 24) in 5-point design.

Generate virtual data for a test substance from the logistic curve on the time-

response defined by

B3
1 + exp(f; + B log, ty)

Yig = + ey, (27)

where 2 = 2.0, f3 = 1.0 and e;; is mutually distributed as a normal distribution
N(0, 0.1%). Since the ET50 value, Brogit, 1s & function of f; and fy, f§; is determined

from B, and Ojog:. Figure 1 shows the assumed time-response curves of model (27).

Generate virtual data for a negative control from yp; = fs + ec;, where f5 = 1.0

and ec; is mutually distributed as a normal distribution N(0, 0.1?).

10
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Step4. Estimate ET50 and construct a confidence interval for ETE0 using each estimation

method.

Step5. Iterate 10,000 times Step 2 through Step 4, and calculate a proportion of estimable
cases, a bias in estimates, and a coverage probability in which each interval contains
the true ET50 values. A bias in estimates is defined as the median of the difference

of the estimate of ET50 and the true ET50 value.

The reason we assume a mild test substance in Step 1 is that estimating ET50 for clearly

strong or weak substances is not essential.

Results

We report the results of the Monte-Carlo simulation study in Tables 1 through 3 and
present the corresponding scatter plots in Figures 2 through 4 to compare the performance
of each estimation method. In these tables and figures, the left side shows the 1‘.esults in
4-point design and the right side shows those in 5-point design.’

The characteristics of each estimation method are summarized helow.
A logistic regression method

e The proportion of estimable cases decreases as low as 85% with the increase of true

ET50 values in 4-point design, whereas it is almost 100% in 5-point design.

e The bias in estimates is negligible in both 4- and 5-point designs.

11
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e The coverage probability is always below the nominal confidence level of 95% and as

low as 88% in some cases.

According to the above mentioned results, the logistic regression method is appropriate
in 5-point design, whereas another method should complementarily he used in addition to
the logistic regression method in 4-point design.

Examples of simulated data that yielded feasible and unfeasible estimates, when the
true E'T50 value is 14 hours, are shown in Figure 5 together with the true and estimated
time-response curves. This figure suggests that we tend to encounter difficulty in obtaining
confidence intervals when we do not have measurements on time points around ET50.

A log-time regression method
e The proportion of estimable cases is almost 100% in both 4- and 5-point designs.
o ETH0 estimates tend to he greater than the true ET50 value with the increase of true
ET50 values in 4-point design.
e The bias in estimates is within 2 hours and, therefore, negligible in 5-point design.

o Although the coverage probability tends to be greater with the increase of true ET50

values in both 4- and 5-point designs, the discrepancy from the nominal confidence

level of 95% is within £5%.

These results suggest caution in rarely adopting 4-point design because estimates tend

to be great when the true ET50 value is great, although no remarkable defects appear in

5-point design.

12
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A linear regression method

e The proportion of estimable cases is almost 100% in hoth 4- and 5-point designs.
e The estimates of ET50 tend to be great in both 4- and 5-point designs, when the true
ET50 value is small.

e The coverage probability is seriously low since it is as low as 50% in 4-point design or

40% in 5-point design in the worst cases.

These results suggest that the linear regression method should not be adopted due to
low coverage probabilities irrespective of design. The 5-point design is more disadvantageous
than the 4-point design because the time points for obtaining measurements in 5-point design
included Ty = 24 hour in our simulation setting. Actually, the measurement at the 24 hour

point leads to a smaller value of the gradient than the expected value.
Two-stage method

e The proportion of estimable cases is almost 100% in both 4- and 5-point designs.

e The estimates of ET50 are on average almost the same as the true ET50 value in both
4 and 5-point designs.

e Although the coverage probability tends to be greater with the increase of true ET50

values in both 4- and 5-point designs, the discrepancy from the nominal confidence

level of 95% is within £5%.

13
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These results indicate that the two-stage method is reasonable for obtaining a confi-
dence interval for ET50, although it should be slightly adjusted so as to keep the coverage

probability near the nominal confidence level.

Discussion

We recommend using the two-stage method for obtaining a confidence interval for ET50.
However, further investigations are necessary to extend the conclusion to any case of the
design and analysis of experiments using 3D skin models, since the adopted simulation
conditions are adaptable only for the real validation studies of TESTSKIN and Vitrolife-Skin.
When the use of refined statistical software such as SAS or R is difficult, we recommend using

the log-time regression method with 5-point design although the biased estimates within 2

hours are occasionally obtained.

The condition where the proportion of estimable cases in the application of logistic re-
gression method in 4-point design realizes values below 100% depends on the number of time
points, the positioning of time points, and the scale of measurement errors (Sozu et al., 2005,
Sozu et al., 2006). Properly setting these conditions considering the convénience of workers
is important and further studies are necessary to address this issue.

The results of this research would promote the use of 3D skin models through the achieve-

ment of adequate and quantitative evaluations of skin irritation of test substances.
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Tables and Figures

Table 1: Results of proportion of estimahle cases (%) for each estimation method.

4-point design

d-point design

Estimation method

Estimation method

True ET50 Log- Two- Log- Two-
values Logistic time Linear stage Logistic time Linear stage
4 99.2 100.0 100.0 100.0 99.1 100.0 100.0 100.0

5 100.0 100.0  100.0 100.0 99.9 100.0 100.0 100.0

6 99.8 100.0 100.0 100.0 99.7 100.0 100.0 100.0

7 99.0 100.0 100.0 100.0 99.0 100.0 100.0 100.0

8 99.1 100.0 100.0 100.0 99.3 100.0 100.0 100.0

9 99.8 100.0 100.0 100.0 99.6 100.0 100.0 100.0
10 -+ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
11 99.9 100.0 100.0 100.0 100.0 100.0  100.0 100.0
12 99.6 100.0 100.0 100.0 100.0 100.0  100.0 100.0
13 98.9 100.0 100.0 100.0 100.0 100.0  100.0 100.0
14 97.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0
15 94.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
16 92.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0
17 88.6 100.0 100.0 100.0 100.0 100.0  100.0 100.0
18 85.0 100.0 100.0 100.0 100.0 100.0  100.0 100.0
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Table 2: Results of bias in estimates for each estimation method.

4-point design 5-point design
Estimation method Estimation method

True ET50 Log- Two- Log- Two-
values Logistic  time Linear stage Logistic time Linear stage
4 —-0.01 032 1.41 0.00 —0.01 0.46 1.16  0.00

5 —-0.02  0.20 1.88 —0.02 —0.01 0.51 2.55 —0.01

6 —-0.01 —-0.02 1.90 -0.01 0.00 0.34 3.06  0.00

7 -0.01 -0.27 171 —0.01 0.00  0.06 3.15  0.01

8 ~0.02 —0.48 1.44 —-0.02 —-0.01 -0.26 3.03 -0.01

9 -0.05 —0.59 1.15 —0.08 —-0.02 -0.60 2.78 —0.02
10 ~0.06 —0.54 0.88 —0.06 —-0.02 ~-0.90 2.47 —0.02
i1 -0.05 —-0.27 0.67 —0.05 -0.02 -1.15 2.15 —0.02
12 -0.04 031 0.48 —0.03 —-0.02 -1.32 1.82 —0.02
13 —-0.02  1.30 0.39 -0.01 —-0.01 -1.39 1.50 -0.01
14 —-0.04 284 0.39  0.01 —-0.01 -1.31 1.22 -0.01
15 -0.08  5.18 0.49  0.02 -0.02 ~-1.07 0.97 -0.02
16 -0.15  8.67 0.71  0.02 -0.02 —-0.57 0.78 —0.02
17 -0.22 13.80 1.05  0.08 -0.03 020 0.64 -0.03
18 —-0.22 21.38 1.55  0.31 -0.05 1.32 0.55 —0.05
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Table 3: Results of coverage probability for each estimation method.

4-point design 5-point design
Estimation method Estimation method

True ETS0 Log- Two- Log- Two-
values Logistic time Linear stage Logistic time Linear stage
4 88.1 90.6 93.2 88.1 86.5 91.3 98.7 86.6

5 88.4 91.3 71.6 88.4 87.0 88.0 86.1 87.0

6 89.0 92.5 56.2  89.0 87.9 90.6 63.7 87.9

7 88.9 91.7 53.1  89.0 88.0 933 46.8  88.1

8 90.1 91.6 59.6 90.2 89.5 924 40.1  89.6

9 90.0 92.9 70.7  90.0 90.1 90.6 40.1  90.1
10 89.9 95.1 81.7 89.9 90.4 894 45.8 904
11 89.7 96.9 88.2  89.7 90.5 89.3 54.2  90.5
12 90.0 98.2 91.6 90.0 90.4 90.2 64.9 90.4
13 90.3 98.6 93.2 904 89.8 919 74.3  89.8
14 91.4 98.8 93.9 917 89.1 94.0 81.7 89.1
15 93.2 98.4 94.2 936 89.6 96.1 87.5 89.6
16 94.1 97.8 949 945 90.6 97.7 90.4 90.6
17 93.2 96.7 95.2 94.0 91.2 985 92.1 91.3
18 91.5 954 95.7 - 92.7 92.0 99.2 93.2  92.0
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Absorbance

Time (hour)

Fig. 1: Assumed time-response curves based on the logistic regression model.
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Study of Alternatives to Animal Testing
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Abstract

Sensitivity, specificity and accuracy are well known measures for evaluating the relevance of an in-
ter-laboratory validation study for alternative tests. It is not generally discussed that the measures are
dependent on two determining factors: a set of chemicals and the number of laboratories. Furthermore,
some alternative tests such as these for the phototoxicity test have an “Equivocal” category for judging
the toxicity of chemicals. These facts have made it difficult to interpret the value of the measures.

Therefore, in this paper we propose new measures to evaluate the alternatives, which depend on a
set of chemicals rather than on both factors, and can treat data which have “Equivocal” category. We
also propose their confidence intervals, which are measures of their precision.

Key words: relevance, inter-laboratory validation study, sewsitivity, specificity, accuracy, confidence

interval

Introduction

Recently, due to an increasing social concern for
animal welfare, a lot of alternative animal tests
have been proposed, and in order to examine their
feasibility and practicality various inter-laboratory
validation studies have been conducted (e.g. Ray et
al., 1994; Spielmann et al., 1998). Generally, the
primary purpose of the validation study is to
evaluate both the relevance and reliability of a
proposed alternative test from the results of ex-
periments using the alternative test (Balls et al.,
1999). Sensitivity, specificity and accuracy are
measures to determine the effectiveness of the al-
ternative test when both the alternative and the
animal tests have a binary classification for judg-
ing toxicity of chemicals, as “Positive” and “Nega-
tive”. These are well known measures which have
been widely used to evaluate the relevance of the
alternative test in many validation studies (e.g.
Balls et al., 1990; Roy et al., 1994; Spielmann et
al., 1998).
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However, two points should be taken into
consideration concerning the interpretation of the
summarized data from validation studies. The first
point is that the values in the 2 by 2 table, which
summarizes data, depend not only on a selected set
of chemicals in the study but also on the number of
participant laboratories. The other point is that a
category for “Equivocal” produced from some al-
ternative tests such as these for the photoxicity test,
which is neither a “Positive” nor “Negative” cate-
gory, is often provided. For instance, the test
guideline of the in vitro 3T3 NRU phototoxicity
test states that ‘a test substance with a PIF < 2 or
an MPE < 0.1 predicts: "no phototoxicity”, A PIF
>2and < 5 or an MPE > 0.1 and < 0.15 predicts:
“probable phototoxicity” and a PIF > 5 or an
MPE > 0.15 predicts: “phototoxicity”.’ where the
PIF and the MPE are measurements of phototoxic-
ity for the test (OECD, 2004). In this case, since
there was a range suggesting similar performance
when several cut-off points were examined, the




