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disruption of active ADAMTS-5, but not ADAMTS-4,
inhibits experimentally induced inflammatory degeneration
of cartilage (Glasson etal. 2005; Stanton et al. 2005) in
growing mice. Therefore, it may be that ADAMTS-5 is a
major aggrecanolytic enzyme contributing not only to such
pathological processes, but also to physiological degrada-
tion of ECM molecules during the growth period.

After growth, all ADAMTSs expressed in the mature
chondrocytes of condylar cartilage may play a role in the
physiological turnover of aggrecan in order to maintain
cartilage tissue. However, ADAMTS-1 and ADAMTS-4,
but not ADAMTS-5, could contribute to the physiologi-
cal turnover of aggrecan in aged articular cartilage.
Therefore, ECM remodeling in aged mandibular condy-
lar cartilage could be regulated differently from that in
articular cartilage.

MCC GP AC AC

MCC

Growing Adult

In summary, ADAMTS-5 appears to contribute
mainly to degradation of ECM molecules such as aggre-
can in growth plate and condylar cartilage, depending
upon its ECM composition and cellular organization
during growth. In conclusion, the results of the present
study reveal that ECM metabolism by ADAMTSs and
expression of ADAMTSs in primary and secondary car-
tilage may be differentially regulated during growth and
aging, depending upon the functional differences in
different types of cartilage.
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Abstract

Objectives: The aims of this study were to characterize the microflora in crevices around
titanium orthodontic anchor plates using anaerobic culture and molecular biological
techniques for bacterial identification, and to compare the microbial composition between
crevices around anchor plates and gingival crevices.

Material and methods: Samples from crevices around titanium anchor plates and healthy
gingival crevices of 17 subjects (aged 20-29) were cultured anaerobically, and isolated
bacteria were identified by 16S rRNA sequencing.

Results: The average logarithm colony-forming units/ml were 6.84, 7.51 and 8.88 in healthy
anchor plate crevices, inflamed anchor plate crevices and healthy gingival crevices,
respectively, indicating that the bacterial density of anchor plate crevices was lower than
that of healthy gingival crevices. Of 184 strains isolated from healthy anchor plate crevices
of seven subjects, 108 (59%) were anaerobic bacteria, while 73 (40%) were facultative
bacteria. Predominant isolates were Gram-negative rods, such as Campylobacter (12%),
Fusobacterium (10%) and Selenomonas (10%), and Gram-positive facultative bacteria, such
as Actinomyces (17%) and Streptococcus (8.2%). Of 133 strains isolated from inflamed
anchor plate crevices of three subjects, 110 (83%) were anaerobic bacteria, while
predominant isolates were Gram-negative rods, such as Prevotella (47%), Fusobacterium
(33%) and Campylobacter (16%). On the other hand, of 146 strains isolated from healthy
gingival crevices of seven subjects, 98 (67%) were facultative bacteria, while 45 (31%) were
anaerobic bacteria. Predominant isolates were Gram-positive facultative bacteria, such as
Actinomyces (37%) and Streptococcus (20%).

Conclusions: These results suggest that the environment in crevices around titanium
orthodontic anchor plates is anaerobic and supportive of anaerobic growth of bacteria,
which may trigger inflammation in the tissue around the plates.

Microbial flora at the interface between
histocompatible artificial material and mu-
cosal epithelium is one of the most impor-
tant factors for the prognosis of dental
implants (Mombelli et al. 1987; Rosenberg
et al. 1991; van Winkelhoff et al. 2000). It
has been reported that Gram-negative ob-
ligate anaerobes predominantly comprised
the bacterial flora in peri-implantitis pock-
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cts as well as periodontal pockets (Mom-
belli et al. 1987), whereas Gram-positive
facultative anaerobes are predominant in
healthy peri-implant crevices of successful
implants (Mombelli & Mericske-Stemn
1990). Another study verified that the
microflora around clinically stable im-
plants was similar to that of healthy gingi-
val sulcus, and that microflora in peri-
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implantitis were similar to that in perio-
dontal pockets (Haanaes 1990}.

Currently, titanium mini-plates as well
as titanium mini-screws and dental
implants have been applied as an absolute
anchorage for tooth movement in ortho-
dontic therapy, such as the skeletal ancho-
rage system {SAS) (Umemori et al. 1999;
Sugawara et al. 2002, 2004). However,
approximately 10% of SAS anchor plate
cases have developed acute inflammatory
responses during orthodontic treatment
(Nagasaka et al. 1999}, and in the worst
cases, the anchor plates were removed due
to inflammation. Similarly, microbial flora
in crevices around the anchor plates is one
of the critical factors for the stability of
implanted anchor plates and subsequent
orthodontic treatment. However, there is
no information on the nature of the micro-
flora in anchor plate crevices under healthy
and inflammatory conditions.

Therefore, the aims of this study were to
characterize the microflora in crevices
around titanium anchor plates using anae-
robic culture for isolation of obligate anae-
robes and molecular biological techniques
for bacterial identification, as well as com-
paring the microbial composition between
healthy and inflamed crevices.

Material and methods

Subjects

Seven periodontally healthy subjects with
SAS using titanium mini-plates (age, 20~
29 years; mean, 23.7 years) and three
subjects with symptoms of swelling, pus

discharge and spontaneous pain around the
implanted titanium anchor plates at sam-
pling (age, 23-25 years; mean, 24 years)
were randomly selected for this study. In
addition, seven periodontally healthy sub-
jects (without SAS; age, 23-26 years;
mean, 24.7 years) were also included in
this study (Table 1}.

Subjects were medically healthy by his-
tory, and received no antibiotics for 3
weeks preceding the sampling. Further-
more, they had neither anamnesis of preg-
nancy, genetic disease nor smoking habits.

Clinical oral examination

All subjects were examined for plaque
accumulation by plaque index (Silness &
Loe 1964), gingival inflammation by gingi-
val index {Le & Silness 1963) and probing
depth using a periodontal pocket probe.
Subjects were considered periodontally
healthy based on clinical evaluation of
plaque index < 1 (Silness & Loe 1964)
and gingival index <1 {Loe & Silness
1963), and no signs of acute inflammation;
and there were no instances of probeable
gingival sulcus depth greater than 3 mm or
alveolar bone loss.

Sampling procedure

Sampling sites were isolated by cotton
rolls, and supramucosal or supragingival
plaque was carefully removed with a ster-
ilized spoon excavator and pledget. Fluids
from each transmucosal pocket (of seven
healthy anchor plate crevices and three
inflamed anchor plate crevices} around
SAS implanted on zygomatic buttress, of

Table 1. Clinical features of subjects in this study

which arms were placed beside the upper
first molars (Fig. 1) were sampled with a
micropipet, as described previously (Ue-
matsu & Hoshino 1992). In addition,
from seven periodontally healthy subjects,
samples were taken from the bottom of the
gingival crevice of proximal sites of the
upper first molars.

Isolation of bacteria

Samples were transported in tightly screw-
capped vials and were transferred as soon as
possible (within a few minutes] to an
anaerobic glove box {Model AZ-Hard, Hir-
asawa, Tokyo, Japan) containing 80% N,,

Fig. 1. Intracral photograph of {a) an implanted tita-
nium orthodontic anchor plate and {b} a periodontal
pocket probe inserted into a transmucosal pocket.

Healthy crevices with plates

Inflamed crevices with plates

Healthy gingival crevices (without plates)

12 3 4 5 6 7 Mean8 9 10 Mean 11 12 13 14 15 16 17 Mean
Age 24 23 25 20 20 29 25 237 24 25 23 24 23 25 24 26 24 26 25 247
Gender F F F F F F F - F F F - F F F F F F F -
Loading periods® 1.11.2 09 1.0 16 09 07 1.1 08 29 34 2.4% - - - - - - - -
Sampling periodsf 2.94.2 37 3.6 43 59 46 42 95 4.7 284 14.2 - - - - - - - -
Total implantation 9.3 26.5 19.3 21.6 13.4 36.8 21.7 21.2 239 273 42.2 31.1 - - - - - - - ~
periods§

Sampling site R R L R L L R - L L - R L L R L L R -
Probing depths (mm)7 6 7 4 5 4 4 537 10 10 8 93¢+ 3 2 2 2 2 2 2 24
Plaque index t 0 0 0 1 0 0 03 3 1 0 1.39 0 0 0 0 0 0 0 0
Gingival index 1 0 O 1 1 0 1 06 4 2 2.7%.% 0 0 0 0 0 0 0 0

*Loading periods (months) by skeletal anchorage system.

+Significantly different (P<0.05) from the healthy crevices with plates.

iSampling periods (months) after implantation of titanium orthodontic anchor plates.

§Total implantation periods (months) after implantation of titanium orthodontic anchor plates.
“Significantly different (P<0.05) from the healthy gingival crevices (without plates).

R and L indicate that samples were taken at the upper right and left molars sites, respectively.
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10% H, and 10% CO,. In the box each
sample was suspended in 1 ml of sterilized
40 mM potassium phosphate buffer {pH 7)
and dispersed with a teflon homogenizer.
Serial 10-fold dilutions {o.r ml each, from
10~ % to 10~ ¢} were spread onto the surface
of Fastidious Anaerobe Agar (FAA, Lab M,
Bury, UK) plates {duplicate) supplemented
with 5% rabbit blood (Nippon Bio-Test
Laboratories, Tokyo, Japan) and incubated
in the anaerobic glove box at 37°C for
7 days. All plates, media, buffer solutions
and experimental instruments were kept in
the anaerobic glove box for at least 24h
before use. To ensure strictly anaerobic
conditions in the glove box, reduction of
methylviologen { — 446 mV) was carefully
checked whenever the experimental proce-
dures were carried out. After incubation for
7 days, all colonies from plates having
fewer than 100 colonies were subcultured.

Identification

Anaerobes and facultative anaerobes
Subcultured colonies were incubated anae-
robically or aerobically for 3 days, and in
this study, anaerobes were defined as bac-
teria which grew only in the anaerobic
glove box, and facultative bacteria as those
which also grew in air containing 30%
CO,, as described previously (Uematsu &
Hoshino 1992; Sato et al. 1993).

DNA extraction and PCR-RFLP of 16S rRNA
genes

Subcultured colonies were harvested by
centrifugation at 7700 g for 5 min and the
supernatants were removed. Genomic
DNA was then extracted from the pellets
with the InstaGene Matrix Kit {Bio-Rad
Laboratories, Richmond, CA, USA) ac-
cording to the manufacturer’s instructions.

The 16S rRNA gene sequences were
amplified by PCR using universal primers
27F and 1492R {Lane 1991} and Tag DNA
polymerase {HotStarTaq Master Mix, Qia-
gen GmbH, Hilden, Germany} according
to the manufacturer’'s instructions. The
primer sequences were: 27F, 5-AGA
GTT TGA TCM TGG CTC AG-3’ and
1492R, §'-TAC GGY TAC CTT GTIT
ACG ACTT-3'. Amplification proceeded
using a PCR Thermal Cycler MP (TaKaRa
Biomedicals, Ohtsu, Shiga, Japan] pro-
grammed as follows: 15 min at 95°C for
initial heat activation and 35 cycles of

1min at 94°C for denaturation, 1 min at
52°C for annealing, and 1.5 min at 72°C
for extension and romin at 72°C for final
extension. The 16S rRNA genes were
individually digested with Hpall or Haelll
(New England Biolabs Inc., Ipswich, MA,
USA) according to the manufacturer’s in-
structions. Digestion products were sepa-
rated on 2% agarose gels (High Strength
Analytical Grade Agarose, Bio-Rad Labora-
tories) in Tris-borate EDTA buffer (1oomM
Tris, 9omM borate; 1 mM EDTA, pH 8.4),
stained with ethidium bromide and photo-
graphed under UV light. The molecular size
marker was a 100bp DNA Ladder (Invitro-
gen Corp., Carlsbad, CA, USA).

16S rRNA gene sequencing

Isolates were identified tentatively accord-
ing to RFLP analysis (Sato et al. 1997,
1998a, 1998b, 2000, 2003; Sato & Kura-
mitsu 1999}, and representative isolates
were conclusively identified by sequence
analysis as follows. The PCR products
obtained above were sequenced at Hok-
kaido System Science Co. Ltd (Sapporo,
Japan) using the BigDye Terminator Cycle
Sequencing Kit and an automated DNA
sequencer (PRISM-3100, Applied Biosys-
tems Japan Ltd, Tokyo, Japan). Primers
27F and 1492R were used to sequence
both strands {at least 1000 bp), and the par-
tial 16S rRNA gene sequences were then
compared with 16S rRNA gene sequences
from the GenBank database using the Blast
search program through the website of the
National Center for Biotechnology Infor-
mation. Bacterial species were determined
by percent sequence similarity {>99%).

Data analysis

Fisher’s exact probability tests and Tukey’s
tests were used to analyze significance.
P values of <o0.05 were considered statis-
tically significant.

Results

Probing depths and gingival index of the
inflamed anchor plate crevices were respec-
tively greater than those of the healthy
anchor plate crevices and healthy gingival
crevices (Table 1). The plaque indices of the
inflamed crevices were significantly
greater than those of the healthy gingival
crevices (Table 1). There were no signifi-
cant differences in subject’s age among the
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three crevices (Table 1). The average peri-
ods of loading by SAS were 1.1 and 2.4
months, sampling periods after implanta-
tion of titanium orthodontic anchor plates
were 4.2 and 14.2 months, and total im-
plantation periods after implantation of
titanium orthodontic anchor plates were
21.2 and 31.1 months, in periodontally
healthy subjects and inflammatory sub-
jects, respectively. There were no signifi-
cant differences in sampling and total
implantation periods between the two
groups, although the loading periods were
longer in the inflammatory subjects than
in the healthy subject (Table 1).

The average total colony-forming units
{logarithm CFUs/ml) were 6.84 + 0.85,
7.51 + 0.76 and 8.88 + 0.46 in healthy
anchor plate crevices, inflamed anchor
plate crevices, and healthy gingival cre-
vices, respectively (Table 2}, and significant
differences were seen between healthy
plate crevices and healthy gingival crevices,
and between inflamed crevices and healthy
gingival crevices. The amounts of bacteria
were significantly lower in anchor plate
crevices than in healthy gingival crevices
{Table 2).

Table 2 shows the bacterial diversity in
healthy and inflammatory anchor plate
crevices and healthy gingival crevices. Of
184 strains isolated from healthy anchor
plates crevices, 108 (59%) were anaerobic
bacteria, while 73 {40%) were facultative
bacteria. The predominant genera were
Actinomyces (32 isolates, 17%), Campy-
Iobacter {22 isolates, 12%), Fusobacterium
{19 isolates, 10%), Selenomonas (19 iso-
lates, 10%) and Streptococcus (15 isolates,
8.2%). Of 133 strains isolated from in-
flamed anchor plate crevices, 110 (83%)
were anaerobic and 17 (13 %) were faculta-
tive bacteria. The predominant genera were
Prevotella (62 isolates, 47%), Fusobacter-
fum (22 isolates, 17%), Campylobacter (21
isolates, 16%) and Eikenella {10 isolates,
7.5%). On the other hand, of 146 strains
isolated from healthy gingival crevices, 98
(67%) were facultative and 45 {31%] were
anaerobic bacteria. The predominant genera
were Actinomyces {54 isolates, 37%) and
Streptococcus (29 isolates, 20%).

Discussion

The amounts of bacteria in anchor plate
crevices were significantly lower than in

23 | clin. Oral Impl. Res. 18, 2007 [ 21-26
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healthy gingival crevices (Table 2}. In addi-
tion, amounts in inflamed anchor plate
crevices were higher than in healthy an-
chor plate crevices, although the differ-
ences were not significant {Table 2).
Anaerobic bacteria were predominant in
anchor plate crevices, particularly in in-
flamed crevices, when compared with
healthy gingival crevices. Crevices around
dental implants with clinically healthy
status have been reported to be similar to
gingival crevices in the terms of bacterial
density, proportion of anaerobes in bacter-
ial flora, amount of fluid and profile of
crevicular fluid constituents (Mombelli
etal. 1987; Apse et al. 1989; Adonogianaki
et al. 1995). In addition, upon challenge
with bacteria on tooth and implant sur-
faces, inflammatory and immune re-
sponses of peri-implant mucosa have been
reported to be similar to those of gingiva
{Seymour et al. 1989; Tonetti et al. 1995;
Liljenberg et al. 1997; Karoussis et al.
2004). In our study, however, bacterial
density was lower in healthy plate crevices
and the proportion of anaerobes among
bacterial flora was higher than in healthy
gingival crevices (Table 2} and crevices
around dental implants {(Mombelli et al.
1987). These results suggest that crevices
around anchor plates differed from
healthy gingival crevices and crevices
around dental implant in the terms of
amount and constituents of crevicular
fluid, as well as inflammatory and im-
mune responses.

The anatomical structure of crevices
around anchor plates is different from that
of gingival tissue and peri-implant tissue,
and the anchor plates receive a continuous
orthodontic force. Thus, anchor plate cre-
vices may have sparse tissue structure and
high secretion of tissue exudates. This
situation may increase immune responses
around the anchor plate and efflux of cre-
vicular fluid, thus resulting in decreased
bacterial density.

Our results showed that the loading
periods were longer in the inflammatory
subjects than in the healthy subject (Table
1), however, further studies on the relation-
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orthodontic anchor plates is anaerobic and
supports anaerobic growth of bacteria,
which may trigger inflammation in the
tissue around the plates. Therefore, ortho-
dontic treatment with titanium anchor
plates requires strict self-care and regular
professional plaque control in order to pre-
vent infection.
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