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New Development in Studies on
the Characteristics of Bolted Pipe
Flange Connections in JPVRC

This paper deals with some studies carried out in the bolted flanged connection commit-
tee (BFC) in Japan Pressure Vessel Council (JPVRC) on the stress analysis of a pipe
flange connection using the elastoplastic finite element method. The characteristics of the
connections with the different nominal diameters from 2 in. to 20 in. such as the contact
gasket stress distribution, the hub stress, and the load factors were examined. The results
Jfrom the finite element analyses were fairly consistent with the experimental results con-
cerning the variation in the axial bolt force. By using the contact stress distributions and
the results of the leakage test, the new gasket constants were evaluated. As a result, it was
Sfound that the variations in the contact stress distributions were substantial due to the
Jflange rotation in the pipe flange connections with the larger nominal diameter. A method
to determine the bolt preload for a given tightness parameter was demonstrated and the
difference in the bolt preload between our research and PVRC was shown. In addition,
the characteristics of pipe flange connection under a bending moment and internal pres-
sure were also discussed and a newly developed bolt tightening method was
demonstrated. [DOL: 10.1115/1.2140799]

1 Introduction

This paper describes some studies on the stress analysis of pipe
flange connection and a bolt tightening method carried out in the
bolted flanged connection committee (BFC) in Japan Pressure
Vessel Council (JPVRC). Pipe flange connections with gaskets
have been widely used in chemical, nuclear facilities and so on,
and they are usually used under internal pressure as well as other
loadings such as thermal, bending moments and so on. In an op-
timum design of pipe flange connections with gaskets, it is neces-
sary to understand the characteristics of the connections under
internal pressure. Important issues in designing pipe flange con-
nections are the actual contact gasket stress distributions which
govern the sealing performance, the hub stress from the flange
design standpoint and a variation in the axial bolt force (the load
factor) from bolt and sealing design standpoints when internal
pressure is applied to the connections. Some researches [1-7] on
pipe flange connections with gaskets have been carried out using
the pipe flange connections with the smaller nominal diameter
such as the sealing performance, the contact gasket stress distri-
bution at the interfaces, hub stress and a variation in the axial bolt
force. In practice, pipe flange connections with the Jarger nominal
diameter have been often used, too. However, a question remains
whether it is possible to apply the studied results obtained by the
pipe flange connection with the smaller nominal diameter to the
behavior of pipe flange connections with the larger nominal diam-
eter, such as leakage evaluation and a method to determine the
‘bolt preload.

PVRC [8-13] (Pressure Vessel Research Council) proposed the
new gasket constants (Gy,a,G;) and the tightness parameter 7,
and it also proposed to evaluate the sealing performance and to
determine the bolt preload by using the new gasket constants and
the tightness parameter T,. In the PVRC test procedure, the gasket
constants and the tightness parameter 7, are obtained under uni-
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in the JOURNAL OF PrESsURE VESSEL TECHNOLOGY. Manuscript received September 30,
2005; final manuscript received October 21, 2005. Review conducted by G. E. Otto
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form gasket stress in the gasket tightness tests. However, issues
remain how to evaluate the sealing performance and the leakage
in actual pipe flange connections with gaskets by using the new
gasket constants proposed by PVRC. In actual pipe flange connec-
tions, it has been well known that the contact gasket stress distri-
bution is not uniform and it is changed when an internal pressure
is applied. In addition, another issue is how to evaluate the effect
of a nonlinearity and a hysteresis in the stress-strain curve of a
gasket on changes in the contact gasket stress distribution. It is
well known that a change in the contact stress depends on the
axial bolt force which changes as the internal pressure is changed.
The contact gasket stress distribution is not taken into consider-
ation in evaluating the tightness parameter T}, and the new gasket
constants in the PVRC procedure.

Thus, in this paper, the contact gasket stress distributions in the
pipe flange connections with the different nominal diameters from
2 in. to 20 in. under internal pressure are analyzed by the elasto-
plastic finite element method (EP-FEA) by taking account a non-
linearity and a hysteresis in the stress-strain curves of a spiral
wound gasket, where two pipe flanges including the gasket are
clamped together by bolts and nuts with an initial clamping force
(preload) and an internal pressure is then applied. The effects of
the nominal diameters of the pipe flange connections on the con-
tact gasket stress distributions, the variations in the axial bolt
force (the load factor) and the hub stress are analyzed by the
EP-FEA [7,8].

Furthermore, the leakage tests and the measurements concern-
ing a variation in an axial bolt force [7,8] were performed in the
pipe flange connections with 3 in. and 20 in. nominal diameters
(ASME/ANSI) [14] using helium gas. The EP-FEA results are
compared with the measured results concerning the variation in
axial bolt force and a amount of leakage. A method to determine a
bolt preload is demonstrated for a given tightness parameter T,
The values of the bolt preload for the pipe flange connection are
compared with those by the PVRC procedure and discussion is
made. In addition the characteristics of the connection subjected
to a bending moment and internal pressure are also examined.
Finally, a new bolt tightening method is demonstrated.
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Fig. 1 A pipe flange connection with a spiral wound gasket
subjected to an internal pressure

2 Stress Analysis of Pipe Flange Connections Under
Internal Pressure

2.1 Elasto-Plastic Finite Element Analysis. Figure 1 shows
a pipe flange connection with a spiral wound gasket, in which two
pipe flanges including the gasket are fastened with N bolts and
nuts with a bolt preload F, subjected to internal pressure P. When
the internal pressure P is applied to the pipe flange connection, a
tensile load W (=7ra12P) acts on the end part of the connection in
the axial direction, and an increment in axial bolt force F, occurs
in the bolts and the contact force F, (per bolt) is eliminated from
the gasket contact surfaces, that is, the total axial force W'/N
(=ma;?P/N) (per bolt) due to the internal pressure P equals to the
sum of F, and F, (W' /N=F+F_), where the inner diameter of the
gasket is designated as 2a; and that of the pipe as 2a,. Thus the
contact gasket stress decreases as the internal pressure P in-
creases. The actual gasket stress must be estimated exactly when
the internal pressure P is applied to the connection for evaluating
the sealing performance. The ratio of F, to W'/N is called as the
load factor [15,16] ¢, [=F,/(W'/N)]. When the value of the load
factor ¢, is obtained, the force F. is determined by the equation
Fo=(1-¢,)W'/N and the actual average contact gasket stress is
obtained by the equation (Fy—F;)/A, where “A” is the gasket
contact area.

The contact gasket stress distributions, the hub stresses and the
load factor ¢, of the pipe flange connections with the different
nominal diameters from 2 in. to 20in. (2, 3, 4, 8, 12, 16, and
20 in.) are calculated by the elasto-plastic finite element method
(EP-FEA). They are the class 300 in the API while the 3 in. pipe
flange connections are the class 600 in the API standards (in the
experiments, the connections with the 3 in. of the class 600 and
the connections with the 20 in. of the class 300 were used).

In this study, a nonlinearity and a hysteresis in the stress-strain
relationship of the spiral wound gasket are taken into consider-
ation in the EP-FEA. Figure 2 shows a stress-strain curve of the
spiral wound gasket used in this study. The ordinate is the contact
gasket stress o,, and the abscissa is the strain. The dotted lines
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Fig. 2 Stress-strain lines of the spiral wound gaéket used for
the EP-FEA

show approximated piecewise linear lines in the FEM analysis
and the solid lines are obtained by the measurement. The slopes of
the approximated lines in the loading are described as the numer-
als (MPa) in the figure. When the contact gasket stress is larger
than 220 MPa, the slope of the stress-strain curve is 1100 MPa.
The slope of the stress-strain in the unloading is held constant as
5.07 GPa.

2.2 Experimental Method. Experiments were carried out to
measure the amount of gas leakage and variations in the axial bolt
force in the pipe flange connections with 3 in. and 20 in. nominal
diameter under internal pressure. The relationship between the
actual contact stress and the tightness parameter T, in the pipe
flange connections is obtained by using the measured amount of
the gas leakage and the calculated contact stress distributions. The
mass leakage was measured from a variation in the pressure dur-
ing some time interval.

2.3 Results of Elasto-Plastic Finite Element Analysis.

2.3.1 Contact Gasket Stress Distribution. Figure 3 shows the
contact gasket stress distributions in the pipe flange connection
with the 20 in. nominal diameter (under internal pressure) in the 8
(circumferential)-direction at the distance r=262.75 mm (the in-
ner radius of the gasket), 275.83 mm (the middle radius of the

o . T - T ¥ T T T T ]
of i
—40f ]
-80}- ]
—120F ]
5 A ]
s —160: ]
o 200} ]
a0l F,=200kN, P=5MPa |
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320k r=288.9mm 4
o S AR N B
0 15 3 45 6 7.5

6 (degree)

Fig. 3 The contact gasket stress distributions of the pipe
flange connection with the 20 in. in the @ direction under inter-
nal pressure (6=0"-7.5")
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Fig. 4 The effects of the nominal diameter of the pipe flange
connections on the contact gasket stress distributions in the r
direction (the case where an internal pressure P=5 MPa is
applied)

gasket) and 288.9 mm (the outer radius of the gasket). The ordi-
nate is the contact siress o, the abscissa is the angle @
(=0°-7.5°). The bolt preload was chosen as Fy=200 kN and the
internal pressure of 5 MPa was applied to the connection. It is
observed that the variations in the contact gasket stress distribu-
tions in the @ direction are small. In the connections with the other
different nominal diameter (from the 2 in. to the 16 in.), the varia-
tions in the contact stress distributions in the @ direction were
small. Thus, hereinafter, the contact gasket stress distributions in
the radial direction are shown at #=0° (at the bolt axis).

Figure 4 shows the effects of the nominal diameter in the pipe
flange connections on the contact gasket stress distributions in the
r direction. The ordinate is the contact stress ¢,, and the abscissa
is the ratio of the distance r to the inner radius a3 of the gasket.

The nominal diameters of the pipe flange connections are chosen .

as 2, 3, 4, 8, 12, 16 and 20 in. where the average contact gasket
stress is chosen as o0y, =100 MPa and the internal pressure P
=5 MPa. It is shown that the variations in the contact gasket stress
distributions of the pipe flange connections with the larger nomi-
nal diameter are larger than those with the smaller nominal diam-
eter. It is assumed that the main reason of this fact is due to the
so-called “flange rotation.” The flange rotation in the connections
with the larger nominal diameter is larger than that with the
smaller nominal diameter. From the comparison of the contact
gasket stress distribution shown in Fig. 4 with that in the initial
clamping state, it is observed that the reduction in the contact
gasket stress of the pipe flange connections with the larger nomi-
nal diameter is larger than that with the smaller nominal diameter
when the internal pressure is applied to the connections. This is
because that the total tensile load W' (=mas2P) per the gasket
contact area which is caused due to the internal pressure in the
pipe flange connections with the larger nominal diameter is larger
than that with the smaller nominal diameter (for example; 3 in.
— the reduction is 12.2 MPa, 20 in. —23.9 MPa). In addition,
another reason is that the value of the load factor ¢, (described in
2.3.3) is different in the different pipe flange connections.

2.3.2 Hub Stress. Figure 5 shows the comparisons of the hub
stress between the von Mises’ stress o, obtained from the present
FEA and the normal stress o, due to ASME at the angle 6=0°,
where the initial average contact stress is held constant at o,
=100 MPa and the internal pressure as P=5 MPa. The ordinate is
the von Mises’ equivalent stress o, and the normal stress o,
while the abscissa is the nominal diameter D (in.) of the pipe
flange. The difference in the hub stress between the initial clamp-
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Fig. 5 The effects of the nominal diameter in the pipe flange
connections on the hub stress (von Mises’ equivalent stress
o) at the angle 9=0°

ing state and the state where the internal pressure is applied is
small. However, the difference is substantial between the results
from the present FEA and the normal stress obtained from the
ASME code. As the nominal diameter D is increased, the differ-
ence in the hub stress increases. Thus the bolt preload cannot be
increased taking into account the hub stress due to the ASME
code. Actually, the hub stress is smaller than that from the ASME
code, thus, the bolt preload can be increased. It is safer for pre-
venting the leakage to increase the bolt preload in pipe flange
connections.

2.3.3 Load Factor. Table 1 shows the load factor ¢, of the
pipe flange connections with the different nominal diameters from
2 in. to 20 in. obtained by the FEM analyses. The load factor ¢,
of the connections with 2 in. nominal diameter is the biggest, and
as the nominal diameter of the pipe flange is increased, the value
of the load factor ¢, of the connections decreases. The force F,,
which is eliminated from the contact surface, is obtained by the
equation F=(1-¢,)W'/N. Thus, the force F, increases as the
value of the load factor ¢, of the connections decreases. This
means that the sealing performance is getting worse because the
gasket stress decreases. In Table 1, it is observed that the value of
the load factor becomes negative from the nominal diameter 8 in.
This is assumed that the flange rotation occurs in the pipe flange
connection. This result corresponds to the contact gasket stress
distributions shown in Fig. 4. In determining the bolt preload F ¢
of the pipe flange connections with the larger nominal diameter, it
is necessary to take into account that the value of the load factor
¢, becomes negative.

Table 1 Load factor ¢, of the pipe flange connections

Nominal diameter o.f the pipe Load factor ¢ g
flange connections
2 0.251
3” 0.161
4 0.108
8” -0.0599
127 -0.126
16”7 -0.197
207 -0.226
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2.4 Experimental Results and Comparisons

2.4.1 Results of Leakage Tests for Pipe Flange Connections.
The leakage tests for the pipe flange connections with the spiral
wound were carried out (Nominal diameter of pipe flanges is 3 in.
and 20 in.). The values of gasket constants “G,” and “a” obtained
by the present experiments using the actual reduced contact gasket
stress when the internal pressure is applied are G,=16.5 and a
=0.305 for the 3 in. pipe flange connection, and 19.0 and 0.209
for the 20 in. pipe flange connection while they are 19.1 and 0.273
due to the PVRC data. A difference in the values between the
present study and PVRC is small. However, a difference in the
values Gy, and a obtained using the initial clamping stress with
those by PVRC is substantial. Thus it can be concluded that the
actual reduced gasket stress in the pipe flange connections under
internal pressure must be employed in estimating an amount of
leakage using the PVRC data.

2.4.2 Comparisons of the Load Factor. Figure 6 shows the
comparisons of a variation in axial bolt force (load factor ¢g). The
ordinate is the axial bolt force Fy+F, and the abscissa is the in-
ternal pressure P. The solid line shows the results by the EP-FEA.
The dotted line shows the experimental results. The initial clamp-
ing force (bolt preload) F is determined as 200 kN for the 20 in.
pipe flange connections. Figure 6 shows that the axial bolt force
decreases linearly with increasing of internal pressure. Fairly good
agreements are observed between the results in the EP-FEA for
the 3 in. and the 20 in. pipe flange connections and the experi-
mental results. -

2.5 Determinations of Bolt Preload for a Given Tightness
Parameter T,. For a given tightness parameter 7, (point “A” in
Fig. 7, this is denoted as T,,) under the internal pressure P, the
initial clamping force Fy (preload) must be determined. Figure 7
shows the method to determine the initial clamping force F (pre-
load) for a given tightness parameter. For a given tightness param-
eter T,, [point “A” in Fig. 7(a)] under the internal pressure, the
contact gasket stress of the connections [point “B” in Fig. 7(a)] is
determined using the results of leakage tests, and the required
initial contact stress [point “C” in Fig. 7(a)] and the initial clamp-
ing force (preload) F are determined using the FEM calculations.
In the PVRC procedure, (1) the tightness parameter T, [point
“A” in Fig. 7(b)] is given from the design condition, (2) the tight-
ness parameter T, [point D in Fig. 7(b)] is determined empirically
such as T,=1.5T,,, (3) the required initial contact gasket stress
[point “C" in Fig. 7(b)] is obtained from point D through point F
as shown in Fig. 7(b).

The initial clamping force (preload) Fy was obtained as 155 kN
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procedure.

(T,=100, P=5 MPa) by the PVRC procedure for the 20 in. pipe
flange connection while it was 209 kN by the present study. The
differences in the value of the bolt preload Fy between the present
calculations and the PVRC results are substantial. Thus, in design-
ing the initial clamping force (preload) F of the pipe flange con-
nections with the larger nominal diameter, the difference must be
taken into consideration. When the internal pressure of 5 MP is
applied to the pipe flange connections with the larger nominal
diameter (20 in.), the ratio of T}, in the case of initial clamping
state to that in the case where an internal pressure is applied is
obtained as about 2.5 in the PVRC procedure, while the ratio is
chosen as 1.5 (at room temperature) in the PVRC procedure de-
scribed above. On the other hand, in the pipe flange connections
with the smaller nominal diameter when the internal pressure of
5 MPa is applied to the connections, a fairly good agreement is
found between the present calculations and the PVRC results.
However, it is not fully elucidated that the tightness parameter T,
in the case of initial clamping state at room temperature is 1.5
times larger than the T,

In the case where an internal pressure is 5 MPa and the tight-
ness parameter is 1,,=1000, the required initial clamping force
(preload) Fy in the connections with the 3 in. is calculated as
60 kN from the present study while it is 58 kN from PVRC. For
the connection with 20 in. nominal diameter, it is 332 kN from the
present study while it is 289 kN from the PVRC procedure. In
addition, in the case of the tightness parameter 7,,=1800 and the
internal pressure P=10 MPa, a difference in the initial clamping
force (preload) is about 10% between the present calculations and
the PVRC procedure. Thus, in designing the initial clamping force
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(preload), the difference must be taken into consideration when
higher internal pressure (P=10 MPa) is applied to the connec-
tions. When the internal pressure of 10 MP is applied to the pipe
flange connections with the smaller nominal diameter, the ratio of
T, in the case of initial clamping state to that in the case where an
internal pressure is applied is obtained as about 2.1 in the PVRC
procedure. For better sealing, the actual reduced contact gasket
stress must be taken into consideration.

3 Stress Analysis of Pipe Flange Connections Under
Bending Moments :

Figure 8 shows a pipe flange connection with a gasket under a
bending moment M and an internal pressure. The pipe flange con-
nection was analyzed by FEA calculations concerning the contact
gasket stress distributions and the hub stress. In addition, leakage
test for the pipe flange connection with the nominal diameter of
50 mm in JIS were carried out. The types of gaskets employed
were the spiral wound and the joint sheet gaskets. The new gasket
constants G, and a were calculated from the amount of gas leak-
age (helium) and the contact gasket stress distributions obtained
from the FEA calculations. The bending moments M applied were
M=1.5 and 2.5 kNm. The values of the new baskets constants
(spiral wound gaskets) G, and a were obtained as Gb=3.76
(MPa), and a=0.5245 for M=1.5 kNm, Gb=2.35 (MPa), and a
=0.6883 for M=2.5 kNm, and Gb=16.55 (MPa) and a=0.3077
for M=0 while they were Gb=19.10 (MPa) and a=0.273 from
the PVRC data. It is easily found that an amount of leakage is
increased as the bending moment M increases. When a pure bend-
ing moment is applied to a pipe flange connection, a change in the
integration of the contact gasket stress is zero. However, the leak-
age increases. The leakage increases from the contact gasket sur-
faces at the tension side of connection under the bending moment.
The leakage is sensitive to the reduction of the contact gasket
stress in the connection. In addition, the initial clamping force F I
was determined under the condition of 7,=1202 and P
=6.67 MPa. The gasket used was the joint sheet. The initial
clamping force Fy was calculated as 53.65 kN for M=1.5 kNm,
82.14 kN for M=2.5 kNm and 21.41 kN for M =0 (internal pres-
sure only) while 18.97 kN from the PVRC procedure. Thus, it is
important to take into account the effect of bending moment.
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Table 2 Newly developed tightening procedure by JPVRC

Step Loading

Hand tighten all bolts, then tighten 4 or 8 equally spaced bolts
I i with gradually increased tightening torque to 100% of target
nsta torque on a cross-pattern tightening sequence. Check flange

gap around circumference for uniformity.

Tighten all bolts with tightening torque to 100% of target torque
Tightening |ona rotational clockwise pattern for specified iterations

six passes for 10 inch and greater flange, 4 passes for others).
Post- If necessary, wait a minimum of four hours and tighten by the
tightenin g previous step, but 1 or 2 passes.

4 New Tightening Procedure Proposed by Japanese
Committee (BFC) in JPVRC

For reducing tightening turns and increasing the tightening ac-
curacy, a new tightening procedure has just proposed by BFC in
JPVRC [17]. Table 2 shows the new procedures for tightening
while the star sequence bolt tightening procedure in ASME PCC-1
[18] have been already published. In the new procedure, bolts are
tightened in one way (clockwise or anti-clockwise) after 4 or 8
bolts are tightened by hands. The new procedure [specified in
Japan Industrial Standards (JIS) in near future] is excellent in
tightening time and very simple when a lot of bolts must be tight-
ened.

5 Conclusions

This paper has described the characteristics of the pipe flange
connections with gaskets under internal pressure and a bending
moment studied in BFC of JPVRC. In addition, the new bolt
tightening method developed by the BFC in JPVRC was also
demonstrated. The following results were obtained.

(1) The variations in the contact gasket stress distributions in
the pipe flange connections with the larger nominal diameter sub-
jected to internal pressure were found to be larger than those with
the smaller nominal diameter. It was observed that the reductions
in the contact gasket stress in the pipe flange connections with the
larger nominal diameter were larger than those with the smaller
nominal diameter.

(2) A variation in von Mises’ hub stress obtained from the
present FEA calculations was small while the hub stress o, ob-
tained from the ASME code increased as the nominal diameter
increased. It can be assumed that the hub stress is actually smaller
than expected and thus the bolt preload can be increased for a
much safer design.

(3) The values of the load factor ¢, of the pipe flange connec-
tions with the larger nominal diameter were negative. Thus, it was
found that the reduction in the contact gasket stress increased as
the nominal diameter of pipe flange connections increased, that is,
a leakage easily occurs for pipe flange connections with larger
nominal diameter. A fairly good agreement was observed between
the results of the EP-FEA and the experimental results in the
connections with 3 in. and 20 in. nominal diameters.

(4) In estimating the new gasket constants, it was demonstrated
that the actual reduced gasket stress had to be used taking into
account the value of the load factor. In addition, it was necessary
to take into account the flange rotation in determining the bolt
preload.

(5) It was shown that the effect of external bending moment on
the leakage was substantial in designing pipe flange connection.

(6) A new bolt tightening procedure developed by the BFEC in
JPVRC was demonstrated.

Nomenclature
a = new gasket constant; the slope of the gasket-

loading line in “PART A”
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2q, = inner diameter of pipe
2a; = inner diameter of gasket
A = gasket contact area in the analysis
2b; = outer diameter of pipe
2b3 = outer diameter of gasket
F. = force eliminated from the contact surfaces [=(1
- ‘:bg) w'/ N ]
F; = initial clamping force (preload)
F, = increment in axial bolt force
G, = new gasket constant; contact gasket stress at
T,=1 in “PART A”
N = bolt numbers
P = internal pressure
T, = tightness parameter
T,, = assembly tighiness parameter
W = axial force due to internal pressure (=7a,%P)
W' = total axial force due to internal pressure
(=maz?P)
¢, = load factor (=F/W’)
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ABSTRACT

This paper discusses the gasket testing procedure HPIS
Z104 to obtain fundamental sealing behavior of gasket
established in Japan. The testing procedure consists of 11
combinations of gasket stresses and a constant internal
pressure. It takes about 3 hours to complete one test, which is
acceptable for gasket manufacturers. In order to demonstrate
the validity of the testing procedure, measurements of leak
rates of compressed fiber sheet gaskets were carried out. It
has shown that the fundamental sealing behavior can be well
characterized using the proposed testing procedure with
reasonable time and cost.

Keywords: Gasket testing, Joint sheet gasket, Leak rate,
Leakage

INTRODUCTION

With the recent increase of a safety and environmental
concern, the tightness of gasketed flanged connections
becomes an important issue[l1]. In order to estimate the
tightness of gasketed flanged connections, the sealing
behaviors of gaskets must be available. Currently, two
methods to test the sealing behaviors have been established in
the North America and Europe independently[2]. One of the
problems of these methods is that gasket tests take a long time
to perform and are costly. This is mainly due to the facts that
the targeted leak rates in both the methods are very small
compared with those considered in the design of flanged
connections and that they are only measurable using a mass
spectrometry.
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A method to test the tightness of gaskets, HPIS Z104
2005, was published in Japan[3]. The testing procedures to
obtain a fundamental sealing behavior of gasket are discussed
in this paper.  The targeted minimum leak rate is about 1.69
X10* ~1.69X 107 Parm’/s (0.1~10 atm cc/min), which is
measurable using a burette. The testing procedure includes
11 steps of gasket stresses. It takes about 3 hours to complete
one test, which is reasonable and acceptable for gasket
manufacturers. In order to clarify the validity of the testing
procedure, measurements of leak rates of compressed fiber
sheet gaskets were carried out. The sealing behavior of the
gasket is discussed based on the test results. It was shown
that the fundamental sealing behavior can be well
characterized using the proposed testing procedure with
reasonable time and cost.

NOMENCLATURE
Dimensions
d; : ID of contact surface of gasket (mm)
d, : OD of contact surface of gasket (mm)
Area
A, : Contact area of gasket (mm?)
Gasket stress and thickness change of gasket
. : Arithmetic mean value of thickness changes of gasket
(mm)
o : Gasket stress (N/mm?)
o, : Effective gasket stress (N/mm?)
O max - Maximum gasket stress (40 and 100 N/mm?® for non-
metallic gasket and spiral wound gasket, respectively)
Internal pressure

1 Copyright © 2006 by ASME



P : Test pressure (MPa)
Leak rate
L : Measured leak rate of gasket (Pa-m’/s)
L, : Fundamental leak rate (Pa-m’/s)
Load
W: Compressive load (N)
Wo : Preload (N)
Others
k : Shape factor of gasket

EQUATION REPRESENTING LEAK RATE OF
GASKET

The gasket testing procedure HPIS Z104 to obtain
fundamental sealing behavior of gasket is explained below.

An equation representing a leak rate of gasket is defined
under the following assumption: A leak rate is proportional to
the inner radius of gasket d; and is inversely proportional to
the width (d, — d; )/2 of gasket (see Fig. 1).

o9 m
(d,—d;)/2

On the basis of the assumption, the leak rate of a gasket L
can be expressed by the following equation:

1
L=———L,=kL 2
d /d,-1" *
where, L is the fundamental leak rate whose physical meaning
is a leak rate of a gasket where the outer diameter d, is twice
as large as the inner diameter d;. The value k is the shape
factor which is expressed as

_ 1
d /d. —1
As understood from Eq.(2), the leak rate L stays constant when

the ratio d, / d; is kept constant even if the gasket size is
changed. The shape factor is 1.0 when the outer diameter d,

k ©)

Fig. 1 Dimensions of gasket

is twice as large as the inner diameter d; as shown in Fig. 1.
Thus, measured leak rates are converted to the
fundamental leak rate by the following equation:

L == (4)

TEST METHOD
Test rig and gaskets
An example of test rig used in the leak rate measurements
is shown in Photo 1. A gasket is compressed between the
upper and lower platens. Test conditions are as follows:
- The test gasket: 20K50A(JIS B2404)
- Pretreatment of gasket: 23£2°C and 50+5% environment
for 48 hours
- Platens: with raised face of 96 mm OD
- Surface roughness of the platens: 1.6~3.2 umRa
- Test medium: Helium gas

Procedure to test sealing behavior

A preload W; calculated from the following equation is
applied to a gasket before a test.

W, =0.05 A, 0, ©)

The gasket contact area A, is defined by the following
equation:

A, =§(dﬁ—d3). ©)

The gasket stresses and test pressures are summarized in
Tables 1 and 2. Different gasket stresses are used depending
on gasket type. The maximum gasket stresses are 40 and 100

Photo 1  Test rig

2 Copyright © 2006 by ASME



