Figure 2. Intraoperative
palpation in total
aortic arch replacement
surgery. Surgeons push
or pinch the aorta’s
surface wth one or two
fingers to identify the
sclerotic region for
diagnosis and overall
strategy planning.
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model. The feedback reaction force and defor-
mation help the expert perceive the model’s
elasticity and compare with previous experi-
ence. If the elasticity differs from the expert’s
expectation, the expert changes the model’s
physical parameters. When the model’s phys-
ical behavior matches the expert’s expecta-
tion, the elastic parameters are stored, which
completes this task.

2. Trainee learns virtual model elasticity. In this task,
trainees experience the model’s elasticity by
repeatedly performing the same manipulation
that the experts carried out in the first task.
Over time—which might involve a trainee’s
conducting the same procedure once every few
days—the trainee acquires a stable perception
of different conditions, and recognizes the elas-
ticity relating to a specific situation.

Virtual aorta palpation system design

For discussion purposes, we’ve considered a
total aortic arch-replacement surgery. In such a
surgery, surgeons must perform intraoperative
palpation of the aorta to establish the tissues’
elasticity. Surgeons do so because they need to
identify the sclerotic region to determine the
overall surgical strategy required to deal with the
tumors (see Figure 2). Because the nature of the
sclerotic region cannot be ascertained from visu-
al information, such as texture and 3D shape
alone, surgeons—using one or two fingers—push
or pinch several points of the aorta.

To provide practitioners with an interactive
environment enabling them to rehearse realistic
palpation procedures, we first need a clear
description of how interaction with the virtual
model should occur. Furthermore, it's essential
to engineer realistic visual and haptic feedback.
Specifically, the aorta model must aptly simulate
both autonomous beating and volumetric distri-

bution of elasticity equivalent to that of the scle-
rotic status of real-life tissue. Additionally, to
accurately model the surgeon’s manner of palpa-
tion, the haptic interface should support both
one- and two-finger manipulation. Finally, the
interactive modeling interface should allow sur-
geons to modify physical parameters based on
their empirical bioelasticity knowledge.

On the basis of these requirements and addi-
tional discussions with cardiovascular surgeons,
we've designed a virtual aorta palpation system
(see Figure 3). The system visualizes a 3D aortic
arch model as a polygonal object in the virtual
space. Users control two sphere-shaped manipu-
lators via two Phantom haptic devices—model
Premium 1.5. The manipulators represent the 3D
positions of a user’s thumb and index finger,
respectively. The Phantom’s collision detection
algorithm responds to any interaction between
the manipulators and the model, while the
physics-based sirnulation algorithm calculates
the reaction force and deformation using the
contact points and manipulators’ current posi-
tions. The Phantom device conveys the calculat-
ed reaction force to the user and displays the
deformation result on the screen as a transfor-
mation of the 3D model. The Phantom haptic
device also lets surgeons interactively update the
model’s elasticity and boundary conditions when
the physical behavior differs from the surgeons’
expectations. We provide a graphical user inter-
face that supports elastic modeling and manages
given physical parameters.

To simulate the physical behavior of a beating
aorta while maintaining a haptic-compatible
refresh rate, we propose new finite-element-based
computation methods. Although many studies
have concentrated on developing various kinds
of physics-based models,3* the finite element
method (FEM) is known to be the most accurate
computational model for simulating the biome-
chanical behavior of elastic soft tissues. Although
FEM-based simulation provides accurate and sta-
ble deformation, however, it carries a high cal-
culation cost. To allow real-time interaction with
a volumetric-deformable object, Morten Bro-
Nielsen and Stephane Cotin have proposed a
condensation technique.® This technique reduces
the size of a stiffness matrix in the preprocessing
stage and performs real-time simulation for
detailed objects. More recently, Koichi Hirota
and Toyohisa Kaneko have achieved fast compu-
tation of reaction force by using an efficient
translation of a matrix calculation.!



Although most previous studies didn’t try to
simulate dynamic behavior like pulsation or beat-
ing status, our previous study detailed the 3D
anatomical shapes and approximate time series
pressure required to realistically represent the
haptic feedback of heartbeats.® In the study,
we've used these features to create haptic-
deformable media to represent a beating aorta’s
dynamic behavior during cardiovascular surgery.
Our proposed FEM-based computation methods
then calculate the reaction force and biome-
chanical deformation that reflects the internal
pressure induced by the user’s manipulation.

Physics-based modeling of a beating
aorta

Physics-based simulation requires a 3D shape
with elastic information of the target organ.

3D shape and elasticity modeling

To construct our virtual aorta model, we
acquired images of patients’ aortas from com-
puterized tomography or magnetic resonance
imaging techniques. We extracted a 3D region of
the aorta from voxels and divided them into
finite tetrahedra. Each tetrahedron represented a
part of the 3D region of the aorta and also its par-
ticular physical parameters: Young's modulus
and Poisson’s ratio, which are measures of elas-
ticity. We used the volumetric grid topology and
physical parameters to calculate a stiffness
matrix, enabling finite-element-based simula-
tion. We categorized all vertices, based on three
different boundary conditions, into fixed ver-
tices, internal wall vertices, and other free ver-
tices. Fixed vertices represented tissue that
connects or contacts other organs. Internal wall
vertices represented the aorta’s beating, holding
dynamic force by a time series of blood pressure
data. We represented the condition of arterial
sclerosis by setting a high Young’s modulus to
the desired region.

We created a virtual 3D shape of a normal aor-
tic arch from the Visible Human Male data set.?
Using Mercury Computer Systems’ Amira 3.1
modeling software (http://www.amiravis.com),
we reconstructed the aorta surface and generat-
ed tetrahedral grids. Figure 4 illustrates the con-
structed aortic arch model. The total number of
the vertices was 1,651. The edge vertices of the
3D model, which simulated connection to the
heart and other vessels, were defined as fixed
because these areas didn't move in actual palpa-
tion. Each vertex was represented as a small
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Figure 3. Overall framework for the simulation system developed for
instructing palpation of the aorta. Surgeons and residents used this system to
rehearse realistic palpation procedures on the virtual aorta model. Skilled
surgeons conveyed their bioelasticity knowledge by modifying the model

elasticity.

Aortic arch model Manipulator

Sclerotic region

sphere colored according to its boundary condi-
tion, shown in Figure 4.

The system we developed also provided an elas-
tic modeling interface to support flexible parame-
ter setting by skilled surgeons. The view of the
virtual space contained a 3D bounding box (see
Figure 4) whose shape and 3D position were con-
trolled interactively using a slider bar and edit box
in the graphical user interface. We also prepared
several shape templates such as spheres and cubes.
This interface let surgeons modify the model elas-
ticity and boundary conditions as needed.
Following this interactive elasticity modeling, the
system automatically updated the stiffness matrix
by running matrix generation algorithms.

Figure 4. The aortic
arch model. The 3D
shape was acquired
from the Visible
Human Male data set.
A high Young’s
modulus was given to
tetrahedral elements
in the sclerotic region
using a 3D bounding
box. The colors of
vertices represented
boundary conditions.
Red vertices were
“fixed,” green vertices
were “internal wall,”
and blue vertices were
“free” for deformation.
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Figure 5. FEM-based
computation model for
a beating aorta: (a) 3D
shape; (b) aorta
expansion after higher
pressure exerted; and
(c) the result of
external force applied.
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Haptic interaction

The collision-detection algorithm, in con-
junction with physics-based simulation, enabled
virtual palpation to be performed on the aorta
model. The algorithm handled the intersection
between the model’s fingertip manipulators and
the tetrahedral grids, for which we employed
proxy-based haptic rendering methods.?*?2 The
algorithm was based on point-polygon collision
detection, which, despite being a simplification
of a real aorta, was sufficient to handle the basic
interaction of a surgeon's fingertips touching the
aortic wall in real surgery. The main challenge of
this study was to simulate and describe interac-
tion with a deformable object that’s subject to
autonomous beating.

Figure 5 outlines the basis of our haptic inter-
action model for aorta palpation. A 2D cylinder
cross-section approximately illustrates the aortic
wall. When blood pressure was applied to the
wall (depicted in Figure 5a), the FEM-based sim-
ulation responded by expanding the 3D shape.
The higher the pressure applied, the larger the
expansion, as Figure 5b shows. The system pro-
vided simulation results at discrete time steps,
effectively modeling the aorta wall’s autonomous
beating. In addition, when an external force ini-
tiated a small displacement in the aorta model,
the reaction force was calculated and conveyed
to the user’s fingertips via the Phantom devices,
indicated in Figure 5c.

Cardiovascular surgeons reported that, during
a palpation procedure, they avoid pinching the
aortic wall too hard to avoid damaging soft tis-
sues and to minimize the aorta’s deformation.
Therefore, our proposed model assumed that
internal blood pressure wasn’t affected by surgi-
cal palpation, evidence that linear finite element
models were a good approximation for real-life
aorta palpation.

FEM-based computation

We based our calculation method—to simu-
late the reaction force and deformation of a beat-
ing aorta—on linear elastic theory. Assuming that
the internal force is in equilibrium at each dis-
crete time step, the relationship between external
force and displacement on an elastic object is
defined by f= Ku where, on all vertices, u is dis-
placement and fis external force, including blood
pressure. K denotes the stiffness matrix of the
object constructed by grid topology and physical
parameters (Young's modulus and Poisson ratio).
The K matrix can be efficiently reduced by con-
densation’ and elimination of the fixed vertices
in the preprocessing stage. This expression is sim-
plified to u =Lfusing the condensed inverse stiff-
ness matrix L, which defines the physical
relationship between the external force fand the
displacement u on the surface vertices.

To represent autonomous beating and to sim-
ulate the physical behavior of the user’s interac-
tion, we divided the surface vertices into three
groups: contacted vertices, internal wall vertices,
and other free vertices. Contacted vertices are
directly displaced by the user’s manipulation.
Internal wall vertices are affected by the time
series of blood pressure. Equation 1 expands u =
Lf by using the initial letters of categorized ver-
tices to represent the coefficients of the matrices.

ul Lll Iﬂo Lk ]‘;
u [=|L, L, L.|{f,
u) \L, L, LA\L a

where f; denotes blood pressure that’s applied to
the internal wall vertices and u, is displacement
of the contacted vertex manipulated through the
Phantom haptic device. Considering that f, is
constant zero, the relationship between u, f, and
f: is described as u, = Lf; + L,f.. Consequently, f;
isgivenasf,=L,'(u -L,f).

Accordingly, f; is external force on the contact-
ed vertex, and —f; is reaction force conveyed to the
user. Note that we can obtain L, and L, by pre-
computation because both are defined by Young’s
modulus and Poisson’s ratio. We calculate L, and
L, for all free vertices and perform a refresh rate of
more than 1,000 Hz to maintain stable force feed-
back. The dynamic transition of f; at discrete time
steps lets us present haptic feedback of the beating
aorta under the effects of time series blood pres-
sure. Applying f; to Equation 1 provides the dis-
placement u, on other free vertices.



Evaluation and user study

In this section, we describe the virtual palpa-
tion system’s operation, example results, and
outputs. We then present the design of studies
that evaluate the effectiveness of our system in
supporting communication on bioelasticity.

System verification

We processed the computation algorithms on
a standard PC with a Pentium 4 2.4-GHz CPU
and 1,024 Mbytes of memory. We optimized the
matrix calculation on the CPU with Intel’s Math
Kernel Library.

Our first step was to confirm the visual and
haptic quality and performance of the developed
system with cardiovascular surgeons. In this
experiment, we set Young’s modulus of the nor-
mal model to 1.0 megapascal (MPa), that of the
sclerotic model to 3.0 MPa, and the Poisson’s
ratio to 0.48, based on the measured data for a
normal aortic wall that we’d obtained previous-
Iy.? Later, we explain how we tested the model’s
physical characteristics, compared to the empiri-
cal knowledge of skilled cardiovascular surgeons.

Figure 6 shows how the user interacted with
the virtual system and gives an example of the
deformation that occurred in the virtual aorta
following pinching with two fingers. The user
touched two manipulators in real space with the
tips of the Phantom devices that were worn on
the fingertips (bottom-left image). These manip-
ulators translated the position of the fingertips to
the model aorta in the virtual space. In Figure 6,
we highlight the virtual position of the fingertips
(top-left image) that corresponded to the finger-
tips’ real position (bottom-left image).

Next, we tested the accuracy of the model in
simulating both normal and sclerotic aorta con-
ditions. The proposed FEM-based model simu-
lated reaction force and deformation for an aorta
subjected to time series pressure. Figure 7 shows
the relationship between a dynamic transition of
the reaction force and the applied time series
blood pressure when the aorta wall was subject-
ed to a specific displacement by the fingers. We
programmed two regions of the virtual aorta,
each with a different state (normal and sclerotic).
The two different regions showed different
absolute values of reaction force and beating sta-
tus for the same given displacement. The sclerot-
ic part did not reproduce the pulse with as great a
magnitude as the normal part. These phenome-
na were similar to that observed by Haruo Okino
and colleagues.? Thus, our model simulated real-
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istic haptic feedback reflecting the dynamic phys-
ical behavior of both a normal and a sclerotic
aorta wall.

The developed model had 1,651 vertices, which
provided sufficient visual quality to represent the
3D shape of an aortic arch. In this case, the calcu-
lation time was 0.08 ms for force feedback and 0.5
ms for deformation. These times confirmed that
the proposed calculation methods achieved a suf-
ficient refresh rate to handle deformable virtual
media with autonomous beating.

User tests

As we explained, the system'’s role was to sup-
port the communication of knowledge on aorta
bioelasticity. We categorized this communication
in three separate procedures and planned three
user studies to test how well the system support-
ed this communication, basing each experiment
on each of the following hypotheses:
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Sclerosis

B Elasticity modeling. If experts knew the aorta’s
correct tissue elasticity during palpation and
the system provided a valid elasticity-model-
ing environment, we could set up the virtual
aorta with identical given elasticity.

8 Elasticity recognition. If haptic interaction with
the virtual media effectively supported com-
munication on bioelasticity, trainees would be
able to recognize the given elasticity more eas-
ily than with other training methods.

§ Leamning elasticity. If the system supported
instruction of a specific bioelasticity, trainees
would be able to learn the given elasticity
through continuous repetition of the palpa-
tion procedure.

We focused on two elasticity conditions that were
considered key in intraoperative aorta palpation:
normal tissue elasticity and the threshold elastic-
ity that's regarded as sclerotic. Cardiovascular sur-
geons have to learn both elasticity conditions to
identify the sclerotic region and determine the
overall surgical strategy. In the next three sec-
tions, we describe the resuits of the user study.

Elasticity modeling

First, we examined the capability of the sys-
tem to carry out elasticity modeling of the virtu-
al aorta, working with eight skilled surgeons from
the Department of Cardiovascular Surgery at
Kyoto University Hospital. We prepared 20 aorta
models with the same 3D shape (shown in Figure
4) but different levels of stiffness. We set the uni-
form elasticity of each model by changing the

input parameter of Young's modulus, which var-
ied from 0.2 MPa to 4.0 MPa. The Poisson’s ratio
was set as 0.48. In advance of the experiment, we
allowed the surgeons a few minutes of practice
time during which they attempted the palpation
procedure at leisure to accustom themselves to
the virtual environment.

For the study itself, the surgeons conducted a
normal palpation procedure on the 3D virtual
aorta. If the physical behavior and reaction force
differed from their expectation of how a normal
aorta should have behaved, we changed the
model elasticity accordingly. They repeatedly pal-
pated the models and selected the one that most
realistically simulated the elasticity of a normal
aorta. The same procedure was used to determine
the threshold elasticity that should have indicat-
ed sclerosis in real surgery. We randomized the
order in which the surgeons tested the different
models. The same palpation point on the model
was used for all surgeons.

Figure 8 shows the statistical results for the
models that were selected for normal and sclerot-
ic elasticity conditions. The left-hand graph shows
there were only two different models, 1.0 MPa and
1.2 MPa, which the surgeons deemed to corre-
spond to their experience of a normal aorta.
Specifically, five surgeons selected the 1.0-MPa
model; three chose the 1.2-MPa model. Next, the
right-hand graph in Figure 8 shows the results of
selection for the sclerotic aorta. The graph suggests
that anything over 3.0 MPa corresponded to scle-
rosis, according to the experience of the surgeons.
These results lead us to the following insights:

8 A virtual aorta with a Young’s modulus
between 1.0 MPa and 1.2 MPa effectively dis-
plays the physical behavior of a normal aorta.

B A virtual aorta having a Young’s modulus of
over 3.0 MPa simulates sclerotic status.

B All skilled surgeons recognize the absolute
elasticity of normal and sclerotic conditions
by touch. This means that elasticity is the
most important information to communicate
when trainees try to master the palpation of
an aorta.

The surgeons who evaluated our system
reported that manipulating the virtual model
using the two Phantom devices was comparable
to the experience of real surgery. Also, they stat-
ed that they experienced a realistic reaction force



following adjustment of the model’s physical
parameters. In addition, a sufficiently small dis-
agreement arose among the surgeons in choosing
the models that best represented normal and scle-
rotic conditions of the aorta. These results indi-
cate that our system enabled virtual palpation
that effectively mirrored the real-life procedure.

Elasticity recognition

As shown in the first experiment, the ability
to recognize the elasticity of normal and sclerot-
ic aortas is important. In our second experiment,
we aimed to confirm that haptic interaction with
a deformable media was useful for bioelasticity
training. We initiated a study with 18 medical
students who hadn’t experienced palpation of a
real aorta and examined their ability to recognize
different elasticity conditions.

Ten of the virtual aorta models used in the
previous experiment were again prepared and
the students performed virtual palpation in the
same manner. Again the elasticity ranged from
0.2 MPa to 2.0 MPa. Some time was given for the
students to become accustomed to manipulation
and the manner of touching the model in virtu-
al space. Then, each student was asked to select
the model, which they thought best represented
a real-life normal aorta. We prepared the students
for making their selection under the following
conditions.

Condition 1: No information. The medical
students had only experienced the elasticity of a
cadaver’s aorta during their medical training and
had not received any specific instruction on aorta
elasticity prior to starting the experiment.
Because the elasticity of a cadaver is totally dif-
ferent from that of a living body, they had no
experience of an in vivo aorta and, in selecting
from among our models, had to imagine what a
real aorta would feel like.

Condition 2: Verbal information. The stu-
dents underwent instruction from cardiovascu-
lar surgeons who described the physical
characteristics of a normal aorta using both brief
explanation and rubber hoses as a physical rep-
resentation of aorta elasticity. This technique is
a conventional teaching method.

Condition 3: Haptic instruction. The med-
ical students were given 1 minute to become
familiar with the elasticity of a normal aorta by
carrying out virtual palpation on our developed
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system. The 1.0 MPa value was specified as the
Young's modulus of this “normal” virtual aorta.

Figure 9 illustrates the statistical results for the
elasticity of the models that the students select-
ed. The statistical analysis (F-test) result shows
significant difference between the conventional
means of instruction (condition 1 and condition
2) and simulator-based instruction (condition 3).
The distribution of the graph at condition 2 still
shows a large spread. This result shows that ver-
bal communication alone isn’t an effective
means for students to learn the elasticity of a spe-
cific aorta condition, because students have an
existing expectation of the elasticity that can’t be
altered simply by hearing what it should feel like.
The graph of condition 3 is close to a normal dis-
tribution, and more than 80 percent of the stu-
dents selected models with elasticity between 0.8
MPa and 1.2 MPa. This result demonstrates that
haptic interaction using our system is an effec-
tive method for enabling students to recognize
the normal stiffness of the virtual aorta model.
Furthermore, the Young’s modulus of 1.0 MPa
had been configured by expert surgeons in the
previous experiment, meaning that the students
effectively experienced the elastic characteristics
of an in vivo normal aorta through virtual pal-
pation. We only conducted the second experi-
ment employing the normal aorta because verbal
representation isn’t generally used to describe a
sclerotic aorta in clinical work.

Learning elasticity
In this third, final experiment, we tested the
effectiveness of learning elasticity through virtu-

Condition 3

Figure 9. Statistical
results of elasticity
recognition of a 1.0-
MPa normal aorta
model in three cases:
conventional
instruction (condition 1
or 2) and simulator-
based instruction
(condition 3). (The
asterisks indicate
significant statistical
difference between the
two data values.)
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al palpation. The second experiment had demon-
strated that haptic instruction is an efficient
means of enabling elasticity recognition, but to
master palpation, students must memorize the
critical elasticity they encounter during the pro-
cedure. Therefore, our study needed to further
examine whether students were able to retain
their knowledge of elasticity. In this last experi-
ment, we aimed to provide students with a learn-
ing curve, in the form of a month-long course of
training. We carried out the simulator-based
learning based on the following conditions:

i The participants were 10 students who hadn’t
previously experienced a real aorta through
touch.

B For each participant, seven trials were con-
ducted, occurring approximately twice a week.
The total experimental period was 23 days.

8 Each trial consisted of two steps: testing and
learning. Participants completed both steps at
every trial.

B Test stage: Participants were asked to select the
aorta models that they believed to be normal
or sclerotic, from 20 aorta models with
Young's modulus between 0.2 MPa and 4.0
MPa, based on their current bioelasticity
knowledge.

B Learning stage: The correct normal (1.0 MPa)
and sclerotic (3.0 MPa) aorta models were
revealed. Examinees were given a few minutes
to try to learn the elasticity of the models
through virtual palpation.

f The palpation point on the aorta model was
fixed throughout the experiment.

Figure 10 shows the selection data over the
course of the third experiment in which the stu-
dent participants attempted to choose the nor-
mal aorta. The spread of the participants’
selections clearly narrowed over time, and the
median eventually approached 1.0 MPa. Our sta-
tistical analysis (T-test) reveals a significant dif-
ference in the spread between the first and third
trials, and the second and third trials. These
graphs demonstrate that several separate training
opportunities effectively contribute to learning
the stiffness characteristics of the normal aorta.

Figure 11, which shows the selection data for
the sclerotic condition, suggests that haptic
instruction using the developed system is effec-
tive. However, there is a wider spread in the
selections, compared to the learning curve in
Figure 10. This tendency is consistent with what
is known about human perception, in that
human haptic sensitivity to relative physical
behavior is proportional to the logarithm of
absolute stiffness.

Final remarks
In evaluating the results of our experiments, we
discuss how the efficacy of realistic VR-based pal-



pation might be further improved. First, to
achieve a real-time refresh rate, we simplified the
physical behavior of an in vivo aorta by ignoring
some essential functions. We didn’t consider the
effects of local pressure or blood flow, and simu-
lated continuous autonomous beating with
discrete time-series blood-pressure data. For non-
complex 3D aorta models, the blood pressure
applied to the internal walls was assumed to be
constant and independent of local position. The
advantage of this simplification was that it aided
fast calculation for valid haptic feedback and let
us reproduce key soft-tissue behavior (for exam-
ple, pulsation and elasticity) in virtual palpation.
Our model achieved a refresh rate of more than
1,000 Hz in the reaction force calculation owing
to our simplification of boundary conditions and
inverse matrix calculation.

Another simplification was to reproduce the
dynamic force of autonomous beating using a sta-
tic FEM model. The variance in elasticity between
the model and real life was small, and the sur-
geons who evaluated our system agreed that it
demonstrated realistic force feedback and graph-
ical deformation for the palpation procedure.

Although VR-based surgical simulators pro-
vide an effective training environment in clini-
cal training, the representation and validation of
specific bioelasticity behavior remains a problem.
Both our proposed bioelasticity communication
support environment and the quantified knowl-
edge gained during our study will be useful
indices for the future development of haptic
anatomical models.

The approach we followed is potentially
applicable to other virtual organ models that
require a multiphysics simulation. We suggest
that more detailed modeling, especially focused
on a number of specific diseases and morbid
stages, will be carried out as future work. This
work will contribute to the compilation of prac-
tical instruction courseware. MM
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Healthcare Information technology (HIT) is regarded as a key issue for improving quality of
healthcare and patients’ safety. Physicians order entry systems have been widely accepted especially in
large-scale hospitals and the complex daily clinical tasks have been optimized by functions of order
entry and clinical data repository. Electronic health record system (EHR) and tele-medicine technology
have been changing the style of healthcare delivery and information exchange between healthcare
providers and patients. These changes will effect great improvement of quality of healthcare. Further-
more, inter-institutional sharing and analysis of clinical database will enable healthcare providers to
understand the relative position of their qualities compared to other provides’. In order to introduce
such new healthcare environment, we have to adopt standards of terminology, classifications, and
communication protocols, etc. Adoption of such standardized information systems would provide more
safety to clinical settings. On the other hand, it is important to watch the pros, and cons. of adopting
such HIT, because miss-use of systems could cause the user harmful human errors. Such endless human
errors should be managed by centralized network-based real-time monitoring of all the status of HIT

systems, the interactions between systems and humans, and the clinical data of patients.
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Development of Infusion Pump Status Monitoring System for
Improving Patient Safety
TANAKA KATSUYA" Geng Jinghai® Matsuya Shiro® Ohe Kazuhiko”

Department of Planning, Information and Management, The University of Tokyo Hospital”
Division of Social Medicine, School of Medicine, The University of Tokyo?
Department of Clinical Bioinformatics, Graduate School of Medicine, The University of Tokyo®”

Recently, the approach to safety management of medical treatment and prevention of medical accident came to be done
actively. The main approach through preparation of manuals, which focuses on strengthening the confirmation procedure of
medical staffs or the certainly execution, cannot completely prevent medical accidents caused by artificial mistakes. For
instance, the mistake of setting flowing quantity or amount of the schedule, and furthermore, the misidentification of
patients are happening in the operation of infusion pumps. In the prevention of such malpractice according to the
mis-operation of equipments or misidentification, it is possible to play a major role to ensure patient safety by developing
and introducing a mechanical automatic monitoring system. This paper describes the construction of a infusion pump
monitoring system to achieve real-time recognition of such mis-operations or misidentifications.

Keywords: Patient Safety, Monitoring System, Infusion Pump
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Classifying Method of Patient's State Based on Hospital Information

System Data
Shinohara Nobuo"” Matsuya Shiro” Oyama Hiroshi”? Ohe Kazuhiko?

Clinical Bioinformatics Research Unit, Graduate School of Medicine, the University of Tokyo”
Department of Medical Informatics and Economics, Graduate School of Medicine, the University of Tokyo

To have an overview of patient's conditions of the hospital, we need some method to summarize patient's conditions. The
purpose of this study is to develop the method of case oriented trans-sectional study by using hospital information
transaction data. We analyzed 60 patients with cerebral infarction by a clustering method. This study shows that CVA

patient's daily condition is classified by six groups.

Keywords: Hospital Information System, Accounting System, Clustering
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