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Modulator of bone morphogenetic protein activity
in the progression of kidney diseases
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Tubular damage and interstitial fibrosis is a final common
pathway leading to end-stage renal disease, and once tubular
damage is established, it cannot be reversed by currently
available treatment. The administration of bone
morphogenetic protein-7 (BMP-7} in pharmacological doses
repairs established tubular damages and improves renal
function in several kidney disease models; however,
pathophysiological role of endogenous BMP-7 and
regulatory mechanism of its activities remain elusive. The
activity of BMP is precisely regulated by certain classes of
molecules termed BMP agonist/antagonist. In this review,
roles of BMP agonist/antagonists possibly modulating the
activity of BMP in kidney diseases are discussed. Our group
demonstrated that uterine sensitization-associated gene-1
(USAG-1), a novel BMP antagonist abundantly expressed in
the kidney, is the ceniral negative regulator of BMP-7 in the
kidney, and that mice lacking USAG-1 (USAG-1~" mice) are
resistant to kidney injuries. USAG-1""" mice exhibited
markedly prolonged survival and preserved renal function in
acute and chronic renal injuries. Renal BMP signaling,
assessed by phosphorylation of Smad proteins, is
significantly enhanced in USAG-1"7~ mice during renal injury,
indicating that the preservation of renal function is attributed
to enhancement of endogenous BMP-7 signaling.
Furthermore, the administration of neutralizing antibody
against BMP-7 abolished renoprotection in USAG-1~"" mice,
indicating that USAG-1 plays a critical role in the modulation
of renoprotective action of BMP, and that inhibition of
USAG-1 will be promising means of development of novel
treatment for kidney diseases.
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BMP-7 IN KIDNEY DISEASES

Bone morphogenetic proteins (BMPs) are phylogenetically
conserved signaling molecules that belong to the transform-
ing growth factor-f§ superfamily. Although these proteins
were first identified by their capacity to promote endochon-
dral bone formation, they are involved in the cascades of
body patterning and morphogenesis. Furthermore, BMPs
play important roles after birth in the pathophysiology of
several diseases, including osteoporosis, arthritis, pulmonary
hypertension, cerebrovascular diseases, and cancer and
kidney diseases.

BMP-7, also known as osteogenic protein-1, is a 35-kDa
homodimeric protein, and kidney is the major site of BMP-7
synthesis during embryogenesis as well as postnatal develop-
ment." Its genetic deletion in mice leads to severe impairment
of kidney development, resulting in perinatal death.”’
Expression of BMP-7 in adult kidney is confined to distal
collecting tubules and podocytes of glomeruli,® and the
expression decreases in several kidney disease models,
including acute ischemic renal injury, tubulointerstitial
fibrosis, diabetic nephropathy, and remnant kidney model.”
Recently, several reports indicate that the administration of
pharmacological doses of BMP-7 inhibits and repairs acute
and chronic renal injury in animal models.*® The admin-
istration of BMP-7 reverses transforming growth factor-
pl-induced fibrogenesis and epithelial-to-mesenchymal
transition (EMT) and induces mesenchymal-to-epithelial
transition in vitro,® inhibits the induction of inflammatory
cytokine expression,® attenuates inflammatory cell infiltra-
tion, and reduces apoptosis of tubular epithelial cells in renal
disease models. Collectively, BMP-7 plays critical roles in
repairing processes of the renal tubular damage in kidney
diseases. However, the physiological role and precise
regulatory mechanism of endogenous BMP-7 activity remain
elusive.

REGULATORY MECHANISM OF BMP ACTIVITY

The local activity of endogenous BMP is controlled by at least
three different mechanisms. First, the expression pattern of
BMP and its cell surface receptors controls local activity of
BMP. Second, high-affinity binding of BMP to extracellular
matrix increases its local concentration. Vukicevic et al.’
previously showed that BMP-7 binds to basement membrane
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components including type IV collagen. In addition, Gregory
et al.' recently demonstrated that the prodomain of BMP-7
targets BMP-7 complex to the extracellular matrix. In most
tissues, bmp mRNA expression and BMP protein are found
colocalized.” Restricted diffusion of BMP proteins should
increase its local concentration.

Finally, BMP signaling is precisely regulated by certain
classes of molecules termed as BMP antagonists.'' BMP
antagonists function through direct association with BMPs,
thus prohibiting BMPs from binding their cognate receptors.
The interplay between BMP and their antagonists fine-tunes
the level of available BMPs, and governs developmental and
cellular processes as diverse as establishment of the
embryonic dorsal-ventral axis, induction of neural tissue,
formation of joints in the skeletal system, and neurogenesis in
the adult brain. The indispensable roles of BMP-7 in the
kidney led us to postulate the existence of some BMP
antagonist that modulates the activities of BMP-7 in the
kidney.

GREMLIN: BIMP ANTAGONIST WITH A ROLE IN KIDNEY
DEVELOPMENT

Gremlin was identified from a Xenopus ovarian library for
activities inducing secondary axis, and it encodes 28-kDa
protein-that binds to BMP-2/4 and inhibits their binding to
the receptors.

Gremlin knockout mice are neonatally lethal because of
the lack of kidneys and septation defects in the lung. Gremlin
is expressed in metanephric mesenchyme surrounding ureter
tips, and gremlin-mediated BMP antagonism is essential to
induce metanephric kidney development.'?

Gremlin is also known as IHG-2 (induced in high glucose 2)
because its expression in cultured kidney mesangial cells is
induced by high ambient glucose, mechanical strain, and
transforming growth factor-B."> The expression of gremlin in
adult kidney is almost undetectable in healthy status, but the
expression increases in several kidney disease models,
including diabetic nephropathy,' cisplatin nephrotoxicity,'*
and unilateral ureteral obstruction. However, the role of
gremlin in the progression of kidney diseases remained to be
elucidated.

NOGGIN

Noggin is a 32kDa glycoprotein secreted by Spemann
organizer of Xenopus embryos, and is found to rescue dorsal
development in the ultraviolet-induced ventralized embryos.
Noggin binds to BMP-2 and BMP-4 with high affinity and to
BMP-7 with low affinity, and prevent BMPs from binding to
its receptors. In mice, noggin is expressed in the node,
notochord, dorsal somite, condensing cartilage, and imma-
ture chondrocytes, and is essential in skeletal and joint
development.

Recently, it is reported that overexpression of noggin in
podocytes leads to the development of mesangial expansion,
indicating the importance of endogenous BMP signaling in
the maintenance of glomerular structure. Because the
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expression of noggin is almost undetectable in healthy and
diseased kidney, other negative regulator of endogenous BMP
might play a role in glomerular mesangial expansion.

USAG-1 AS A NEGATIVE REGULATOR OF BMP IN THE KIDNEY
Discovery and characterization of USAG-1

Through a genome-wide search for kidney-specific tran-
scripts, our group found a novel gene, which encodes a
secretory protein with a signal peptide and cysteine-rich
domain.'”” The rat ortholog of the gene was previously
reported as a gene of unknown function that was preferen-
tially expressed in sensitized endometrium of rat uterus,
termed uterine sensitization-associated gene-1 (USAG-1).
Amino-acid sequences encoded in rat and mouse cDNAs are
97 and 98% identical to the human sequence, respectively,
indicating high degrees of sequence conservation.

Domain search predicted this protein to be a member of
the cystine-knot superfamily, which comprises of growth
factors, BMPs, and BMP antagonists. Homology search
revealed that USAG-1 has significant amino-acid identities
(38%) to sclerostin, the product of the SOST gene. Mutations
of SOST are found in patients with sclerosteosis, a syndrome
of sclerosing skeletal dysplasia. Because sclerostin was
subsequently shown to be a new member of BMP antagonist
expressed in bones and cartilages, USAG-1 is postulated to be
a BMP antagonist expressed in the kidney.

USAG-1 protein is a 28-30kDa secretory protein and
behaves as a monomer, in spite that a number of BMP
antagonists form disulfide-bridged dimers.'>'® This is
consistent with the fact that USAG-1 protein does not have
the extra cysteine residues present in noggin and differential
screening-selected gene aberrative in neuroblastoma (DAN),
which are necessary to make inter-molecular disulfide
bridges. Recombinant USAG-1 protein physically interacts
with BMP-2, -4, -6, and -7, leading to the inhibition of
alkaline phosphatase activities induced by each BMP in
C2C12 cells and MC3T3-El cells dose-dependently,'™'
whereas sclerostin only inhibits BMP-6 and BMP-7 activities.

Furthermore, the activity of USAG-1 as a BMP modulator
was confirmed in vivo using Xenopus embryogenesis.
Injection of synthetic RNA encoding BMP antagonists to
the ventral portion of Xenopus embryos inhibits the
ventralizing signal of endogenous BMP, and induces
dorsalizing phenotypes of the embryos, including secondary
axis formation and hyperdorsalization. The injection of as
little as 100pg USAG-1 mRNA was sufficient to cause
secondary axis formation, and injection of increasing doses of
mRNA up to 1000 pg led to a corresponding increase in the
frequency of dorsalization phenotypes, whereas embryos
developed normally when irrelevant mRNA was injected.

Expression of USAG-1

In mouse embryogenesis, expression of USAG-1 mRNA was
first detected on E11.5 and increased toward E17.5."° In situ
hybridization of mouse embryos on E11.5 revealed moderate
expression of USAG-1 mRNA in branchial arches and
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pharynx. On E17.5, strong expression of USAG-1 mRNA was
confined to the kidney tubules and ameloblasts of teeth. In
addition, moderate expression was observed in hair follicles,
choroids plexus, and ependymal cells in the ventricles of the
brain.

In adult tissues, the expression was by far most abundant
in the kidney and is restricted to the distal tubules. No
expression was observed in proximal tubules, glomeruli, or
blood vessels in the kidney. Thus, the cellular distribution of
USAG-1 is overlapping with that of BMP-7 in the kidney.
Taken together with the fact that proximal tubule epithelial
cells (PTECs) are the site of injuries in many types of kidney
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diseases, and that PTECs express the receptors for BMP-7, we
hypothesized the working model about the regulation of
renoprotective action of BMP-7 (Figure 1a): in renal injuries,
PTECs are mainly damaged and undertake apoptosis or EMT
to fibroblast-like mesenchymal cells. BMP-7 secreted from
distal tubules binds to the receptors in the cell surface of
PTECs, and inhibits apoptosis and EMT. USAG-1 is also
secreted from distal tubules, binds to BMP-7, and inhibits the
renoprotective actions of BMP-7 by reducing the amount of
available BMP-7.

To evaluate this working model, our group generated
USAG-1 knockout (USAG-1""") mice, and induced acute
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Figure 1|Working hypothesis. (a) In kidney diseases, injured PTECs undertake apoptosis and EMT, and produce inflammatory cytokines.
BMP-7 secreted from distal tubules is known to inhibit apoptosis, EMT, and production of cytokines of PTEC. USAG-1 is secreted from distal tubules,
binds to BMP-7, and inhibits the binding of BMP-7 to its receptors. (b} Drugs or neutralizing antibodies that inhibits binding between USAG-1
and BMP, or gene-silencing therapy for USAG-1 would increase available endogenous BMP, and might be a promising way to develop novel
therapeutic methods for severe renal diseases. (¢) Phylogenetic tree of BMP antagonists. Phylogenetic tree of human BMP antagonists based on
the overall amino-acid sequence similarity. GenomeNet server at http://www.genome.jp/ was used for phylogenetic tree construction.
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and chronic renal disease models in which the renal tubules
were mainly damaged.

USAG-1"" mice are resistant to kidney tubular injury
USAG-1""" mice were born at the ratio expected by Mendel’s
law of heredity, and were viable, fertile, and appeared healthy,
except that USAG-1""" mice exhibit supernumerary teeth,
both in the incisors and molars, and fused teeth in the molar
teeth region.'* Although there was variation in the sites of
extra teeth and fused teeth, these teeth phenotype was fully
penetrant.

Because the renal function and histology of the kidney in
USAG-1""" mice appears normal, our group challenged the
mice with two different kidney disease models and found that
USAG-1""" mice are resistant to renal injury.

As a model for acute renal failure, we utilized cisplatin
nephrotoxicity model."* Administration of cisplatin to wild-
type (WT) littermates causes acute tubular injuries that result
in severe renal failure. Within the first 3 days, 54% of WT
mice died, whereas 92% of USAG-1""" mice survived the
period. Renal function and histology of USAG-1 ~/~ mice at
day 3 was significantly preserved when compared to WT
littermate. Tubular apoptosis, a characteristic feature of
cisplatin nephrotoxicity, was also significantly reduced in
USAG-1""" mice.

As a model of chronic renal injury, unilateral ureteral
obstruction was performed in both USAG-1 '~ mice and WT
mice, and the kidneys were harvested 14 days after the
operation. In WT mice, the obstructed kidney showed
degeneration of renal tubules and interstitial fibrosis, whereas
normal architecture was preserved in USAG-1""" mice,
except for mild dilatation of tubules. Expression of E-
cadherin, a marker for tubular epithelial integrity, was
severely reduced in the kidney of WT mice, whereas its
expression was preserved in USAG-1""" mice.

Renal BMP signaling, assessed by phosphorylation of
Smad proteins, is significantly enhanced in USAG-1 =~ mice
during renal injury, indicating that the preservation of renal
function might be attributable to enhancement of endo-
genous BMP signaling.

Furthermore, the administration of neutralizing antibody
against BMP-7 abolished renoprotection in USAG-1""" mice.
These results strongly support the working model, and BMP-
7 is the potent candidate for the counterpart of USAG-1.

Interestingly, the expression of USAG-1 decreases during
the course of disease models. Reduction of USAG-1 in kidney
diseases might be a kind of self-defense mechanism to
minimize the inhibitory effect on BMP signaling. Because the
reduction of USAG-1 expression in WT mice is not enough to
overcome the reduction of BMP-7 expression, further
reduction or abolishment of the action of USAG-1 is
desirable for the preservation of renal function, and the
results in the present study justify the therapy targeted
toward USAG-1. For example, drugs or neutralizing anti-
bodies that inhibits binding between USAG-1 and BMP, or
gene-silencing therapy for USAG-1 would enhance the
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activities of endogenous BMP, and might be a promising
way to develop novel therapeutic methods for severe renal
diseases (Figure 1b). Because the expression of USAG-1 is
confined to the kidney in adult mice and humans, it would be
a better target for kidney-specific therapeutic trials. On the
contrary, the administration of recombinant BMP-7 protein,
whose target cells are widely distributed throughout the body,
might produce some additional extra-renal actions, which
includes beneficial effects, such as actions on renal osteo-
dystrophy and vascular calcification. Furthermore, these
therapy targeted toward USAG-1 might protect the kidney
during the administration of nephrotoxic agents such as
cisplatin.

However, because most of the causes of end-stage renal
diseases are glomerular origin, pathological roles of USAG-1
in glomerular injuries should be elucidated before under-
taking therapeutic trials against USAG-1. In addition,
elucidation of physiological and developmental function of
USAG-1 is also essential.

USAG-1 is the most abundant BMP antagonist in adult kidney
Our group demonstrated that USAG-1 is by far the
most abundant BMP antagonist in the kidney.'* The
expression of USAG-1 and other BMP antagonists in adult
kidneys were compared by modified real-time polymerase
chain reaction with the standard curve using various
concentrations of plasmid encoding each BMP antagonist,
and the copy number of each genes in kidney cDNA were
determined.

As a result, USAG-1 was by far the most abundant in
the kidneys among known BMP antagonists. Because other
BMP antagonists also antagonize BMP-7 activities, it is
concluded that USAG-1 plays important role in the
modulation of BMP activities in the kidney not because of
its ligand specificity, but because of its high expression
among other BMP antagonists. In addition, localization of
USAG-1 is quite similar to that of BMP-7, so that USAG-1
can effectively access to and inactivate BMP-7 at the site of
production.

USAG-1 in teeth development

USAG-1 is also expressed in developing teeth, and a USAG-1-
positive area surrounds the enamel knot signaling centers
where BMPs are expressed.'® As mentioned earlier, USAG-1 -
mice exhibit supernumerary teeth, both in the incisors and
molars, and fused teeth in the molar teeth region. Because
BMP-4 is known to be involved in the induction of the
enamel knot signaling centers, loss of the inhibitory effect of
USAG-1 might induce extra signaling centers, resulting in
supernumerary teeth. Kassai et al."” independently reported
that USAG-1/ectodin (they renamed USAG-1 as ectodin)
knockout mice have enlarged enamel knots, altered cusp
patterns, and extra teeth. They also reported that excess BMP
accelerates patterning in USAG-I-deficient teeth, and pro-
posed that USAG-1 is critical for robust spatial delineation of
enamel knots and cusps.'”
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Another aspect of USAG-1 and sclerostin: link between BMP
and Wnt pathway

Based on amino-acid sequence similarity, USAG-1 and
sclerostin (see Discovery and characterization of USAG-1)
seem to form a new family of BMP antagonists (Figure 1c)."!

Sclerostin was first identified as BMP antagonist expressed
in the bones, but so far there has been a controversy about its
biological functions. Although Kusu et al'® and Winkler
et al.'” demonstrated that sclerostin binds BMP and inhibits
alkaline phosphatase activity induced by BMP, van Bezooijen
et al.”® demonstrated that sclerostin cannot inhibit early BMP
response, in spite that they approved that sclersotin binds
BMPs and antagonizes their bone-forming capacity. On the
other hand, Li et al.?’ showed that sclerostin binds Wnt co-
receptor, lipoprotein receptor-related protein 5/6 (LRP5/6),
and antagonizes canonical Wnt pathway, whereas Winkler
et al demonstrated that sclerostin inhibition on Wnt-
induced cell differentiation is indirect and mediated by BMP.

Recently, Itasaki et al.** reported that wise/USAG-1 (they
renamed USAG-1 as wise) functions as a context-dependent
activator and inhibitor of Wnt signaling in Xenopus
embryogenesis, as well as the physical interaction between
wise/USAG-1 and LRP6.

Further studies are needed to clarify the biological
function of USAG-1 and sclerostin; however, it might be
possible that these two proteins possess dual activities, and
play as a molecular link between Wnt and BMP signaling
pathway.

KIELIN/CHORDIN-LIKE PROTEIN

Kielin/chordin-like protein (KCP) is a secretory protein with
18 cysteine-rich chordin repeats, and recently, Lin et al.”’
found that KCP increases the binding of BMP-7 to its
receptor and enhances downstream signaling pathways. The
expression of KCP was detected in developing nephrons and
diseased kidney, but not in adult healthy kidneys. They
demonstrated that KCP™/~ mice are susceptible to tubular
injury and interstitial fibrosis, and concluded that KCP
attenuates renal fibrosis, and could be a target for therapeutic
trials.

CONCLUSION

In conclusion, BMP-7 and its modulators play important
roles in the progression of renal diseases. Because negative
and positive modulators of BMP signaling regulate and
define the boundaries of BMP activity, further understanding
of these modulators would give valuable information about
their pathophysiological functions and provide a rationale for
a therapeutic approach against these proteins.
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