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Novel triple missense mutations of GUCY2D gene in Japanese
family with cone-rod dystrophy: Possible use of genotyping
microarray

Shigeo Yoshida,' Yoko Yamaji,' Ayako Yoshida,' Rumi Kuwahara,!, Ken Yamamoto,? Toshiaki Kubata,’ Tatsuro
Ishibashi’

‘Department of Ophthalmology, Graduate School of Medical Sciences. “Department of Molecular Genetics. Medical Institute of
Bioregulation, Kyvushu Universiny. Department of Ophthalmology, School of Medicine. University of Occupational and Environ-
menial Health, Fukuoka. Japan

Purpose: To report a novel mutation in the GUCYZD gene in a Japanese family with autosomal dominant cone-rod
dystrophy (adCORD), and to examine the possible use of arrayed primer extension (APEX)-based genotyping chip in
detecting mutations.

Methods: Genomic DNA was extracted from the peripheral blood of family members with adCORD. 1t was PCR-ampli-
fied. fragmented. and hybridized to APEX-based genotyping microarrays on which known disease-associated sequence
variations were arrayed for patients with carly-onset retinal dystrophy. All coding exons of the GUCY2D gene were
directly sequenced. The PCR amplicon carrying a novel mutation was subcloned. and each clone was sequenced.
Results: Five single nucleotide polymorphisms in AIPLI, RPGRIPI, and GUCY2D were detected in the proband by
microarray screening, and all were validated by direct sequencing. A novel heterozygous triple missense mutation of
¢.2540_2542delins TCC (p.GIn847_Lys848delinsl.euGln amino acid substitutions) was found in both the proband and his
father, and the three nucleotide changes were located on the same chromosome. Electroretinography (ERGs) demon-
strated a significant reduction in rod function and a complete absence of cone function in both affected individuals.
Conclusions: A novel heterozygous triple consecutive missense mutation in the GUCY2D gene has been linked to adCORD.
Our study demonstrates that the APEX-based gene screening can be used to identify simultancously disease-modifying
sequence changes as well as disease-causing mutations, once proper and comprehensive sites of sequence variations of
the disease are arrayed.

Cone dystrophy (COD) and cone-rod dystrophy (CORD) ing of at least 100 amplicons (exons) that encompass the en-
belong to a subgroup of inherited chorioretinal dystrophies  tire open reading frames of several disease-causative genes.

that is characterized by an initial degeneration of cone photo- Therefore, it would be more convenient if a rapid and ethi-
receplors. causing an early decrease of visual acuity and color cient method is developed to identify disease-causing genes
vision. The cone degeneration is followed by the degenera-  responsible for CORD.
tion of rod photoreceptors leading to progressive night blind- The capabilities of genotyping microarrays have greatly
ness and peripheral visual field loss [1.2]. improved during the past decade [4]. These microarrays dis-
At present, COD and CORD are known to be genetically play hundreds of specific oligonucleotide probes that are pre-
heterogencous. and dominant, recessive, and X-linked inher- cisely located on a small-formatted solid support. The array-
itance patterns have been reported. The disease displays phe- based technologies have both research and potential clinical
notypic and genotypic heterogeneity, and recent genetic stud- applications due to their ability to examine multiple genotypes
ies have implicated a number of causative genes for CORD from an individual simultaneously.
and COD, e.g..the CRX, GUCY2D, AIPL1, GUCATA, RIMSI, Among a number of microarray genotyping devices, the

and UNC 119 genes for autosomal dominant (ad) CORD; the arrayed primer extension (APEX) is a method based on an
ABCA4 and RDHS genes for autosomal recessive CORD; and array of oligonucleotides, immobilized at the 3’ end on a glass
the RPGR gene for X-linked recessive CORD [3]. surface {3]. A patient’s DNA is amplified by PCR, digested

Screening for mutations responsible for CORD has yetto enzymatically, and annealed to the immobilized primers. This
become a routine procedure in clinical practice. This is mainly promotes sites for template-dependent DNA polymerase ex-
due to the large genetic heterogeneity. Because the current tension reactions using four unique fluorescently-labeled

detection technologies are labor-intensive involving a screen- dideoxy nucleotides. This technique for genotyping
microarrays has been used to detect different genotypes and
Correspondence to: Shigeo Yoshida. MD. PhD, Department of Oph- mutations, including those for retinal diseases such as Stargardt
thalmology, Kyushu University Graduate School of Medical Sciences, disease [6] and Leber’s congenital amaurosis (LCA) {7].
Fukuoka. 812-8582. Japan: Phone: 8§1-92-642-5648; FAX: 81-92- These microarrays are commercially available, and an
642-5663: email: yosidai@eye.med kyushu-u.ac.jp LCA chip containing 307 sequence variants previously iden-
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tified in eight genes associated with LCA as well as early-

onset retinal degeneration: 4/PLI. CRBI, CRX, GUCY2D,
RPEGS, RPGRIPI, MERTK, and LRAT is available [8]. Be-

cause LCA is considered to be a kind of congenital stationary I
“cone-rod dystrophy™ with high hypermetropia. panretinal de-
generation, and greatly reduced visual acuity [9], and because
AIPLI, CRX, and GUCY2D are also causative genes for
adCORD. we hypothesized that the LCA microarray could be I
used as an initial screening tool for patients with CORD to
identify the disease-causing mutation(s). During our exami- m
nations with the LCA chip, we coincidentally identitied a novel
heterogeneous triple mutation in the GUCY2D gene. The pos-

sible use of genotyping microarray is discussed.

METHODS Figure 1. Pedigree of the family. Solid black symbols represent af-

TSR T . - ) fected members who have autosomal dominant cone-rod dystrophy;
Clinical examinations: We examined two affected and two . o
white symbols represent unaffected members. Circles and squares

110naffec{ed mémbejr s of a family ‘?”th adCORD . (Flgur e l). indicate women and men. respectively. Those who underwent DNA
Full medical }.nstortes- wgre Ial.cen fr()m each mdl\nduali and testing are indicated by asterisk, and the is marked by arrow.
ophthalmologic examinations. including best-corrected visual

B GUCY2D 2101C>T (P7018)

Figure 2. Leber congenital amarousis arrayed primer extension-based microarray assay hybridized to probes generated from proband’s ge-
nomic DNA. A: Grayscale images for each fluorescent dideoxy nucleotide are used for the sequence analysis. B: Sequence alteration in the
third base of codon 701 of the GUCY2D gene, analyzed by the GENORAMA software. Grayscale bitmaps corresponding 1o all four fluores-
cent dideoxy nucleotides at the base to be determined are shown enabling visual analysis. T signals in the sense area and A in the antisense area
are indicative for a sequence alteration.
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acuity. slit-lamp biomicroscopy, kinetic visual field examina-
tion, fundus examination. fluorescein angiography, and elec-
troretinography (ERG) were performed on each subject. Color
vision testing was performed with the panel D-15 and the
Ishihara pseudoisochromatic plates.

Standardized full-field, photopic, flicker. and scotopic
ERGs were recorded as recommended by the Standardization
Committee of the International Society for Clinical Electro-
physiology of Vision (ISCEV). After pupil dilatation with 0.3%
tropicamide and 0.5% phenylephrine hydrochloride and 30
min of dark-adaptation, the scotopic ERGs were recorded with
a white stimulus at an intensity of 0.12 c¢d.s/m% Rod-cone
mixed single-flash ERGs were elicited by a white stimulus at
an intensity of 20 c¢d.s/m* The photopic single-flash ERGs
and the 30-Hz flicker ERGs were elicited with a white stimu-
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lus at an intensity of 1.2 and 0.6 cd.s/m?, respectively. on a
white background of 25 cd/m?. Ten responses were averaged
for the scotopic, the rod-cone mixed, and photopic ERGs, and
20 responses for the 30-Hz flicker ERGs.

Genomic DNA samples: This study was conducted in
compliance with tenets of the Declaration of Helsinki, and
approved by the Ethics Committee of the Kyushu University
Hospital. All patients gave their informed consent prior to their
inclusion in the study.

Genomic DNA was extracted from the blood of the pa-
tients and from non-affected individuals in the family using
standard protocols to screen for genetic mutations [10.11].

Arrayed primer extension-based analysis: A detailed de-
scription of the APEX-based analysis is available at
www.asperbio.com; Asper Biotech, Ltd. Briefly, selected ex-

A B

Figure 3. Ophthalmologic
and functional analyses.
Fundus photographs (A.
D), fluorescein fundus
angiograms (B, E), and
Goldmann kinetic
perimetric fields (C, F) of
patients with mutations of
the GUCY2D gene. (A. B,
C) Right eye, proband:
(D. E. F) Right eve, the
proband’s father.

scotopic  photopic

Control

Case 1(Proband)

oI I e e T

Case 2(Father)

flicker

s NN i

Figure 4. Electrophysi-
ological recordings from
the affected individuals
and a normal subject. The
o~ scotopic rod electroret-

o inogram (ERG), photopic

single-flash

A cone ERG. 30-Hz flicker

L ERG, and bright flash rod
Latom cone mixed ERG ampli-
tudes are markedly re-
duced 1in the proband.
Those of the proband’s
o e S A father cxhibited a similar
S trend, although more se-
verely reduced.

. N -
- N
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ons ofthe 4/PL1. CRBI, CRX, GUCY2D, RPEGSS, RPGRIPI,
MERTK. and LRAT genes were amplified by polymerase chain
reaction (PCR) following steps previously described [7]. Af-
ter the amplified products were concentrated and purified they
were fragmented by adding thermolabile uracil N-glycosylase
(Epicentre Technologies, Madison, WI) with heat of 95 °C
[5]. One-sixth of each amplified product was used in the primer
extension reaction on the LCA genotyping microarray. The
APEX mixture consisted of 10 ul of fragmented procucts, 4
units of Thermo Sequenase DNA polymerase (Amersham
Pharmacia, Pittsburgh, PA), 2 ul of Thermo Sequenase reac-
tion buffer (260 mM Tris HCI, pH 9.5/65 mM MgCl;
Amersham Pharmacia), and 2 uM final concentration of each
fluorescein-labeled dANTP: Texas Red-ddATP. Cy3-ddCTP.
fluorescein-ddG TP, Cy5-ddUTP (Amersham Pharmacia) and
NEN Life Science Products (Boston, MA). The entire mix-
ture was applied to slides warmed to 58 °C. The reactions
were allowed to proceed for 20 min under parafilm and stopped
by washing at 95 °C 2 times at 90 s each in MilliQ water. A
droplet of SlowFade Light Antifade Reagent (Molecular
Probes, Carlsbad, CA) was applied to the microarrays to limit
bleaching of the fluorescein. The slides were imaged with the
Genorama imaging system (Asper Biotech. Tartu, Estonia) at
20 wm resolution. Gene sequence and mutations were identi-
tied by GENORAMA 3.0 genotyping software by using clus-
tered signal patterns from a sequenced control DNA as the
statistical reference (Figure 2). The PCR amplification of the
samples. hybridization, and image analysis were performed
by Asper Biotech (Tartu, Estonia).

The extracted array-identified variants were confirmed
by direct sequencing with the Taq Dyedeoxy Terminator Cycle
Sequencing Kit (Applied Biosystems, Foster City, CA), ac-
cording to the manufacturer’s instructions. Sequencing reac-
tions were resolved on an ABI 3100 automated sequencer.

Molecular analysis of GUCY2D gene: All 18 coding ex-
ons of the GUCY2D gene, exon 2 of 4/PL 1, and exons 4 and
7 of RPGRIP I genes were amplified by PCR and directly se-
quenced using the Taq Dyedeoxy Terminator Cycle Sequenc-
ing Kit as described in the literature [11,12]. Primer sequences
used for amplification of GUCY2D were obtained from pub-
lished sequences [13]. To detect single nucleotide polymor-
phisms. we directly sequenced exons 10 and 13 of the
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GUCY2D gene from 136 chromosomes (35 men and 33
women) of unrelated normal Japanese individuals.

Subcloning of GUCY2D alleles: The PCR fragments of
exon 13 of the GUCY2D gene in the patient were subcloned
into TOPO-2 (Invitrogen, San Diego, CA) according to the
manufacturer’s protocol [14-16]. The cloned inserts were se-
quenced using T7 primer.

RESULTS

Cuse reports: The proband (I111-1) was a 50-year-old man who
was referred to our hospital because of reduced vision. His
best-corrected visual acuity was 0.4 in each eye with mild
myopia. He stated that he had noted a decrease in his vision
approximately 10 years carlier. Family history revealed that
his father, paternal uncle. and grandmother also had depressed
central vision (Figure 1). Slit-lamp examination showed that,
except for mild cataracts in both eyes, the anterior segments
ofhis eyes were normal. However, tundus examination showed
bull’s eye maculopathy similar to macular degeneration in both
eyes (Figure 3A). There were no apparent abnormalities of
the peripheral retina. The proband (and his father) did not have
pendular nystagmus.

Fluorescein angiography revealed a granular
hyperfluorescence corresponding to the macular degeneration
(Figure 3B). He failed all of the Ishihara color plates and also
failed the panel D-13 test with a tritan axis. Goldmann kinetic
perimetry showed a central scotoma of about 10-20 ° (Figure
3C). The full-field photopic ERGs and the 30 Hz flicker ERGs
were almost unrecordable in this proband. The amplitude of
the scotopic b-wave was significantly reduced. and the a- and
b-waves of the bright-flash mixed rod-cone ERGs, as well as
the oscillatory potentials, were reduced (Figure 4).

The proband’s 76-year-old father (II-1) showed a more
severe clinical phenotype. His best-corrected visual acuity was
(.01 in the right eye and 0.02 in the left. He had chorioretinal
atrophy in the macular region with a central scotoma in both
eves (Figure 3D,F). Fluorescein angiography showed a
hypofluorescence around the macula, reflecting the
retinochoroidal atrophy (Figure 3E). Because of poor visual
acuity, the father could not take the Ishihara color vision and
panel D-15 tests. His ERGs were similar to those of the
proband. although they were more severely reduced (Figure
4).

TABLE 1. SEQUENCE ALTERATIONS DETECTED BY MICROARRAY ANALYSIS

Gene Mame E

Nucleotide Changee Protein Change

AlPL1
GUCY2D
GUCY2D
RPGRIP1
RPGRIP]

Jlsor\)l\)g

IvVSe-17

268G>C
154G>T
2101C>T
ST4A>G
907-17delTAA

Asp90His
Ala52Ser
Pro701Ser
Lys192Glu
SPLICE

Positions of nucleotide and corresponding protein changes detected by microarray analysis.
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Both unaffected family members had good best-corrected
visual acuities of >1.0 in both eyes without any ocular abnor-
malities. All affected and unaffected family members had
myopia of approximately -3.0 diopters.

Microurray and generic analyses: A typical autosomal
dominant hereditary pattern through three generations in this
tfamily prompted us to screen genes responsible for adCORD.
We decided to use LCA genotyping microarray screening first
because LCA is considered to be a type of congenital station-
ary “cone-rod dystrophy ™ with high hypermetropia. panretinal
degeneration, and greatly depressed visual acuity {9]. In addi-
tion, the sequences for the 4/PLI, CRX, and GUCY2D genes
were also represented on the microarray and have been re-
ported to be causative genes for adCORD.

The screening by genotyping the proband revealed five
sequence alterations. one of which was ¢.2101C>T
(p.-Pro701Ser) in the GUCY2D gene (Table 1). This mutation
has been called pathogenic by the GENORAMA software (Fig-
ure 1B) because it has been reported as a disease-causative
gene when the mutation is homozygous in patients with LCA
[71. The other sequence alterations were called polymorphisms
by the software. All 5 microarray-identitied variants were then
confirmed by direct sequencing.

Because a sequence alteration in the GUCY2D gene was
called pathogenic. we directly sequenced all coding region of
the GUCY2D gene. Direct sequencing revealed three consecu-
tive novel heterozygous missense mutations of
¢.2540 2542delinsTCC that would predict
p.GIn847 Lys848delinsLeuGln amino acid substitutions.
These changes were found in the proband and his affected
father (Figure SA). None of the mutations was detected in the
proband’s unaffected mother and sister, or in 136 control indi-
viduals (data not shown).

To determine whether the three sequence alterations are
located on the same chromosome or on two chromosomes.
we subcloned the PCR product of exon 13 of the gene from
the proband into a TOPO 2 vector and each clone was se-
quenced. Five of eight clones had the triple sequence changes
(Figure 3C), whereas the remaining three showed the wild-
type sequence (Figure 3B). Thus, the three consecutive nucle-

Figure 5. Nucleotide and amino acid sequence of exon 13 of the
GUCY2D. A: Electropherogram of the sense strand of genomic DNA
from the affected proband (III-1) and his father (II-1). showing a
novel heterozygous multiple missense mutation of
¢.2540_2542delinsTCC in exon 13 (p.GIn847_L.ys848delinsLeuGin).
The arrows indicate the position of the mutation. B: The mutation is
absent in the proband’s unaffected mother and sister (11-2 and I11-2).
A subcloned sequence of exon 13 of the gene from the proband (I1I-
1) is normal. C: Another subcloned sequence of exon 13 of the gene
this proband (I11-1) demonstrating all three missense sequence alter-
ations are present on the same chromosome. D: Amino acid sequence
alignment of human RETGC-1, rat GC-E [20]. human RETGC-2
[21], rat GC-F {20}, bovine ROS-GC [22], and mouse GC-E [20].
Asterisks denote residues of identity. and the [alpha]-helical domain
within this region is also indicated. Arrows indicate residues GIn847
and Lys848. which are replaced by Leu and Glu, respectively. in this
family.
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otide sequence alterations were concluded to be presentin one
chromosome.

DISCUSSION

We have identified complex novel missense mutations in the
GUCY2D gene in two members of a Japanese family with
adCORD. The GUCY2D gene encodes retinal guanylate cy-
clase, RetGC-1, which is a photoreceptor-specific enzyme that
is involved in recovery during the phototransduction cascade.
Its function is to synthesize cyclic guanosine monophosphate
{cGMP) from 3'-GMP in the retina and is responsible for in-
creasing the proportion of open ¢GMP-gated channels in the
dark-adapted state.

Our study confirmed the idea that a heterozygous muta-
tion of GUCY2D not involving codon 838 can also be linked
to CORD [17], although it has been reported that codon 838
appeared to be particularly prone to mutational changes in the
heterozygous state.

RetGC-1 is believed to exist in a dimeric state |18}, and
mutations at sites 847-848. as observed in our case, are lo-
cated within the putative dimerization domain of the RetGC-
1 protein [19]. Moreover. alignment of part of this domain of
human RetGC-1 and other members of the subgroup (human
RetGC-1 [20], RetGC-2 [21], rat GC-E [20], GC-F [20], mouse
GC-E [20]. and bovine ROS-GC [22]) showed that 848 and
847 are highly conserved among the sensory cyclase family
members {Figure 5D), suggesting that both mutations are criti-
cal. In support of this, In Silico analysis using SIFT and
PolyPhen, which are Web-based applications that use phylo-
genetic and structural information from homologous proteins,
showed that both sequence alterations might be pathogenic
{data not shown).

It appears that the GUCY2D gene is prone to complex
missense mutations. Thus far, three research groups have re-
ported heterozygous complex missense mutations in the
GUCY2D gene: a triple mutation of
p.Glu837 Arg838 Thr839delinsAspCysMet [23], a complex
mutation of p.Glu837_Arg838delinsAspSer [24.25], and a
complex missense mutation of p.Ile915Thr and p.Gly917Arg
in a Japanese family [26]. It was suggested that the high mu-
tability of the CpG sequences in the GUCY2D gene may ac-
count for the multiple mutations [25]. However, this is not
always the case because the multiple mutations in our case
were not located in the CpG sequence. Thus. the mechanism
responsible for the generation of multiple mutations in the
GUCY2D gene remains unclear.

Electrophysiological examination showed that both the
proband and his father had significant loss of the scotopic sys-
tem in addition to the absence of cone responses with the re-
duction greater in the father. This is consistent with an earlier
idea that a moderate to severe loss of rod function was present
in families with multiple mutations compared with families
with a single mutation showing a marked loss of cone func-
tion with only minimal rod involvement [19.24.25,27]. There-
fore. different mutations in this dimerization domain of the
GUCY2D gene can result in differing severities of CORD,
especially that of the scotopic system.
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Our study demonstrated the potential use of genotyping
microarrays for the simultaneous detection of not only the
causative but also the modifying sequence alterations in one
test. Although the heterozygous ¢. 2101C>T (p.Pro701Ser)
variant was considered to be not causative of the discase be-
cause it was detected in normal control individuals
heterozygously (data not shown), we assume that the heterozy-
gous ¢. 2101C>T might modify the disease phenotype as an
additive effect, with the ¢.2340_2342delinsTCC change be-
ing the major disease-causing change in our family. This is
because homozygous ¢. 2101C>T can be a causative alter-
ation in LCA. Similarly, it is also possible that the other four
silent mutations in the retinal disease causing genes, 4/PL,
GUCY2D, and RPGRIP I, detected as polymorphisms, could
serve as disease modifier genes with another major gene de-
fect occurring simultaneously, even if those changes do not
significantly affect healthy individuals. Moreover, the tech-
nology that allows the examination of multiple genes simuita-
neously might also reveal digenic or multigenic inheritance
mechanism of the CORD [28].

Because the mutation spectrum of GUCY2D in LCA pa-
tients is significantly different from that in CORD patients,
and because the mutation variations in Japanese patients with
CORD possibly may be significantly different from that in
Caucasian patients. we were not able to directly detect the
disease-causing mutations; however. because all of sequence
alterations detected by the microarray were confirmed by in-
dependent direct sequencing, it is likely that the APEX-based
gene lest platform itself provided an accurate and efficient
means for detecting genotypes in each individual [7].

Generating a custom-made APEX-based genotyping
microarray on which almost all of the CORD disease-caus-
ative genes are arrayed by collecting data from the ever grow-
ing Web-based mutation database of GUCY2D, as well as in-
formation on mutations obtained in individual laboratories in
ethnically diverse populations. may eventually offer a unique
and reliable diagnostic tool. This should then enhance the de-
tection rate of not only disease-causative but also of modify-
ing-sequence changes and may accelerate our understanding
of the basic mechanisms underlying CORD and its pheno-
typic variability which facilitate prospective diagnosis.
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Rapid detection of SAG 926delA mutation using real-time

polymerase chain reaction

Shigeo Yoshida,! Yoko Yamaji,' Ayake Yoshida,' Yasuhiro Ikeda,’ Ken Yamamoto,? Tatsuro Ishibashi!

‘Department of Ophthalmology, Graduate School of Medical Sciences. *Department of Molecular Genetics, Medical Institute of

Bioregulation. Kyushu Umiversity, Fukuoka, Japan

Purpose: Mutation 926delA of the arrestin/S-antigen S4G gene is the main cause of Oguchi disease in the Japanese. The
purpose of this study was to develop a rapid diagnostic assay to detect mutations in the S4G gene.

Methods: Two sequence-specific primers and fluorophore-labeled probes for exon 11 of the SAG gene were designed.
and the region spanning the mutations was amplified by polymerase chain reaction (PCR) using the LightCycler detection
system (Roche Diagnostics. Mannheim. Germany). The mutations were then identified by melting curve analyses of the
hybrid formed between the PCR product and a specific fluorescent probe.

Results: We clearly distinguished each SAG genotype (homozygous and heterozygous 926delA and wild type) by the
distinct melting peaks at different temperatures. One thermal cycling required approximately 54 min to process. and the
results were 100% in concordance with the genotypes determined by DNA sequencing.

Conclusions: We have succeeded in developing a rapid method to detect the most frequent mutation in the SAG gene.
This method will help in 1dentifving gene mutations associated with Oguchi disease with a rapid and reliable identifica-

tion or the exclusion of the frequent mutations in the SAG gene.

Qguchi disease is a rare, autosomal recessive form of

congenital stationary night blindness [1]. Patients with Oguchi
disease, usually have normal visual acuity, visual fields, and
color vision. A diagnostic feature of the disorder is a golden
discoloration of the fundus, which disappears in the fully dark-
adapted state and reappears shortly after the onset of light (the
Mizuo-Nakamura phenomenon) [2]. The course of dark-ad-
aptation of the rod photoreceptors is extremely slow in pa-
tients with Oguchi disease while that of the cones appears to
proceed normally [3]. Mutations of the arrestin/S-antigen
(SAG) gene [4] and the G protein-coupled receptor kinase |
(GRK 1) gene [5] have been identified as the causes of Oguchi
disease. Both genes encode an intrinsic rod photoreceptor pro-
tein that participates in the recovery phase of the light trans-
duction cascade.

A homozygous deletion of adenine at nucleotide 926
(926delA: Asn309 (1-bp del)) of the S4(G gene is the main
cause of Oguchi disease in the Japanese {4,6-9]. The 926delA
mutation was formerly referred to as 1147delA, but it has been
renamed in accordance with the recommended nomenclature
system for human mutations [10.11]. The initial report on the
SACG gene mutation identified a homozygous 926delA in five
of six unrelated Japanese patients [4]. Thereatter, the caus-
ative mutations in Qguchi’s disease in six additional Japanese
families were described; all had the same homozygous 926delA
mutation in the arrestin gene [6-9].

Although it has been suggested that there is generally a
clear genotype/phenotype correlation associated with muta-
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tions of the SAG gene, the clinical manifestation of the same
mutation can vary, probably moditied by the stage of the dis-
ease, aging, and/or gene modifiers. In addition, it has been
shown that the 926delA mutation is also responsible for auto-
somal recessive retinitis pigmentosa [12]. Therefore, it would
be useful to develop a rapid diagnostic method to identify the
926del A mutation.

Among the several techniques for molecular genetic mu-
tation screening, the current standard for experimental detec-
tion of mutations is the direct sequencing of DNA samples.
However, gel electrophoresis makes the isolation ot the muta-
tions time-consuming. The LightCycler detection system
(Roche Diagnostics) is a combined microliter volume ther-
mal cycler with an integrated fluorometer [13-15]. This sys-
tem offers a high-throughput. semiautomatic method that per-
mits fast genotyping of mutation sites. By use of real-time
polymerase chain detection followed by melting curve analy-
sis with hybridization probes, the system can be adapted to
become a highly sensitive, rapid, and an efficient alternative
approach to detect mutations. Using this system. we have re-
cently succeeded in developing a method to detect mutations
in the transforming growth factor p-induced (TGFBI) gene
rapidly, and found that the detection system was reliable and
accurate [16].

In this study, we considered whether if this system was
also able to detect a common mutation in the SAG gene.

METHODS
Clinical examinations: Full medical histories were taken from
the patient and his parents. who also received ophthalmologic
examinations, including best-corrected visual acuity, slit-lamp
biomicroscopy. kinetic visual tield examination, fundus ex-





