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The ubiquitin—proteasome system (UPS) is involved in the pathoge-
netic mechanisms of neurodegenerative disorders, including amyo-
trophic lateral sclerosis (ALS). Dorfin is a ubiquitin ligase (E3) that
degrades mutant SOD1 proteins, which are responsible for familial
ALS. Although Dorfin has potential as an anti-ALS molecule, its life in
cells is short. To improve its stability and enhance its E3 activity, we
developed chimeric proteins containing the substrate-binding hydro-
phebic portion of Dorfin and the U-box domain of the carboxyl
terminus of Hsc70-interacting protein (CHIP), which has strong E3
activity through the U-box domain. All the Dorfin-CHIP chimeric
proteins were more stable in cells than was wild-type Dorfin
(Dorfin™T). One of the Dorfin-CHIP chimeric proteins, Dorfin-
CHIP", ubiquitylated mutant SOD1 more effectively than did
Dorfin™" and CHIP in vivo, and degraded mutant SOD1 protein
more rapidly than Dorfin™” does. Furthermore, Dorfin-CHIP"
rescued neuronal cells from mutant SOD1-associated toxicity and
reduced the aggresome formation induced by mutant SOD1 more
effectively than did Dorfin™",

© 2006 Elsevier Inc. All rights reserved.
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Amyotrophic lateral sclerosis (ALS), one of the most common
neurodegenerative disorders, is characterized by selective motor
neuron degeneration in the spinal cord, brainstem, and cortex. About
10% of ALS cases are familial; of these, 10%—20% are caused by
Cuw/Zn superoxide dismutase (SOD1) gene mutations (Rosen et al.,
1993; Cudkowicz et al., 1997). However, the precise mechanism that
causes motor neuron death in ALS is still unknown, although many
have been proposed: oxidative toxicity, glutamate receptor abnorm-
ality, ubiquitin proteasome dysfunction, inflammatory and cytokine
activation, neurotrophic factor deficiency, mitochondrial damage,
cytoskeletal abnormalities, and activation of the apoptosis pathway
(Julien, 2001; Rowland and Shneider, 2001).

Misfolded protein accumulation, one probable cause of neuro-
degenerative disorders, including ALS, can cause the deterioration
of various cellular functions, leading to neuronal cell death (Julien,
2001; Ciechanover and Brundin, 2003). Recent findings indicate
that the ubiquitin—proteasome system (UPS), a cellular function that
recognizes and catalyzes misfolded or impaired cellular proteins
(Jungmann et al., 1993; Lee et al., 1996; Bercovich et al., 1997), is
involved in the pathogenesis of various neurodegenerative diseases,
among them ALS, Parkinson’s disease (PD), Alzheimer’s disease,
polyglutamine disease, and prion disease (Alves-Rodrigues et al.,
1998; Sherman and Goldberg, 2001; Ciechanover and Brundin,
2003). The ubiquitin ligase (E3), a key molecule for the UPS, can
specifically recognize misfolded substrates and convey them to
proteasomal degradation (Scheffner et al, 1995; Glickman and
Ciechanover, 2002; Tanaka et al., 2004).

Dorfin, an E3 protein, contains an in-between-ring-finger
(RING-IBR) domain at its N-terminus. The C-terminus of Dorfin
can recognize mutant SOD] proteins, which cause familial ALS
(Niwa et al., 2001; Ishigaki et al., 2002b; Niwa et al., 2002). In
cultured cells, Dorfin colocalized with aggresomes and ubiquitin-
positive inclusions, which are pathological hallmarks of neurode-
generative diseases (Hishikawa et al., 2003; Ito et al., 2003). Dorfin
also interacted with VCP/p97 in ubiquitin-positive inclusions in
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ALS and PD (Ishigaki et al., 2004). Moreover, formation of this
complex was found to be necessary for the E3 activity of Dorfin
against mutant SODI. These findings suggest that Dorfin is
involved in the quality-control system for the abnormal proteins
that accumulate in the affected neurons in neurodegenerative
disorders.

Dorfin degrades mutant SOD1s and attenuates mutant SOD1-
associated toxicity in cultured cells (Niwa et al., 2002). However,
in Dorfin/mutant SOD1 double transgenic mice, we found only a
modest beneficial effect on mutant SOD!-induced survival and
motor dysfunction (unpublished data). These findings, combined
with the short half-life of Dorfin protein, led us to hypothesize that
the limiting effect of the Dorfin transgene may be a consequence of
autodegradation of Dorfin, since Dorfin can execute autoubiqui-
tilation in vivo (Niwa et al., 2001).

Carboxy! terminus of Hsc70-interacting protein (CHIP) is also an
E3 protein; it has a TPR domain in the N terminus and a U-box
domain in the C terminus. The U-box domain of CHIP is responsible
for its strong E3 activity, whereas the TPR domain recruits heat
shock proteins harboring misfolded client proteins such as cystic
fibrosis transmembrane conductance regulator (CFTR), denatured
luciferase, and tau (Meacham et al., 2001; Murata et al., 2001, 2003;
Hatakeyama et al., 2004; Shimura et al., 2004).

To prolong the protein lifetime of Dorfin and thereby obtain
more potent ubiquitylation and degradation activity against mutant
SOD/1s than is provided by Dorfin or CHIP alone, we generated
chimeric proteins containing the substrate-binding domain of
Dorfin and the UPR domain of CHIP substitute for RING/IBR of
Dorfin. We developed 12 candidate constructs that encode Dorfin-
CHIP chimeric proteins and analyzed them for their E3 activities
and degradation abilities against mutant SOD1 protein in cultured
cells.

Experimental procedures
Plasmids and antibodies

We designed constructs expressing Dorfin-CHIP chimeric
protein. In these constructs, different-length fragments of the C-
terminus portion of Dorfin, including the hydrophobic substrate-
binding domain (amino acids 333-838, 333-700, and 333-454)
and the C-terminus UPR domain of CHIP with amino acids 128-
303 or without amino acids 201-303, a charged region was fused
in various combinations as shown in Fig. 2C. Briefly, Dorfin-
CHIP* B © G " and ! had the C-terminus portion of Dorfin in
their N-terminus and the U-box of CHIP in their C-terminus;
Dorfin-CHIP™ ® © X 'and ' had the U-box of CHIP in their N-
terminus and the C-terminus portion of Dorfin in their C-terminus.

We prepared a pCMV2/FLAG-Dorfin-CHIP chimeric vector
(Dorfin-CHIP) by polymerase chain reaction (PCR) using the
appropriate design of PCR primers with restriction sites (Clal,
Kpnl, and XBal or EcoRl, Clal, and Kpnl). The PCR products
were digested and inserted into the Clal-Kpnl site in pCMV2
vector (Sigma, St. Louis, MO). These vectors have been
described previously: pFLAG-Dorfin®! (Dorfin™T), FLAG-
DorfinC1328/C1358  (DqrfjnC1328/C1358) kT AG.CHIP (CHIP),
PFLAG-Mock (Mock), pcDNA3.1/Myc-SODIWT (SOD1IWT),
pcDNA3.1/Myc-SOD19%%4 (SOD19%4) pcDNA3.1/Mye-
SOD19%R (SOD19%®) pcDNA3.1/Myc-SOD1H4R (SOD1H46Ry,
pcDNA3.1/Myc-SOD197R (SOD19°™®), pEGFP/SOD1VT
(SOD1%.GFP), and pEGFP/SOD19%°® (SOD1%*R_.GFP) (Ishi-

gaki et al., 2004). We used monoclonal anti-FLAG antibody (M2;
Sigma), monoclonal anti-Myc antibody (9E10; Santa Cruz
Biotechnology, Santa Cruz, CA), monoclonal anti-HA antibody
(12CAS; Roche, Basel, Switzerland), and polyclonal anti-SOD1
(SOD-100; Stressgen, San Diego, CA).

Cell culture and transfection

We grew HEK293 cells and neuro2a (N2a) cells in Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal calf
serum (FCS), 5 U/ml penicillin, and 50 pg/ml streptomycin. At
subconfluence, we transfected these cells with the indicated
plasmids, using Effectene reagent (Qiagen, Valencia, CA) for
HEK293 cells and Lipofectamine 2000 (Invitrogen, Carlsbad, CA)
for N2a cells. After overnight posttransfection, we treated the cells
with 1 pM MG132 (Z-Leu-Leu-Leu-al; Sigma) for 16 h to inhibit
cellular proteasome activity. We analyzed the cells 24-48 h after
transfection. To differentiate N2a cells, cells were treated for 48 h
with 15 uM of retinoic acid in 2% serum medium.

Immunological analysis

At 24-48 h after transfection, we lysed cells (4% 10° in 6-cm
dishes) with 500 pl of lysis buffer consisting of 50 mM Tris—HCI,
150 mM NaCl, 1% Nonidet P-40, and 1 mM ethylenediaminete-
traacetic acid (EDTA), as well as a protease inhibitor cocktail
(Complete Mini, Roche). The lysate was then centrifuged at
10,000 < g for 10 min at 4°C to remove debris. We used a 10%
volume of the supernatants as the lysate for SDS-PAGE. When
immunoprecipitated, the supernatants were precleared with protein
A/G agarose (Santa-Cruz). A specific antibody, either anti-FLAG
(M2) or anti-Myc (9E10), was then added. We incubated the
immune complexes, first at 4°C with rotation and with protein A/G
agarose (Roche) for 3 h, after which they were collected by
centrifugation and washed four times with the lysis buffer. For
protein analysis, immune complexes were dissociated by heating in
SDS-PAGE sample buffer and loaded onto SDS-PAGE. We
separated the samples by SDS-PAGE (15% gel or 5%—-20% gradient
gel) and transferred them onto polyvinylidene difluoride mem-
branes. We then immunoblotted samples with specific antibodies.

Immunohistochemistry

We fixed differentiated N2a cells grown in plastic dishes in 4%
paraformaldehyde in PBS for 15 min. The cells were then blocked
for 30 min with 5% (vol/vol) normal goat serum in PBS, incubated
overnight at 4°C with anti-FLAG antibody (M2), washed with
PBS, and incubated for 30 min with Alexa 496 nm anti-mouse
antibodies (Molecular Probes, Eugene, OR). We mounted the cells
on slides and obtained images using a fluorescence microscope
(IX71; Olympus, Tokyo, Japan) equipped with a cooled charge-
coupled device camera (DP70; Olympus). Photographs were taken
using DP Controller software (Olympus).

Analysis of protein stability

We assayed the stability of proteins by pulse-chase analysis
using [*°S] followed by immunoprecipitation. Metabolic labeling
was performed as described previously (Yoshida et al., 2003).
Briefly, in the pulse-chase analysis of Dorfin proteins, HEK293
cells in 6-cm dishes were transiently transfected with 1 pg of
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Fig. 1. Pulse-chase analysis of Dorfin®' and Dorfin®'325/C135S, (A)
Dorfin™T or Dorfin®!328/C1358 ya¢ overexpressed in HEK293 cells. After
overnight incubation, [> S]-labeled Met/Cys pulse-chase analysis was
performed. Cells were harvested and analyzed at 0, 1, or 3 h after labeling
and immunoprecipitation by anti-FLAG antibody (upper panels). To
determine serial changes in the amount of Dorfin" or Dorfin®!32% C1358,
four independent experiments were performed and the amounts of Dorfin VT
and Dorfin®!32S/C1358 yere plotted. The differences between the amounts of
Dorfin™" and Dorfin®'*?€!3% were significant at 1 h (p<0.01) and 3 h
after labeling (p<0.001) (lower panels). Values are the means+SE, n=4.
Statistics were done using an unpaired r-test. (B) Cells overexpressing
Dorfin™T or Dorfin®!32%/C1358 yere treated with different concentrations of
MG132 for 3 h after labeling.

FLAG-Dorfin™" or FLAG-Dorfin®'??%€1358 1 pulse-chase ex-
periments using SOD19%*® N2a cells in 6-cm dishes were tran-
siently transfected with 1 pg of SOD1%**®-Myc or SOD1%%*A Myc
and FLAG-Mock, FLAG-Dorfin, or FLAG-Dorfin-CHIP*. FLAG-
Mock was used as a negative control. After starving the cells for
60 min in methionine- and cysteine-free DMEM with 10% FCS, we
labeled them for 60 min with 150 pCi/ml of Pro-Mix L-[>*S] in vitro
cell-labeling mix (Amersham Biosciences). Cells were chased for
different lengths of time at 37°C. In experiments with proteasomal
inhibition, we added different amounts of MG132 in medium
during the chase period. We performed immunoprecipitation using
protein A/G agarose, mouse monoclonal anti-FLAG (M2), and anti-
Myc (9E10). The intensity of the bands was quantified by
ImageGauge software (Fuji Film, Tokyo, Japan).

MTS assay

We transfected N2a cells (5000 cells per well) in 96-well
collagen-coated plates with 0.15 pg of SODI1®*R.GFP and
0.05 pg of Dorfin, CHIP, Dorfin-CHIP", or pCMV?2 vector (Mock)
using Effecten reagent (Qiagen). Then we performed 3-(4,5-
dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2H-tetrazolium inner salt (MTS) assays using Cell Titer 96

(Promega) at 48 h after incubation. This procedure has previously
been described (Ishigaki et al., 2002a).

Aggregation assay

We transfected N2a cells in 6-cm dishes with 1.0 pg of
SOD1°**®.GFP and 1.0 pg of FLAG-Mock, FLAG-Dorfin,
FLAG-CHIP, or FLAG-Dorfin-CHIP*. Afier overnight incubation,
we changed the medium to 2% FCS containing medium with
15 uM retinoic acid (RA) for differentiation. In the MG132 (+)
group, 1 uM of MG132 was added after 24 h of differentiation
stimuli. After 48 h of differentiation stimuli, we examined the cells
in their living condition by fluorescence microscopy. The
transfection ratio was equivalent (75%) among all groups. Visually
observable macro aggregation-harboring cells were counted as
“aggregation positive” cells (Fig. 7C). All cells were counted in
fields selected at random from the four different quadrants of the
culture dish. Counting was done by an investigator who was blind
to the experimental condition.

Results
Dorfin degradation by the UPS in vivo

We analyzed the degradation speed of FLAG-Dorfin by the
pulse-chase method using [*°S] labeling, finding that more than
half of wild-type Dorfin (Dorfin¥") was degraded within 1 h
(Fig. 1A). This degradation was dose-dependently inhibited by
MG132, a proteasome inhibitor (Fig. 1B). On the other hand, the
RING mutant form of Dorfin (Dorfin®'32%/¢133 $), which lacks E3
activity (Ishigaki et al., 2004), degraded significantly more slowly
than did Dorfin™" (Fig. 1A and Table 1). As shown in Fig. 1A,
Dorfin¥T showed two bands, whereas Dorfin®'325C135S haq 4
single band. This was also seen in our previous study (Ishigaki et
al., 2004) and may represent posttranslational modification.

Construction of Dorfin-CHIP chimeric proteins

It is known that the C-terminus portion of Dorfin can bind to
substrates such as mutant SOD1 proteins or Synphilin-1 (Niwa et
al., 2002; Ito et al., 2003). We attempted to identify the domain of
Dorfin that interacts with substrates. Although there was no
obvious known motif in the C-terminus of Dorfin (amino acids
333-838), its first quarter contained rich hydrophobic amino acids
(amino acids 333-454) (Fig. 2A). Immunoprecipitation analysis
revealed that the hydrophobic region of Dorfin (amino acids
333-454) was able to bind to SOD1°®*R  indicating that this
hydrophobic region is responsible for recruiting mutant SOD1 in
Dorfin protein (Fig. 2B).

To establish more effective and more stable E3 ubiquitin ligase
molecules that can recognize and degrade mutant SODIs, we

Table 1
Serial changes in the amounts of Dorfin"’, DorﬁnC”zs’C”SS, and
Dorfin-CHIP"

0h (%) 1h (%) 3h (%)
DorfinVT 100 43.7+7.0 10344
Dorfin®!325/C1358 100 73.9+13.8 43.7+19
Dorfin-CHIP® 100 89.0+5.7 475+53

Values are the mean and SD of four independent experiments.
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Fig. 2. Construction of Dorfin-CHIP chimeric proteins. (A) Dorfin has a RING/IBR domain in its N-terminus and a substrate-binding portion in the C-terminus. CHIP
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and FLAG-Dorfin derivatives were overexpressed in HEK 293 cells. Cell lysates were immunoprecipitated with anti-myc antibody. Immunoblotting showed that
FLAG-Dorfin derivatives containing Dorfin®>>~*** bound to SODI1%%R Myc, indicating that the hydrophobic region of Dorfin (Dorfin®*3~*%) is essential for
interaction with mutant SODI1 in vivo. (C) Scheme of engineered Dorfin-CHIP chimeric proteins. Three different lengths of C-terminal Dorfin containing the
hydrophobic region of Dorfin (Dorfin®**~#3*) and the U-box domain of CHIP with or without the charged region were fused. (D) Dorfin-CHIP chimeric proteins were
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overexpressed in HEK293 cells. Harvested cells were lysed and analyzed by immunoblotting using anti-FLAG antibody.

Fig. 3. The stability of Dorfin-CHIP chimeric proteins. Pulse-chase analysis using [?3S]-Met/Cys was performed. Dorfin, CHIP, and all the Dorfin-CHIP chimeric
proteins were overexpressed in HEK293 cells and labeled with [>°S]-Met/Cys. Immunoprecipitation using anti-FLAG antibody and SOD-PAGE analysis
revealed the degradation speed of FLAG-Dorfin-CHIP chimeric proteins. The amount of each Dorfin-CHIP chimeric protein was measured by quantifying the
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designed Dorfin-CHIP chimeric proteins containing both the
hydrophobic substrate-binding domain of Dorfin and the U-box
domain of CHIP, which has strong E3 activity (Fig. 2C). We
verified that all of the 12 candidate chimeric proteins were
expressed in HEK293 cells (Fig. 2D).

Expression of Dorfin-CHIP chimeric proteins in cells

The halflives of all the Dorfin-CHIP chimeric proteins were more
than 1 h. In some of these proteins, such as Dorfin-CHIP® %7 and &,
moderate amounts of protein still remained at 6 h after labeling,
indicating that they were degraded much more slowly than was
Dorfin™" (Fig. 3). Repetitive experiments using Dorfin-CHIP"
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yielded a significant difference between the amount of Dorfin" *
and Dorfin-CHIP" at 1 h and 3 h (Table 1).

E3 activity of Dorfin-CHIP chimeric proteins against mutant
SODI

Immunoprecipitation analysis demonstrated that Dorfin and
CHIP bound to mutant SOD19%R in equivalent amounts and that
all of the Dorfin-CHIP chimeric proteins interacted with mutant
SOD1%* jn vivo. Dorfin-CHIP* P & F - K and I hound to the
same or greater amounts of SOD1%®® than did Dorfin, whereas
Dorfin-CHIP® © % H_and ! did not (F ig. 4A, upper panel). None
of the Dorfin-CHIP chimeric proteins bound to SOD1™T in vivo
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Fig. 4. The E3 activity of Dorfin-CHIP chimeric proteins on mutant SODI in vive. (A) In vivo binding assay with both wild-type and mutant SOD1s.
SODI%**R_ or SOD1"-Myc and FLAG derivatives of Dorfin-CHIP chimeric proteins were coexpressed in HEK293 cells. Immunoprecipitation was done
using anti-Myc antibody. Immunoblotting with anti-FLAG antibody revealed that all the Dorfin-CHIP chimeric proteins bound in vivo to SOD1°%*F-Myc but

not to SODIWL

-Myec. Single and double asterisks indicate overexpressed human SODIs and mouse endogenous SODI, respectively. (B) In vivo

ubiquitylation assay in HEK293 cells. SOD1%**®-Myc, HA-Ub, and FLAG derivatives of Dorfin-CHIP chimeric proteins were coexpressed in HEK293 cells.
Immunoblotting with anti-HA antibody demonstrated the ubiquitylation level of SOD1%%**-Myc by FLAG derivatives of Dorfin-CHIP chimeric proteins in
vivo. Arrows indicate 1gG light and heavy chains. Single and double asterisks indicate overexpressed SOD1 and mouse endogenous SOD1, respectively. (C)
In vivo ubiquitylation assay in N2a cells. SOD1%%*®-Myc, HA-Ub, and FLAG derivatives of Dorfin-CHIP chimeric proteins were coexpressed in N2a celis.
Arrows indicate IgG light and heavy chains. Single and double asterisks indicate overexpressed human SOD1s and mouse endogenous SODI1, respectively.
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(Fig. 4A, lower panel). Some Dorfin-CHIP chimeric proteins, such
as Dorfin-CHIP® c, and !, had lower amounts of both sop1WT
and SOD19%°® in the lysates. We performed quantitative RT-PCR
using specific primers for SOD1-Mye, finding that coexpression of
Dorfin-CHIP® © or ! suppressed the mRNA expression of
overexpressed SODI1 gene (Supplementary Fig. 1). Considering
the possibility that these Dorfin-CHIP chimeric proteins might
have unpredicted toxicity for cells by affecting gene transcription
via unknown mechanisms, we excluded them from further
analysis. Other Dorfin-CHIP proteins did not affect SOD1-Myc
gene expression, which validated the comparison among IPs and
ubiquitylated mutant SOD1 in Figs. 4A-~C.

S. Ishigaki et al. / Neurobiology of Disease 25 (2007) 331-341

To assess the effectiveness of the E3 activity of Dorfin-CHIP
chimeric proteins, we did an in-vivo ubiquitylation analysis by
coexpression of SOD1°%F_-Myc, HA-Ub, and Dorfin-CHIP
chimeric proteins in HEK293 cells. We found that Dorfin and
CHIP enhanced the ubiquitylation of SOD19%°® protein and that
the ubiquitylation levels of these two E3 ligases were almost
equivalent. Moreover, Dorfin-CHIPP & F - K and T ubiquitylated
SOD1%%%® more effectively than did Dorfin or CHIP (Fig. 4B).

Performing the same in-vivo ubiquitylation assay using N2a
cells, we observed that the levels of ubiquitylation of SOD193%F by
Dorfin and CHIP were equivalent, as they were in HEK293 cells.
Among Dorfin-CHIP chimeric proteins, only Dorfin-CHIP*
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Fig. 5. Dorfin-CHIP" specifically ubiquitylates mutant SOD1s in vivo. (A) In vivo binding assay with various mutant SOD1s. SOD1Y-Myc, SOD1%%A Mye,
SOD1%5R_ Myc, SOD1H4R.Myc or SOD1%*"-Myc, and FLAG-Dorfin-CHIP* were coexpressed in HEK293 (left) and N2a cells (right). Immunoprecipitation
was done using anti-Myc antibody. Immunoblotting with anti-FLAG antibody showed that both chimeric proteins specifically bound to mutant SOD1s in vivo.
Single and double asterisks indicate overexpressed SOD1 and mouse endogenous SODI, respectively. (B) In vivo ubiquitylation assay. SOD1™-Mye,
SOD1°%3A.Myc, SOD1%%*F_Myc, SOD1P**®_-Myc or SOD1%*"®_Myc, as well as FLAG-Dorfin-CHIP' and HA-Ub, was coexpressed in HEK293 (left) and N2a
cells (right). Immunoblotting with anti-HA antibody showed the specific ubiquitylation of mutant SOD1-Myc by FLAG-Dorfin-CHIP* in vivo. Arrows indicate
IgG light and heavy chains. Single and double asterisks indicate overexpressed human SOD1s and mouse endogenous SOD1, respectively.
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