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that few MAP-2ab-positive cells incorporated Brd-U. In
addition, less than 1% of MAP-2ab-positive cells were
immunoreactive to an intrinsic proliferation associated
marker, Ki67, suggesting that the majority of MSC-Ns
were post-mitotic [40]. .

MSC-Ns were evaluated physiologically using the voltage
clamp method. Seven days after trophic factor induction,
an outwardly rectified K* current was elicited by positive
voltage steps in MSC-Ns, which was dramatically higher
than in untreated MSCs. Concomitantly, resting membrane
potential was lowered. However, the voltage-gated fast so-
dium currents, which represent functional neuron charac-
teristics, could not be observed up to 14 days after trophic
factor induction, suggesting that although MSC-Ns exhibit
a neuron-like morphology and express several neuronal
markers, they are not fully mature neurons but rather are in
a process of maturation. Neurotrophins such as brain-de-
rived neurotrophic factor (BDNF) and nerve growth factor
(NGF) which were administered to MSC-Ns to promote
their maturation, resulted in the generation of sodium cur-
rents and action potentials in the small population of MSC-
Ns. These results indicated that, just after trophic factor
induction, MSC-Ns are neuronal cells in a premature state
and can be induced to become functionally mature neurons
with further administration of neurotrophins [40].

The final population of MSC-Ns are devoid of glial de-
velopment. In fact, few cells positive for glial fibrillary
acidic protein (GFAP, a marker for astrocytes), galacto-
cerebroside, or O4 (markers for oligodendrocytes) were
detected in the final MSC-N population by immunocyto-
chemistry, Western blot or RT-PCR [40]. NSCs/NPCs are
known to differentiate into GEAP-positive glial cells when
the gliogenic factors Hes1/5 and STAT1/3 are activated,
while they differentiate into neuronal cells with activa-
tion of proneural genes Mashl, Mathl, and neurogenin
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Figure 3. Neurogenic and gliogenic factors in neuronal induction.
(a) Summary of neurogenic factors and gliogenic factors in con-
ventional neural development. (b) Expression of factors during the
neuronal induction system.
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(Fig. 3a) [53-55]. To examine the induction event from
MSCs to MSC-Ns, the expression of those genes was ex-
amined by RT-PCR. MSCs initially expressed both neu-
rogenic (Mashl, Mathl, and neurogeninl) and gliogenic
factors (Hes1/5 and STAT1/3), but during the induction
procedure, gliogenic factors were sequentially inhibited
and thus finally converged on neuronal factors (Fig. 3b).
In fact, STAT1/3 was suppressed after the introduction of
NICD and, following trophic factor administration, sup-
pressed Hesl1/5 expression (Fig. 3b) [40].

While it was quite accidental, this method was found to
induce functional post-mitotic neurons without glial cells
from MSCs. Identification of the molecular mechanism
played by NICD in the neuronal induction in MSCs is
underway The application of MSC-Ns to stroke and Par-
kinson’s disease is discussed further on in this review.

Specific induction of skeletal muscle cells from MSCs

During the experiment of neural induction, I reversed
the order of treatment in the control experiment (Fig. 1).
Again, the surpising phenomenon of muscle differentia-
tion could be recognized in the culture dish. The induc-
tion experiment was repeated, and finally a new method
to systematically and efficiently induce skeletal muscle
lineage cells with high purity from a large population of
MSCs was established (Fig. 1) [41].

Human and rat MSCs were first treated with the trophic
factors bFGF, FSK, PDGEF, and neuregulin for 3 days
and then transfected with an NICD expression plasmid
by lipofection followed by G418 selection, and allowed
to recover to 100% confluency (Fig. 4). At this stage,
a large majority of MSCs developed into mononucle-
ated myogenic cells expressing MyoD and myogenin,
while a small population of Pax7(+) satellite cells also
existed. Cells were then supplied with a differentiation
medium of either 2% horse serum, insulin-transferrin-
selenite (ITS)-serum-free medium, or the supernatant of
the original untreated MSCs [41], and the final muscle
lineage population (termed MSC-Ms) was acquired.
MSC-Ms contained three kinds of muscle lineage cells
(Fig. 4). The first population included post-mitotic
multinucleated myotubes, which expressed myogenin,
Myf6/MRF4 (a marker for mature skeletal muscle), and
contractile proteins of skeletal myosin, myosin heavy
chain, and troponin, all related to skeletal muscle char-
acteristics. In fact, some multinucleated cells exhibited
spontaneous contraction in vitro. They were also posi-
tive for p21, a marker for post-mitotic muscle lineage
cells. The second group comprised mononucleated
myoblasts which expressed MyoD and myogenin. The
third group was composed of satellite cells which were
immunopositive for Pax7 and c-MetR, both markers for
muscle satellite cells [41].
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Figure 4. Factors related to myogenesis and the muscle induction
system. There is some similarity between conventional myogenesis
and the muscle induction system. MSCs generate Pax7-positive
precursor cells after trophic factor stimulation and, after NICD
transfection, induce MyoD- and myogenin-positive myoblasts.
Myoblasts fuse to form multinucleated myotubes in differentiation
medium, expressing the marker of maturity, MRF4/myf6. Single
myoblast (yellow) and satellite (green) cells were subjected to
clonal culture. Clonally isolated myoblasts differentiated into myo-
tubes after transplantation, and clonally isolated satellite cells inte-
grated as muscle stem cells which continued to contribute to muscle
regeneration in the host muscle tissue.

However, it was critical to determine if these MSC-derived
neuronal and skeletal muscle cells could integrate into
host tissue and function as genuine neurons and muscle
cells. The effectiveness of these induced cells was veri-
fied by a transplantation experiment using animal models
of stroke, Parkinson’s disease and muscle dystrophy.

Application of MSC-Ns to a stroke model

MSC-Ns were transplanted into the infarction area in a
left middle cerebral artery occlusion (MCAO) rat model].
The MCAO procedure was somewhat modified in our
study, and circling to the right and adduction of the right
forelimb when lifted up by the tail were used as signs
of successful left MCAQ. Seven days after reperfusion,
MSC-Ns were transplanted into the nonnecrotic brain pa-
renchyma by stereotaxical injection into the left cerebrum
at three locations. The total number of transplanted cells
was approximately 40,000-50,000. The control group re-
ceived only PBS without cell transplantation [56].

MSC-Ns-transplanted rats showed significant recovery,
compared with controls, of gross vestibulomotor function
(beam balance test), sensorimotor function (limb-placing
test), and cognitive function (Morris water maze test) (p <
0.01) after 28 days. Histologically, there was no statistical
difference in the mean infarct volume between MSC-Ns-
transplanted and the control group (p > 0.05). However,
green-fluorescent protein (GFP)-labeled transplanted
cells migrated from the injection site into the ischemic
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boundary area and integrated mainly into the hippocam-
pus and extended neuritis. Most transplanted cells ex-
pressed the neuronal markers neurofilament, MAP-2ab,
and beta3-tubulin, while very few cells were positive for
GFAP. The reason why cognitive function showed sig-
nificant recovery may partly be due to the integration of
MSC-Ns into the hippocampus [56].

These results showed that MSC-Ns are effective in the
amelioration of the rat stroke model. The potential of
other kinds of stem cells, such as NSCs and umbilical
cord blood cells, in stroke has been reported [57, 58].
These reports indicate that only a small fraction of NSC
(1-3% of the grafted cells survived and 3-9% expressed
NeuN) or human umbilical cord blood cell (1-2% of in-
jected cells survived and 2-3% were. positive for NeuN
and MAP-2) populations are expected to integrate into
the host brain and differentiate into neurons. Our study
showed that approximately 30—45% of MSC-Ns survived
in the host brain 1 month after the transplantation and a
large fraction expressed the neuronal markers. Thus, the
specific induction of neuronal cells from MSCs has great
potential in cell transplantation therapy for stroke.

Application of MSC-Ns
to the Parkinson’s disease model

For Parkinson’s disease, transplantation of dopaminergic
neurons is believed to be effective; however, cells com-
mitted to the expression of certain transmitters account
for lower ratios in MSC-Ns [40]. For example, the per-
centage of tyrosine hydroxylase (TH)-positive cells was
approximately 4%, and that of other transmitters such as
acetylcholine, glutamate, and substance P fell within a
range of 1-3%. As glial cell line-derived neurotrophic
factor (GDNF) is known to be involved in the genera-
tion and development of midbrain dopaminergic neurons
[59], it was administered to MSC-Ns and finally resulted
in nearly 40% of MSC-Ns becoming TH-positive cells
(Fig. 2). Furthermore, other dopaminergic markers, Nurr-
1, Lmx1b, Enl, and Ptx3, were elevated (Fig. 3b). The
production of dopamine by these TH-positive cells was
confirmed by high-performance liquid chromatography
(HPLC); high-potassium medium was administered to
the culture and subjected to HPLC using a reverse-phase
column and an electrochemical detector system, showing
that these cells released dopamine to the culture medium
in response to high-K* depolarizing stimuli. These results
indicate that functional dopamine-producing neuronal
cells could be induced effectively from MSCs [40].

To explore the ability of induced dopaminergic neurons
to survive and function in the host brain, both rat and
human cells were transplanted separately into the stria-
tum in a rat model of Parkinson’s disease. Unilateral ad-
ministration of 6-hydroxy dopamine (6-OHDA) into the
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medial forebrain bundle is known to selectively destroy
dopaminergic neurons in the substantia nigra, leading to
quantifiable rotational behavior and providing a useful
and commonly used model of Parkinson’s disease [60].
Apomorphine-induced rotational behavior (mean rota-
tion index = the mean rotation number in post-/pre-graft-
ing) was examined every 2 weeks up to 10 weeks follow-
ing cell implantation. 1 X 10° cells were grafted into the
ipsilateral striatum. The control group received no graft-
ing after 6-OHDA administration, which provoked a ro-
tational bias away from the lesioned side which persisted,
whereas rats grafted with TH-MSC-N rat-induced dopa-
minergic neurons demonstrated substantial recovery from
rotation behavior up to 10 weeks (p < 0.01). The mean ro-
tation index was 1.3 £ 0.1 in the control group and 0.3 +
0.1 in induced dopaminergic neuron-transplanted rats. In
addition, nonpharmacological behavior tests, the adjust-
ing step test and paw-reaching test, were performed. Four
and 6 weeks after grafting, these rats showed significant
improvement in both step adjustment and paw-reaching
tests (p <0.01). Immunohistochemically, grafted GFP-
labeled, induced dopaminergic neurons were found to
migrate and extend beyond the injected site, and approxi-
mately 30% of cells remained in the striatum 10 weeks
after transplantation. TH-positive processes extended to
the outside of the implantation zone. The grafted stria-
tum showed migration of GFP-positive transplanted cells
that expressed the markers of neurofilament, TH and
dopamine transporter (DAT). Among GFP-labeled cells,
TH- and DAT-positive cells were approximately 45% and
30%, respectively. In contrast, most of the GFP-labeled
cells were negative for GFAP and O4, consistent with the
in vitro data that none of the induced cells were positive
for these glial markers. Grafted animals were followed
up to 16 weeks and no tumor formation was observed in
the brain [40].

Human induced dopaminergic neurons were similarly
transplanted into the striatum of 6-OHDA-lesioned rats.
Animals were immunosuppressed with FK 506 daily, and
rotational behavior was recorded 4 weeks after cell trans-
plantation. Grafting resulted in significant improvement
in rotational behavior [40].

In summary, the additional administration of GDNF to
MSC-Ns can efficiently induce TH-positive, dopamine-
producing cells, and functional improvement could be
achieved when grafted in a rodent mode! of Parkinson’s
disease.

Application of MSC-Ms to a muscle-degenerative
disease model

As induced multinucleated myotubes in MSC-Ms are al-
ready post-mitotic, single cells of MyoD-positive myo-
blasts and Pax7-positive satellite cells were subjected to
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clonal culture (clonal MSC-Ms) to exclude non-muscle
cells, and were transplanted ‘into muscle-degenerative
disease models [41]. '

Human clonal-MSC-Ms were transplanted into immuno-
suppressed rats whose gastrocnemius muscles were dam-
aged with cardiotoxin pre-treatment. Cells were labeled
with a GFP-encoding retrovirus and then transplanted by
local injection (1.i.) into muscles or by intravenous injec-
tion (i.v.). Two weeks after transplantation, GFP-labeled
cells incorporated into newly formed immature myofi-
bers exhibited centrally located nuclei in both l.i.- and
i.v.-treated animals. Four weeks after transplantation,
GFP-positive myofibers exhibited mature characteristics
with peripheral nuclei just beneath the plasma membrane.
Functional differentiation of grafted human cells was also
confirmed by the detection of human dystrophin in GFP-
labeled myofibers, indicating that clonal MSC-Ms are
able to incorporate into damaged muscles and contrib-
ute to regenerating myofiber formation, regardless of the
transplantation method [41].

Clonal MSC-Ms contained Pax7-positive satellite cells
which integrated into the satellite cell position after trans-
plantation, namely the plasma membrane and the basal
lamina in between [61]. In general, muscle satellite cells
are known to contribute to the regeneration of myofiber
formation upon muscle damage [1]. To confirm the con-
tribution of transplanted satellite cells as in vivo satellite
cells to muscle regeneration, the following experiment
was performed. Four weeks after the initial transplanta-
tion of human clonal MSC-Ms 1.v., cardiotoxin was re-
administered into the same muscles without additional
transplantation. Two weeks after the second cardiotoxin
treatment (6 weeks after initial transplantation), many re-
generating GFP-positive myofibers with centrally located
nuclei were observed. This implies that, upon transplan-
tation of clonal MSC-Ms to the muscles of patients, those
retained as satellite cells should be able to contribute to
future muscle regeneration [41].

Transplantation of muscle lineage cells is a potential thera-
peutic approach for muscle degenerative disorders such as
Duchenne muscular dystrophy (DMD), a severe, progres-
sive, muscle-wasting disease that results from a mutation
in the dystrophin gene. The mdx-mouse, an animal model
for DMD, was used for this experiment. The mdx-mouse
is characterized by the absence of the muscle membrane-
associated protein, dystrophin. Human clonal MSC-Ms
were transplanted into cardiotoxin-pre-treated muscles of
mdx-nude mice. Immunohistochemistry revealed the in-
corporation of transplanted cells into newly formed myo-
fibers which expressed human dystrophin [41].

Cell transplantation therapy also offers hope for the treat-
ment of intractable muscle degenerative disorders. In-
deed, ES cells, stem cells derived from adult and prenatal
muscle tissues, and myogenic stem cells from bone mar-
row are powerful candidates for transplantation therapy
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[16-19, 62]. Compared to these muscle stem cell sys-
tems, the MSC system offers several important advan-
tages. This induction system does not depend on a rare
stem cell population, but can utilize the general popula-
tion of adherent MSCs, which can be easily isolated and
expanded. Thus functional skeletal muscle cells can be
obtained within a reasonable time course on a therapeutic
scale. In the case of MSCs derived from inherited muscle
dystrophy patients, genetic manipulation is possible after
the isolation and expansion of MSCs. At present, there
are no effective therapeutic approaches for muscle dys-
trophy. Hopefully, this MSC differentiation system may
contribute substantially to eventual cell-based therapies
for muscle disease.

Conclusions

MSCs provide hopeful possibilities for clinical applica-
tion, since they can efficiently expand in vitro and a thera-
peutic scale of induced cells are available. In addition,
transplantation of MSC-derived cells should pose fewer
ethical problems than stem cells, since bone marrow
transplantation has already been widely performed. As
MSCs are easily obtained from patients or marrow banks,
autologous transplantation of induced cells or transplan-
tation of induced cells with the same HLA subtype from a
healthy donor may minimize the risks of rejection. Need-
less to say, the bone marrow should at least be ‘normal
and healthy’ for transplantation.

Even though transplantation of untreated MSCs is partly
supportive in various kinds of degenerative models, prob-
ably due to trophic supply, it is desirable to develop a sys-
tematic induction system to obtain large amounts of pur-
poseful cells, from the viewpoint of cell-based therapy.
Obviously, induced cells must be confirmed to be mor-
phologically and physiologically functional. Moreover,
the practical application to human degenerative diseases
depends on the ability to control their differentiation with
high efficiency and purity into functional cells. As men-
tioned, 107 MSCs can be harvested from 20-100 ml of
bone marrow aspirate within 2-3 weeks. If an induction
procedure takes the shortest and most perfect course, 107
MSCs give rise to nearly 107 neurons within 3 weeks
and 107 skeletal muscle cells within 5 weeks, taking
into account the time necessary for NICD introduction,
G418 selection, and trophic factor administration. There-
fore, these induction systems may be useful, since large
amounts of purposeful cells can be obtained from the
patient’s bone marrow for transplantation therapy within
a reasonable time course.

However, there are several problems that need to be solved
in the future. First, while there have been few reports of
tumor formation after transplantation of untreated MSCs,
further studies are needed to ensure the safety and ef-
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Figure 5. Schematic diagram of an ‘auto-cell transplantation sys-
tem’ using MSCs. Neurons, Schwann cells, and skeletal muscle
cells induced from patient’s MSCs are transplanted back to their
owner. Such a self-regenerative system avoids ethical issues and
immunorejection.

ficacy of manipulated MSCs over a long period, using
primates and nude-mice/rats. In fact, recent reports have
raised the possibility of transformation in the long-term
cultivation of MSCs [63, 64]. Second, as the potential dif-
ferentiation may differ with age, individual, race, and sex,
each of these characteristics must be examined in the fu-
ture. Finally, MSCs have been shown to be heterogeneous
in terms of growth kinetics, morphology, phenotype, and
plasticity. With the development of specific markers and
detailed characterization of heterogeneous, generally ad-
herent MSCs, their properties and plasticity can be stud-
ied and defined with more accuracy.

Notch-Hes signaling is known to inhibit neuronal and
myogenic differentiation in conventional development
[47]. However, in our system, NICD introduction accel-
erated the induction of neuronal and skeletal muscle cells
from MSCs. Although our results appear inconsistent
with previous work, they do not refute the known role
of Notch-Hes signals during normal development. In our
previous report, JAK/STAT inhibitor administration and
constitutive active STAT1/3 transfection revealed that
downregulation of STATs was tightly associated with
NICD-mediated neuronal induction in MSCs, whereas
Hes, downstream of Notch, was not involved in the in-
duction event [40]. Skeletal muscle induction was also re-
vealed to be independent of Hes1/5 and the conventional
Notch signaling pathway [41]. Thus, our results suggest
distinct cellular responses to Notch signals; for example,
the repertoire of second messengers and active factors in
MSCs may well be different from conventional neural
stem cells and myogenic precursor cells, or the suscept-
ibility of MSCs to the Notch signal is probably differ-
ent from that of known neuronal and myogenic precursor
cells. Thus, further studies are needed to identify the fac-
tor involved in this phenomenon.
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Since MSCs can be obtained from patients, it is possible
to establish an ‘auto-cell transplantation system’ using
MSCs (Fig. 5). To realize this ideal, it is necessary to de-
velop the regulatory system of differentiating MSCs into
cells with a purpose. Our method would be a possible way
to regulate MSC differentiation into functional Schwann
cells, neurons and skeletal muscle cells which will be ap-
plicable to neuro- and muscle-degenerative diseases.
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