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provide therapeutic benefits in humans even when given
well after the ischemic episode.

Intriguingly, recent studies suggest that Zn®* has multi-
ple roles in this delayed selective neurodegeneration. In
an 2 vitro shice model of acute ischemia, addition of either
an extracellular Zn®* chelator or a Ca®* permeable AMPA
channel blocker decreased both Zn?* accumulation and
consequent neuronal injury {21]. In an iz vivo animal
model, addition of an extracellular Zn®* chelator either
before or several days (but not several hours) after ische-
mia afforded neuroprotection. The early application of
the chelator attenuated the downregulation of GluRz2,
suggesting a role for Zn* in signaling the increase in Ca**
permeable AMPA channels. Whereas, late application of
chelator, after Ca®* permeable AMPA channel numbers
had already risen, attenuated the late rise in intracellular
Zn** associated with injury, suggesting that Ca®* perme-
able AMPA channel dependent intracellular Zn®* accu-
mulation contributes to the delayed injury {49°].

Conclusions

Recent findings, reviewed above, suggest that increasing
the number of Ca®" permeable AMPA channels might
contribute crucially to neurodegeneration in sporadic
ALS and ischemia. The increase in Ca®* permeable
AMPA channels in these conditions could be achieved
through different mechanisms: deficiencies in GIuR2
mRNA editing in sporadic ALS or decreased levels of
GluR2 mRNA in ischemia (Figure 2). In addition, basal
levels of Ca** permeable AMPA channels appear to
contribute to familial ALS associated with SOD1 muta-
tions. Ca®* permeable AMPA channels are probably also
involved in other conditions including epilepsy and Alz-
heimer’s disease, in which decreases in levels of GluR2
have been reported.

There are presently no selective Ca** permeable AMPA
channel antagonists available for human trials or even for
systemic administration in animals. Yet, the fact that Ca**
permeable AMPA channels only constitute a minority of
AMPA channels on most neurons makes them particu-
larly attractive targets for therapeutics, as it could be
possible to block much of the current through these
channels without causing the degree of functional impair-
ment that would accompany a comparable level of
NMDA or total AMPA channel blockade. Furthermore,
because an increase in Ca”* permeable AMPA channel
number might be integral to their pathological roles in
certain conditions, in addition to the development of
pharmacological antagonists, strategies for reducing their
numbers or preventing their upregulation might also
provide useful avenues for therapy.

Update
In a recent study [51°°], Peng ¢ /. report that forebrain
ischemia in adult rats selectively disrupts Q/R site

editing and the expression of GluR2 subunit mRNA
in vulnerable neurons. The authors provide further evi-
dence that the editing defect contributes to the conse-
quent neurodegeneration of CA1 HPNs. Thus, these
data suggest that alterations of GluR2 editing might
not be unique to ALS, and that this mechanism might
also contribute to delayed neurodegeneration after tran-
sient ischemia.
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Aging of Complex Heart Rate Dynamics

Zbigniew R. Struzik, Junichiro Hayano, Rika Soma, Shin Kwak, and Yoshiharu Yamamoto

Abstract—We reveal unexpected origins of age induced depar-
ture from 1/ f-type temporal scaling in healthy human heart rate.
Contrary to the widely established view, we provide evidence that
age induced dynamical imbalance in the autonomic control is not
due to the emergent functional dominance of the sympathetic
nervous system (SNS), but due to emerging (age dependent) rela-
tive dynamic dominance of the parasympathetic nervous system
function. In particular, we demonstrate that the age induced al-
terations of healthy heart rate dynamics asymptotically resemble
those in so-called primary autonomic failure with neurogenic SNS
dysfunction and in other neurodegenerative disorders, including
Parkinson’s disease even without known autonomic abnormalities.
Based upon this, we propose a novel picture of “autonomic aging,”
characterized by an insufficiency of the SNS function to cope
dynamically with various environmental stimuli.

Index Terms—Aging, autonomic nervous system, heart rate vari-
ability, multifractals, 1 / f noise.

I. INTRODUCTION

EALTHY human heart rate has been known to display

fairly complex dynamics, exhibiting long-range temporal
correlations [1], [2], non-Gaussianity of the increment’s proba-
bility density function [1], as well as multifractality [3], [4], all
reminiscent of real-world complex signals in physics, e.g., fluid
turbulence [5], [6] and critical phenomena [7]-[9]. Physiologi-
cally, the origin of the complex dynamics of heart rate has been
attributed to an intricate balance between the two branches of the
autonomic nervous system: the parasympathetic (PNS) and the
sympathetic (SNS) nervous systems, respectively, decreasing
and increasing heart rate [1], [2], [4], [10]. In fact, Struzik et
al. [11] recently reported that the disease-induced relative dys-
function of either PNS or SNS results in more correlated heart
rate dynamics, but only the PNS dysfunction leads to reduced
multifractality.

Although it has been conjectured that there is both a func-
tional and a structural loss of complexity due to aging [12],
the effect of aging on complex heart rate dynamics in humans
has not been fully elucidated. Heart rate responses to selective
and/or combined autonomic blockades of PNS and SNS {13},
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[14], plasma concentration of the sympathetic neurotransmit-
ters [15], and the magnitude of respiratory modulation of heart
rate [16]-[19], one of the robust indicators of PNS function
[20], [21], all exhibit changes compatible with the increased
SNS and decreased PNS function with aging. This might lead
to the conjecture that aging is associated with increased long-
range correlation, as demonstrated previously [22]-[24], and
with decreased multifractality, as have been observed in con-
gestive heart failure (CHF) [3] with relative SNS augmentation
[25], [26] and PNS dysfunction [25], [27].

Here, however, we present an unexpected observation
regarding the complex dynamical interaction between two
branches of the autonomic control system, namely that norma-
tive aging is associated with increased long-range correlation
but with preserved multifractality. The direction of change is
consistent with that observed in patients suffering from central
SNS dysfunction due to primary autonomic failure (PAF) [28],
[29], not with the direction observed in CHF. We believe that
our findings will give rise to a novel picture of “autonomic
aging” as a progressive loss of the SNS function and its ability
to cope dynamically with various environmental stimuli.

0. DATA

We analyze 115 healthy subjects (26 women and 89 men; ages
16-84 years) without any known disease affecting autonomic
control of heart rate. They underwent ambulatory monitoring
during normal daily life, and the long-term heart rate data
were measured as sequential heart interbeat intervals. The total
number of whole-day data sets is 181, as most of the subjects
were examined for two consecutive days, with each data set
containing on average 10° heartbeats. For each subject, on
an individual basis, we have excluded the possibility of any
bias in the resuits caused by two consequtive days of heart
rate recording (p = 0.54 by paired t-test for the individual
daily Hurst exponent).

Details of therecruitment of the subjects, screening formedical
problems, protocols and the data collection and preprocessing are
described in [30]. We analyzed both whole-day data containing
periods of sleep and waking and daytime data, with essentially
identical results. In this paper, we present only daytime results.

As a reference, we describe the results previously obtained
for 24-hour ambulatory heart rate dynamics of 10 PAF patients
(3 women and 7 men) aged 54-77 years (mean age 64.8) [28],
containing on average 10° heartbeats [11]. The selection of the
subjects and the collection procedures for this data are described
in{11]. PAFisclinically characterized as autonomic dysfunction,
including orthostatic hypotension, impotence, bladder and bowel
dysfunction and sweating defects, which primarily result from
progressive neuronal degeneration of unknown cause. The main
pathological finding related to autonomic dysfunction in PAF is
severe loss of preganglionic and/or postganglionic sympathetic

0018-9294/$20.00 © 2006 IEEE
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neurons [29], and it is, thus, considered that this group serves
as an example of relative and neurogenic SNS dysfunction.

Further, we also include the results for 12 CHF subjects (3
women and 9 men, with ages between 22 and 71, average 60.8
years) [11]. For details of the data acquisition and pre-pro-
cessing see [3].

Finally, in a combined group with PAF patients, we also use
additional 24-hour ambulatory heart rate data obtained from 5
patients, including four Parkinson’s disease (PD) patients and
one patient (74 years, male) showing “pure akinesia,” one of the
clinical features of Parkinsomism, without known autonomic
abnormalities, containing on average 10° heartbeats. All the PD
patients had bradyKinesia and rigidity-predominant PD with ap-
parent L-dopa responsiveness. There were 4 men and 1 woman,
with a mean age of 67.2 years (range 56 to 74 years) and the
mean disease duration was 11.2 years (range 3 to 24 years). All
the patients received regular antiparkinsonian medication before
and during the test days. The data, 24-hour heartbeat intervals
of the PD patients during a hospital stay, were collected using a
portable ambulatory monitor [31].

I. ANALYSIS METHODS
A. DFA Analysis of Aging

To evaluate the degree of long-range temporal correlation, the
scaling exponent (the Hurst exponent H) has been calculated
by using (first-order) detrended fluctuation analysis (DFA) [32],
[33], as described below.

We have (arbitrarily) selected a number of age groups
to assess mean scaling per group. The groups chosen are
less than forty (40-), forty to sixty (40-60), sixty to eighty
(60-80), and above eighty (80+) years. We have ana-
lyzed the scaling behavior of the mean quantity (group
mean) Mpra(s) = L~1Yp, logo(DSks(s)), where
! indexes time series in the group. For each scale/reso-
lution s as measured by the DFA window size, and for
each integrated, normalized heartbeat interval time series
{-Fz(l) = T‘l—l Z;’_—_l f}l)}(i:l,...,1\7[),(l=1,...,L)9 D](Jl%'A(s) (tOtal
scalewise detrended fluctuation) has been calculated

K((s) 5

> (AP - Pu) -

k=1

Pr(s) denotes the local least-squares linear fit in each DFA
window %, and K () (s) is the number of windows per scale s. In-
tegration of the input heartbeat intervals is performed according
to standard DFA practice, and the norm used is the elapsed time
T = Zi\__fl fz-(l). The normalization applied allows us to com-
pute group averages of records of different duration, and to com-
pare the mean absolute levels of variability per resolution s; for
each resolution s, the quantity MDFA(S) measures the (loga-
rithmic) scalewise mean of the normalized DFA (the sum of the
logarithm of detrended fluctuations for each group of time series
at this resolution). The Hurst exponent was computed from the
log-log fit to the group averaged DFA values over the selected
range of scales (20—4000 beats).

1 _ 1
Dika(s) = 57", KO0

B. Multifractal Analysis of Aging

We have also tested the multifractal properties of the data
using the wavelet-based multifractal methodology [34]. We

apply the second derivative of the Gaussian to the data as the
mother wavelet before calculating the partition function Zg(s),
defined as the sum of the gth powers of the local maxima of
the modulus of the wavelet transform coefficients at scale s.
The power law scaling of Z,(s) for 13 < s < 850 then yields
the scaling exponents 7(q) (the multifractal spectrum). The
multifractal spectrum is related to the singularity spectrum
D(h), where D(h,) is the fractal dimension of the subset of
the original time series characterized by a local Hurst exponent
h = h, [35], through a Legendre transform D(h) = gh — 7(q)
with h = dr(q)/dq.

In order to provide group mean values, we have analyzed
the scaling behavior of the mean quantity Mwram(g,s) =
LY E 10g10(Z 8 0001 (4, 9)), where [ indexes time series
in the group. For each scale/resolution s as measured by the
wavelet size, and for each integrated, normalized heartbeat in-
terval time series {Fi(l) =T 23':1 fjw}(i=1,...,.r‘\"z),(lzl,...,L)’
Z\(,i,)TMM (g s) (the multifractal partition function) has been cal-
culated

KD (5)

28 (e, 5) = > (Wka (s)(F (l)))q-

k=1

WT o, (8)(F®) denotes the kth maximum of the modulus of
the wavelet transform W7 of the time series F(), and K (s)
is the number of maxima per scale s. As in the case of the
DFA analysis above, the norm used is the elapsed time T; =
T £

Similarly to the case of the mean DFA analysis, the nor-
malization applied allows us to compute group averages of
records of different duration; for each resolution s, the quantity
MWTMm(S) measures the (logarithmic) scalewise mean of
the normalized partition function Z(g, s) parameterized with
the moment g. 'r(q) is, thus, obtained by linear fit to the mean
quantity Mwram(s) versus log(s). The Legendre transform
is implemented by a linear fit in the 7(q) domain; from 100
samples of ¢ in the range —15 < ¢ < 15, one-quarter, i.e.,
25, of the available points is used to obtain ~(q) as a function
of g, as the best local linear fit to 7(q), centered at q. D(h{q))
is then calculated in a straightforward way. Note that only the
useful range —6 < ¢ < 6 is shown in the 7(g) plots and used
for D(h) plots.

IV. RESULTS

In Fig. 1, we show the dependence of the estimated scaling
exponent H for the range of resolutions used (16-4000 beats)
on age for each healthy subject. A steady increase in H can
be observed, consistent with previously reported findings using
Fourier methods of scaling exponent estimation {19], [24] and
DFA for age groups of young and old [227-[24].

In Fig. 2, we show the scaling behavior of the
logo(Dpra(s)) versus logyo(s) for the different age groups.
We identify a systematic tendency of the decrease in scalewise
variability with aging for the healthy group. This holds for the
entire compared resolution range of 44000 beats as measured
by the DFA window size s.

Although the extremely low PAF variability is not reached
by healthy adults even in the group over the age of 80 years old,
the levels of variability at the highest resolutions (and lowest
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Fig. 1. Typical age-related departure from 1/ f scaling for healthy heart rate
showing a steady increase. First-order DFA, i.e., linear trend removal [32}, is
used for the estimation of the Hurst exponent H from the daytime records of
heartbeat intervals of healthy subjects.
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Fig.2. Scale dependency of the mean detrended fluctuation Dryra () for four
age groups of healthy subjects and for the PAF patients. Detrended fluctuations
have been calculated with first-order DFA, i.e., linear trend removal [32]. The
vertical bars represent the standard deviations of the group means.

beat numbers) remain relatively well conserved for all ages, re-
flecting the preservation of high-frequency fluctuations of heart
rate, indicative of the intact PNS function [20], [21], in the elder
groups as well as in the PAF patients. This contrasts with the re-
ported [11] considerable decrease in CHF variability at all res-
olutions, including variability decrease the highest resolutions
(presumably due to the decreased PNS function).

Consistent with the results depicted in Fig. 1, we confirm the
age-related systematic (and substantial) increase in the Hurst ex-
ponent H of the analyzed age groups from 1/f corresponding
with H = 0.0 to H > 0.2 for advanced age, i.e., toward the
value which is both observed in the relative PNS dysfunction
by CHF and in the PAF induced relative SNS dysfunction {11]
(Fig. 2). This effect has been observed for the entire range of
resolutions with almost consistent scaling, which for all groups
analyzed stretches from about 20 beats up to the maximum res-
olution used of 4000 beats (DFA window size).

From the above established facts, it would be difficult to de-
termine which branch of the autonomic nervous system suffers
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due to aging. Affecting the PSN/SNS balance by both the rela-
tive and neurogenic SNS dysfunction by PAF and by the relative
PNS dysfunction by CHF results in a strong decrease in scale-
wise varjability and an increase of the scaling exponent H. The
only indicator of the intact PNS function in the above is the rel-
atively well-conserved variability at the highest resolutions, i.e.,
at the lowest beat numbers, as also suggested in a previous study
[16].

Therefore, in order to provide further evidence for the pre-
served PNS function with aging, we have also tested the mul-
tifractal properties of the data, shown to be observed only with
the functional PNS [11], using the wavelet-based multifractal
methodology [34].

We obtain a comparable, wide singularity spectra D(h) for
all the healthy age groups, indicative of preserved multifrac-
tality with advancing age (Fig. 3). While multifractality has been
shown to be nearly lost in the case of CHF patients [3], it has re-
cently been shown to be maintained in the case of PAF patients
[11]. Thus, it seems that autonomic aging mimics PAF, but not
CHF with the SNS predominance, and we have obtained sur-
prising evidence that the age induced dynamical imbalance in
the autonomic control may not reflect the relative increase in
SNS function but rather be related to a dynamical and relative
decrease of it.

V. EMERGING PICTURE OF AUTONOMIC AGING

At present, the mechanism for this observation is unknown,
but two possibilities exist. First, the elderly are known to show
a decrease in vasoconstrictive responses to sympathetic stim-
ulation [36], which would lead to functionally similar effects
to PAF with neurogenic SNS dysfunction. Second, age-related
degeneration in the brain stem dopaminergic, as well as nora-
drenergic neurons [37], and the resultant direct and/or indirect
(through the limbic system) effects on the medullary cardio-
vascular centers may be responsible for the similarity in the
heart rate dynamics of the elderly to those of PAF patients,
and possibly of PD patients even without autonomic failure.
Aging is indeed known to be associated with manifestations of
signs of Parkinsomism [38], of which neuronal degeneration in
the dopaminergic substantia nigra and the noradrenergic locus
coeruleus is the main neuropathology [39].

To confirm the second possibility, we created a combined
group of “simulated autonomic aging” by mixing the data from
the PAF group with the heart rate data obtained from 5 patients,
including four PD patients and one patient (74 years, male)
showing “pure akinesia,” one of the clinical features of Parkin-
somism, without known autonomic abnormalities.

We verify that mixing PD patients without known autonomic
abnormality with PAF patients also results in a consistent in-
crease in the DFA slope greater than that of the oldest age group
of over eighty years of age, see Fig. 4. As shown in Fig. 5, this
new “simulated autonomic aging” group shows a systematic
increase in the DFA slope, even when compared with the
age-matched healthy controls, with preserved multi-fractality
(Fig. 6). This suggests that these neurodegenerative diseases
have a similar effect on heart rate dynamics, i.e., increased Hurst
exponent and preserved multifractality, to that of normative
aging. It is of note that both PAF [29] and PD [40] are known
to have sympathetic dysfunction, consistent with a scenario
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Fig. 4. Scale dependency of the mean detrended fluctuation Drra (s) for the
80+ age group of healthy subjects and for both the PAF patients group and the
“simulated autonomic aging” group (PAF + PD). Detrended fluctuations have
been calculated with first-order DFA, i.e., linear trend removal [32]. The vertical
bars represent the standard deviations of the group means.

of decreased SNS function as a manifestation of autonomic
aging. It may be important to verify whether PD patients alone
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Fig.5. Scale dependency of the mean detrended fluctuation Dnypa (5‘) for both
the PAF patients group and the “simulated autonomic aging” group (PAF+PD),
compared with healthy subjects matched by age and gender with the patients
in the two groups. Detrended fluctuations have been calculated with first-order
DFA, i.e., linear trend removal [32]. The vertical bars represent the standard
deviations of the group means.

display “autonomic aging” tendencies. We consider this a likely
possibility, however, it requires further research due to
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the limited number of patients in the present study. If verified,
this might provide an additional diagnostic window for this
prevalent disorder.

VI. CONCLUSION

The systematic increase in long-range correlation and pre-
served multifractality of heart rate dynamics with aging, as well
as in large-scale brain stem neurodegenerative disorders with the
sympathetic dysfunction, suggest that aging is associated with
a lack of SNS function, rather than the sympathetic overexcita-
tion seen in, e.g., CHFE, to cope dynamically with various envi-
ronmental stimuli.
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Power-Law Temporal Autocorrelation of Activity Reflects
Severity of Parkinsonism
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Abstract: We aimed to obtain a reliable, objective scale rep-
resenting disease severity for appropriate management of pa-
tients with Parkinson’s disease (PD). Nineteen patients with PD
at the Department of Neurology, Tokyo University Hospital,
were classified into mild (n = 10) or severe groups (n = 9)
depending on their Hoehn-Y ahr scores, and wore accelerome-
ters on their wrists for more than 6 consecutive days. During
this time we monilored their subjective assessments of symp-
tom severity and analyzed the power-law exponents («) for
local maxima and minima of fluctuations in the activity time
series. Statistical comparisons were mude between the severe
and mild groups and of individual patients on “good condition”
and “bad condition” days, as well as between days belore and

after antiparkinsonism medication. In all patients, the « for
local maxima was always lower when parkinsonisim was mild
than when severc. Presence of tremor did not influence the o
for local maxima. As the lower « value for local maxima of
fluctuations in activity records reflects more frequent switching
behavior from low to high physical activities or the severity of
akinesia, actigraph monitoring of parkinsonisim, and analysis of
dts power-law correlation may provide useful objective infor-
mation for controlling parkinsonism in outpatient clinics and
for evaluating new antiparkinsonism drugs. © 2007 Movement
Disorder Society

Key words: Parkinson’s disease; actigraph; akinesia; fractal
analysis; powcer-law temporal autocorrelation.

A reliable objective scale representing disease severity
is necessary for appropriate management of Parkinson’s
disease (PD) patients. Although the Unified Parkinson’s
Rating Scale (UPDRS)! is a standard method for evalu-
ating parkinsonism severity, UPDRS scores may not
adequately reflect the disease severity. Wearable accel-
erometers (such as an actigram AMI, Ambulatory Mon-
itors USA) enable long-term recording of patient’s
movement during activities of daily living, and hence
might be the best choice for a device for quantitative
assessment of the symptoms due to various diseases.>?
Recently, studies have been successful in developing
reliable analytical methods that quantitatively represent
the disease progression in patients with tremor.”!* Here,
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an analytical method sufficiently sensitive and reliable to
represent the severity of non-tremor activity is presented.

Recently, fractal analysis was shown to be a robust
tool to disclose hidden autocorrelation patterns in bio-
logical data, such as heartbeat and limb movement. 1217
Power-law autocorrelation exponents for local maxima
and minima of fluctuations of locomotor activity would
be the most useful for our purpose, as they represent the
level of persistency of movement patterns. In this study,
we analyzed patients’ physical activity records collected
by an actigraph device using power-law exponents prob-
ing temporal autocorrelation of the activity counts. We
found that the power-law exponent for local maxima
most sensitively and reliably reflects disability without
being influenced by the presence of tremor or the pat-
terns of daily living.

PATIENTS AND METHODS

Nineteen patients with PD (13 male and 6 female;
mean age = SEM, 63.7 = 9.8 years) at the Department
of Neurology of the Tokyo University Hospital partici-
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TABLE 1. The profile of subjects

Hoehn and Yahr score

Duration of .

Patients Age (year) Sex On off illness (year) Tremor
Pt. 1 54 M 2.0 3.0 5 +
P2 72 F 2.5 3.0 4
PL 3 41 F 2.0 2.5 7
Pt 4 70 M 2.5 3.0 9 +
Pt 5 57 M 2.0 25 10
Pt. 6 60 F LS 2.0 S
P 7 65 M 1.5 2.0 5
Pt 17 57 M 1.0 1.5 1.5 +
Pt. 18 42 M 1.5 2.0 8 -
Pt. 19 71 M 2.0 25 8
Mean = SEM 589 x 3.52 1.85 =015 24> 016 625 0.82
Pt. 8 60 F 3.5 45 6 -
Pt. 9 64 F 3.0 4.0 8 +
Pt. 10 60 M 3.0 4.0 10 -
Pt 11 64 M 3.0 4.0 5
Pt 12 70 M 4.0 4.5 10
Pt 13 79 F 3.5 4.0 12 -
Pt 14 60 M 3.0 3. 20 -
Pe 15 57 M 35 4.0 8 4
Pt 16 73 M 4.0 4.5 7
Mean = SEM 65.22 © 243 339+ 014 411+ 011 9.56 £ 1.49

Controls Age (year) Sex Property Profession
Con. 1 36 M Healthy Student
Con. 2 51 M Healthy Professor
Con. 3 28 : Healthy Technician
Con. 4 50 : Healthy Manager
Con. § 32 M Healthy Student
Con. 6 30 r Healthy Student
Mean £ SEM 37.85 £ 4.15

pated in this study (Table 1). Depending on their Hoehn
and Yahr scores, the patients were classified info mild
(>3, mean = SEM, 2.13 % 0.13) or severe groups (>3,
3.75 #= 0.12). Three patients in the mild group and 3 in
the severe group had resting tremor but only on their
dominant sides. Patients had no overt dementia or de-
pression. Six healthy control patients (3 female and 3
male; 37.8 = 4.2 years) were recruited from volunteers
at The University of Tokyo. The study was approved by
The Ethics Committee of the Graduate School of Med-
icine, The University of Tokyo, and performed under the
principles outlined in the Declaration of Helsinki.

A small, custom wrstwatch-sized activity monitor,
ECOLOG (ECOlogical neurobehavior LOGger), equipped
with a computer (Ruputer Pro, Seiko Instruments, Chiba,
Japan) was used in this study (o register and quantify human
physical activity. In its Zero-crossing mode (ZCM), the
zero-crossing counts were integrated over l-minute inter-
vals and the data was stored in internal memory. The
activity monitoring device is analogous in performance to
the commercial Actigraph Mini-Motionlogger (Ambulatory
Monitors, Ardsley, NY) which has frequently been used for
studies of physical activity™!®1%; the correlation coefficient

Movement Disorders, Vol. 00, No. 0, 2007

between activity counts measured simultaneously by both
devices for 24 hours was 0.91 £ 0.02 and for awake-time
alone 0.82 x 0,03 mean = SD, n = 6) in healthy adults (Y.
Yamamoto, unpublished observation). In this study, we
recorded activity counts/min in the ZCM with a setting
comparable to mode 13 of the Mini-Motionlogger (filter
range of acceleration signals: 2-3 Hz, sensitive threshold:
high, gain: low). After recording, data were transmitted to
an external computer by software installed on the device.
Participants wore the ECOLOG on the wrist of their
nondominant side, or on some occasions on both sides,
for more than 6 consecutive days. Patients were asked to
keep a diary in which they recorded their disability grade
every 30 minutes. The diary scores were defined as
follows: O (almost no activity), 1 (very difficult to initiate
movement), 2 (difficulty in initiating movement), 3
(some difficulty in activities in daily living), and 4 (al-
most normal). They were also asked to write down the
time they took pills and periods when they removed the
ECOLOG. Because most of the patients could manage
their daily living by themselves and reported feeling
good when the proportion of diary scores at =3 exceeded
60% of the awake-time, we wbitrary classified the days

4-G
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into two categories based on this proportion; when more
than 60% of the awake-time was scored as =3, the day
was defined as a “good condition” (GC) day, and when
less than 60% of the awake-time was =3, the day was
defined as a “bad condition™ (BC) day. Six of the PD
patients, whose diagnoses included MRI findings, and
who had not received any antiparkinsonism drugs wore
the ECOLOG for more than 6 consecutive days both
before the initiation of medication and after the stabili-
zation of medication effects (Pt. I, 2, 6, 7, 17, 18). The
“after” study was conducted when the dose of the med-
ication (2-3 mg of cabergoline or 0.45-0.75 g of
pergolide) was stable for more than 3 weeks in each
patient.

We separated the data acquired during awake-time and
sleep-time with Action-W, Version 2 (Ambulatory Mon-
itors, Ardsley, NY) and the data during awake-time were
used for analyses. To examine temporal autocorrelation
of the physical activity time series (i.e., dynamic aspects
of physical activity) we used an extended, random-walk
analysis, the detrended fluctuation analysis (DFA),'?
with a recent modification?? for various “real-world”
signals including activity time series. The original DFA
evaluates relationships between time scales and magni-
tudes of fluctuation (standard deviations) within each
time scale; more correlated signals represent a greater
growth of the fluctuation magnitude with increasing time
scale or length of data window. Tt also eliminates non-
stationarity in the input data (i.e., changes in the baseline
and trends within the data windows at different scales)
that could affect calculation of the magnitudes of fluc-
tuation, thus making this approach suitable for the anal-
ysis of the long-term data collected in the present study.
The power-law (scaling) exponent («), obtained as the
slope of a straight line fit in the double-logarithmic plot
of time scales versus magnitudes of fluctuation, was used
to characterize the level of such correlation. This index
reflects the probability of a simultaneous increase or
decrease in the variability at two distant points in time in
the time series, applied to all distances up to long-range
time scales, thereby probing the nature of “switching™
patterns between high and low values in a statistical
sense. Larger power-law exponents indicate positive
temporal autocorrelation or persistency in the increase or
decrease, and lower values correspond to negative auto-
correlation or antipersistency.

Recently, Ohashi et al. reported that physical activity
data have different power-law exponents in periods with
higher and lower activity levels, corresponding to qual-
itatively different physiological states, (i.e., active and
rest, respectively).’? The actual procedures we used are
as follows: (see Ohashi et al. for details).’* HFirst, a
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FIG. 1. Conceptual explanation of the method to obtain power-law
exponents for local maxima and minima. (top) Various widths of
hat-shaped wavelets are slid along the data to detect local minima
(middle) and local maxima (bottom) of the wavelet coefticients. Note
that the local minima and maxima appear at the ransient decreases and
increases of the activity, respectively. The power-law exponents are
calculated from the slope of the log-log plot of squared wavelet
coefficients versus the scale for local minima and maxima. In the actual
analysis, we used an integrated, rather than raw, time scries and (5,
ie., the derivative of the “hat-shaped”™ wanvelet. This yiclds the same
power-law ¢xponents as those obtained by the DIFA method for the
same local maxima and minima as obtained in this figure (see Methods
for details).

daytime physical activity time series was integrated, as in
DFA, and wavelets with different time scales (S) were
slid along the time series and correlated with the data to
obtain the wavelet coefficients (W(S)) at each point. We
used the third derivative of the Gaussian function as the
so-called “mother wavelet™:

B(0) = 13 = Pe 05,

where f is time. This is equivalent to using the Gaussian
second derivative (so-called “Mexican hat™) wavelet to
examine the raw signals (Fig. 1), though the integration
approach automatically removes the local mean and the
local linear trend, as in DFA. By changing the scale of
the wavelet, this “hat-shaped” template dilates or con-
tracts in time, probing transient increases or decreases in
activity records in different time scales. The transient
increases (low-high-low activity patterns) yield local
maxima of the wavelet coefficients at their time points,
while the decreases (high-low-high activity patterns)
yield local minima of the wavelet coefficients (Fig. 1).
Next, the squared wavelet coefficients at the local max-
ima or minima were averaged for all the available days.
As the coefficient gives the magnitude of local fluctua-
tions matching the shape of Ws) with different time
scales, the squared W(S) was used, again as in DFA.
Finally, the power-law exponent («) was obtained sepa-
rately for local maxima and minima as the slope of a
straight line fit in the double-logarithmic plot of S versus

Movement Disorders, Vol. 00, No. 0, 2007
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W(S)*. In this study, the range of S corresponding to 8 to
35 minutes, where acceptable linear relationships be-
tween log S and log W(S)2 were observed for all the
records, was used. This range is also approximately the
same as that used in Ohashi et al.»> Note that this method
yields the same a-values as does DFA,? but separately
for periods with higher and lower activity levels. The
power-law exponent o’s of local maxima and minima
were used to assess the quantitative disabilities during
awake-time and the differences in disabilities between
GC days and BC days, between before and after antipar-
kinsonism medication in individuals, between the severe
and mild groups, and between groups with and without
tremor. Records during 6 consecutive days were used in
the analysis.

Wilcoxon signed rank tests were performed to com-
pare a-values for local maxima or minima in the various
group comparisons. P values < 0.05 were considered
statistically significant.
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FIG. 2. Examples of daily activity pro-
files and the corresponding subjective,
diary-based scoring on days in different
conditions in patients with different dis-
case severitics. B bad conditien day;
G, good condition day.

RESULTS

The daily profile of physical activity exhibited robust
activity-rest cycles but no appurent correspondence be-
tween daily activity profiles and diary scores (the mean
activity counts vs. diary score: 1 = —0.063) (Fig. 2).

Average wavelet coefficients for local maxima and
minima of the severe and mild groups provided straight
lines in the range of 8 to 35 minutes (Fig. 3A), indicative
of very robust a-values. When the mean o-values for
local maxima and minima were compared, we found a
significantly lower a-value for local maxima in the mild
group than in the severe group (Fig. 3B). All the patients
in both the severe and mild groups showed significantly
lower «-values for local maxima on GC days than on BC
days, whereas there was no significant difference in the
mean «-values for Tocal minima (Fig. 3C). When the
effects of medication were examined, we found that all
the patients showed lower a-values for Tocal maxima, but

FIG. 3. Local maxima and minima of
fluctnation of physical activity. (A) Av-
erage wavelet coelficients, as a function
of the wavelet scale, for local maxima
and minima. The slopes are power-law
exponents, «. (B) Comparisons of the
mean a for the severe and the mild
groups, (C) for BC and GC days and for
individual patients, and (D) for days be-
fore and after antiparkinsonism medica-
tion and for cach patient. *P < 0.05,
##P < 0.01, and =P < 0.001.
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not for local minima, on days after they received anti-
parkinsonism medication than on those before (Fig. 3D).

We compared the activity records from the arms with
tremor and without tremor from 6 patients with tremor,
and arms of patients not affected with tremor (n = 13).
The activity counts in the arms with tremor were signif-
icantly higher than those in the arms without tremor (Fig.
4A). Power-law scaling of the records from arms with
tremor showed a linear correlation between log S and log
W(S)? in the range of 8 to 35 minutes (Fig. 4B) and
a-values for local maxima but not for minima were
significantly higher in patient arms than in control arms
irrespective of tremor (Fig. 4C)

DISCUSSION

We demonstrated that analysis of records of a custom
actigraph by the power-law temporal correlation is a
powerful tool for the quantitative evaluation of physical
activity in patients with parkinsonism. The diary-based
subjective scoring of good or BCs was apparently not
correlated with the objective daily profiles of physical
activity recorded by the accelerometer, indicating that
the activity counts themselves do not represent the pa-
tient’s condition.

Larger power-law exponents («) indicate positive tem-
poral autocorrelation, or persistency, in the increase or
decrease in the variability of activity at two distant points
in time in the time series, and lower values correspond to
negative autocorrelation or anti-persistency.’® In other
words, a lower « for local maxima or minima of activity
records reflects more frequent switching behavior from
low to high or high to low physical activity, respectively,
and the switching behavior from lower to higher activity

minima

levels is considered to be related to akinesia in patients
with parkinsonism. We found lower a-values for local
maxima during GC days than during BC days, in the
mild group than in the severe group, and before medi-
cation than after medication. Thus, these results demon-
strate that the power-law anal yses accurately describe the
well known phenomenon that under these conditions
patients switch their physical activity from lower to
higher levels more easily, in other words they exhibit
milder akinesia, when the parkinsonism is mild than
when it is severe. It is worthy to note that lower «-values
for local maxima were obtained for all the patients after
medication than before, and when in GC than in BC,
thereby providing a temporal profile of parkinsonism in
each individual patient.

We adopted Mode 13 of the ECOLOG to record the
motion range during daily living. This is compatible with
the same mode of the AMI Mini-Motionlogger and is
said to filter out the majority of movements with fre-
quencies outside the 2 to 3 Hz range. Although some
resting tremor in the 4 to 8 Hz range, found in typical
parkinsonism or in a part of the “true ” movement
accelerations resulting from muscle force?! might have
been filtered out of our recordings, we found higher
activity counts during awake-time on the arms with
tremor, which erroneously indicated milder parkinson-
ism compared with the arms without tremor when judged
from the level of activity counts. In contrast, the a-values
for local maxima did not differ between the arms with
tremor and those without tremor, but were significantly
lower in both of the patient groups than in the control
arms, indicating that although the presence of tremor

Movement Disorders, Vol. 00, No. 0, 2007
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greatly influenced the actigraphic counts, the presence of
tremor did not yield false positive results in the power-
law exponent for maxima.

In conclusion, we found that the power-law exponent
for local maxima sensitively and reliably reflects disabil-
ity without being influenced by the presence of tremor or
the pattern of daily living. Our results thus suggest that
analysis of power-law temporal autocorrelation of phys-
ical activity time series using the bidirectional exten-
sion®® is applicable to patients with parkinsonism for the
evaluation of akinesia irrespective of the presence of
involuntary movements including tremor and may pro-
vide useful objective data necessary for the control of
drug dosage in the outpatient clinic and also for the
evaluation of new drugs for parkinsonism.
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Abstract Transferrin, an iron-binding protein, plays an
important role in the transport and delivery of circulat-
ing ferric iron to the tissues. Amyotrophic lateral sclero-
sis (ALS) is char acterized by the presence of B unina
bodies, skein-like inclusions, Lewy body-like mclusions/
roundin clusions,a nd ba sophilic inclusionsin the
remaining anteriorh orncellsin the spinal co rd. We

examined transverse paraffin sections of lumbar spinal
cordsf rom1 2 A LS cases includingt wo A LSw ith
dementia and two ALS with basophilic inclusions, using
antibodies to human transferrin. Th e re sults dem on-
strated th at transferrin 1 ocalized in B unina bodies and
some of the basophilic inclusions. In contrast, skein-like
inclusions and Lewy body-like inclusions or round inclu-
sions did no tsh owo bviously d etectable t ransferrin
immunoreactivities. Our findings su ggest that al though
the mechanisms underlying transferrin accumulation in
Bunina bo dies and ba sophilic imclusions are unknown,

Y. Mizuno () - K. Okamoto

Department of Neurology, Gunma University Graduate
School of Medicine, 3-39-22 Showa-machi,

Maebashi, Gunma 371-8511, Japan

e-mail: mizunoy@med.gunma-u.ac.jp

M. Amari - M. Takatama

Department of Internal Medicine, Geriatrics Research
Institute and Hospital, 3-26-8 Otomo-machi, Maebashi,
Gunma 371-0847, Japan

H. Aizawa
First Department of Internal Medicine,
Asahikawa Medical College, Asahikawa 078-8510, Japan

B. Mihara

Institute of Brain and Blood Vessels,
Mihara Memorial Hospital, 366 Ota-machi,
Isesaki, Gunma 372-0006, Japan

transferrin cou ld be i nvolved i n fo rming the se i nclu-
sions. Furthermore, following cystatin C, transferrin is
the second protein that localizes in the Bunina bodies.

Keywords Amyotrophic lateral sclerosis - Basophilic
inclusions - Bunina bodies - Cystatin C - Transferrin

Introduction

Amyotrophic late ral scle rosis (A LS) is ne uropathologi-
cally characterized by loss of motor neurons and occur-
rence of Bunina bodies [21, 23], ske in-like inclusions
(SLI) [9], and Lewy body-like inclusions (LBLI) [6, 7, 14]
in the re maining anterior homn cells o fthe spinal cord.
Bunina bodies [21] ranging from 2 to5 m are present
alone or in series in anterior horn cells in ALS, and LBLI
{7} are more often seen in familiat ALS than in sporadic
ALS. Withre specttothe definition of LBLI , some

authors have suggested that the name of LBLI should be
used only in f amilial cases [7] and when an appearance
similar to L BLI is obser ved in spo radic A LS cases, the
name round inclusions would be better because the com-
ponents of L BLI are different from those of LBLI-like
inclusions. LBLI are indistinguishable from Lewy bodies
seen in Parkinson’s disease when stained with hematoxy-
lin and e osin (H&E), but they are immunostained with
Cuw/Zu superoxide dismutase [12] but not -synuclein [1],
while Le wy bodie s are immunohistochemically positive
for -synuclein [1]. Moreover, ALS with onset before the
age of 20 has been reported as sporadic juvenile disease,
in which cyt oplasmic basophilic inclusions [4] have been
observed as one of t he cha racteristic f eatures. Bun ina
bodies are immunohistochemically positive for cystatin C
and ubiquitin-negative, while SLI and LBL I appear as
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ubiquitin-positive, tau-negative, cystatin-C-negative, and

-synuclein-negative. Basophilic inclusions show a globu-
lar or irr egular-shaped appe arance and a re occasionally
positive for ubiquitin with granular reaction. The mecha-
nism for the formation of cytoplasmic inclusions remains
unknown; therefore, elucidation of the main constituents
is very important to understand the significance of these
inclusions.

Transferrin, an 80-kDa glycoprotein, is an iron-bind-
ing plasma protein [2] thatiscapable of binding t wo
iron atoms per molecule, diferric transferrin. Differing
from monoferric transferrin and ap otransferrin, difer-
ric transferrin has a high affinity to transferrin receptor,
a1 80-kDa di sulphide-bonded p rotein dimer of t wo
identical subunits on the cell surface. Once iron-loaded
transferrin binds to the transferrin receptor, the recep-
tor-transferrin complex is internalized by endocytosis
and th e re sulting endocytotic ve sicle fu seswit h an
acidic compartment. Dissociation of iron from transfer-
rin occurs, and iron enters the cytoplasm. Apotransfer-
rin is released extracellularly and binds more iron [10].

Neurons do not synthesize transferrin, although trans-
ferrin is synthesized within the oligodendrocytes [2] and
choroid p lexus e pithelial cells o fthe third and lateral
ventricles [3]. Therefore, plasma proteins like transferrin
are thought to reach the neurons by endocytosis [10], the
uptake ofiron-loaded transferrin via transferrin recep-
tor, or by nerve terminals at the area where the plasma
proteins passage the nerve terminal from the blood and
then ret rograde transport o ccurs [ 11, 15, 26]. L arge
polygonal an d py ramidal ce lls show more transferrin
immunoreactivityi n the am ygdala andb rainstem,
reflecting the high densities of t ransferrin r eceptor on
these cells [16]. Liu et al. [11] reported that 90-100% of
neurons of the spinal cord as well as their axons of ante-
rior horn cells show strong immunostaining for albumin
and moderate to strong staining for transferrin.

Little attention has been paid to transferrin expression
in neu rodegenerative dis eases. Tobe tter under stand
abnormal protein accumulation in the remaining anterior
hom cellsin A LS, we ex amined spinal cords from 12
ALS patients including two cases of ALS with dementia
(ALS-D) and two cases of basophilic inclusion type of
ALS, using antibodies against transferrin. We found that
transferrin 1 ocalized in Bun ina bodies and some of the
basophilic inclu sions, in a ddition t o di ffuse cyt oplasmic
distribution of transferrin in the anterior horn cells.

Materials and methods

We examined a t otal of 12 ALS lumbar spinal cords
{(average p atient age: 593 yearsold, sex: 6 m ales, 6

females) inclu dingt wo A LS-D cases (6 4-year-old
female and 46-year-old male) and two ALS cases dem-
onstrating ba sophilic in clusions (2 4- and 2 7-year-old
females), in a ddition t o sa mples f rom five no n-ALS
patients with Parkinson’s disease, Alzheimer’s disease,
or Creutzfeldt-Jakob disease. Spinal cord tissues were
all ob tained fr om in stitutes an d u niversities. In all
cases, the a utopsies we re p erformed in accord ance
with established procedures and the samples were used
in this study after obtaining informed consent from the
family of e ach patient. All patients we re de finitively
diagnosed based on clinical and light microscopic find-
ings of the spinal cords and some of the data from sev-
eral p atients w ere previously r eported el sewhere [ 4,
13]. Spinal cord s we re fixed with 4 % pa raformalde-
hyde i n p hosphate-buffered so lution (PBS) (pH 7.4)
and embedded in paraffin. Five micrometer thick trans-
verse paraffin sections were prepared for immunohisto-
chemistry, which wa scar riedou tu singa ra bbit
polyclonal an ti-human t ransferrin antibody (1:6,000;
DakoCytomation, Glo strup, De nmark), a go at p oly-
clonal anti-human transferrin an tibody (1 :20,000; MP
Biomedicals, Ohio, US A), and rabbit polyclonal anti-
albumin (1: 5,000; D akoCytomation), an ti-prealbumin
(1:5,000; Da koCytomation), an dan ti-orosomucoid
antibodies ( 1:2,000, DakoCytomation). For en hance-
ment, autoclave treatment for5 min w as performed
when anti-transferrin antibody was used. Sections were
blocked in no rmal ho rse se rum f or 3 0 min at ro om
temperature, then labeled with the first antibody at 4°C
overnight, washed in PBS for 30 min, i ncubated with
the second antibody provided by Histofine SAB-PO kit
(Nichirei, Tokyo, J apan), washed in P BS for 30 min,
and finally visualized by th e avidin-biotin-peroxidase
method. Observation was pe rformed using an Olym-
pus BX50 microscope.

Specificity of the transferrin staining was confirmed
by preabsorption of the antibody for1 h at 4°C with
100 M human transferrin (Sigma).

For Bunina bo dies, Lewy bo dy-like inclusions, and
basophilic inclusions, H &E s taining wa s initially p er-
formed to o bserve t he 1 ocations of th ese structures.
After phot ographing these findings, we re moved the
cover glasses from the slides in xylene, decolorized the
specimens in alcohol, and performed the same process
for transferrin immunostaining.

Results
In general, the cytoplasm and processes of the anterior

horn cells showed almost ho mogeneously transferrin-
positive im munoreactivitiesin ALS a ndno n-ALS
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cases (Fig. 1), although the intensities differed in each
anterior hom cell, ranging from weak staining to strong
staining. In addition, small cells were seen between and
around t he anterior ho m cells, in w hich t ransferrin-
positive products were detected adjacent to the nuclei
(arrowsin F ig. 1). T ransferrin i mmunoreactivity wa s
confined toat hinrim of perinuclear cyt oplasm in a
cap-like fashion, suggesting that these cells were oligo-
dendrocytes (data n ot shown), as previously reported
[2]. Little differences of transferrin i mmunoreactivity
among each anterior horn cell were seenin ALS, ALS-
D, the basophilic type of ALS, and non-ALS cases.

In addition to weak staining of transferrin within the
cytoplasm, small transferrin-positive circular structures
were observed in the cytoplasm of anterior hom cells
in all ALS cases except one sporadic case (Fig. 2a). The
periphery of their structures showed strong immunore-
activity compared to that at the center. The number of
transferrin-positive s tructures v ariedi n each spinal
cord se ction. T o de termine whe ther t he transferrin-
positive reactions we re s pecific, a se rial s ection wa s
immunostained after preabsorption of anti-transferrin
antibody with human t ransferrin for1 hat4°C. The
finding showed that transferrin-positive staining disap-
peared (Fig. 2b), indicating that the reaction was true.

Since circular transferrin-positive staining likely cor-
responded t o Bunina bo dies, H &E s taining was p er-
formed init iallyt o confirm w here t hose s tructures
showinge osinophilicinclu sionsw ere located
(Fig. 3a, ¢). A fter ph otographing the Bunina bo dies
shown by H&E st aining, imm unohistochemistry f or

Fig. 1 Transferrin immunoreactivitiy in a nterior h orn cells.
Cytoplasm an d p rocesses w ere d iffusely t ransferrin p ositive.
Small cells showing transferrin-positive immu noreactivity were
scattered ar ound th e an terior ho rn cel Is ( arrows). Sc ale ba r:
20 m

transferrin w as examined on th e sa me se ction. T he
result sh owedt hatt ransferrinim munoreactivies
(Fig. 3b, d) were seen at t he same location as Bunina
bodies, indicating that transferrin was co-localized with
Bunina bodies and that Bunina bodies were related to
transferrin. U sing a d ifferent an ti-human tr ansferrin
antibody purchased f rom MP Bi omedicals, B unina
bodies were similarly s hown a st ransferrin po sitive
(data not shown). Bunina bodies were not immunore-
active for other plasma proteins such as albumin, preal-
bumin, and orosomucoid (data not shown).

Lewy body-like inclusions or round inclusions show-
ing an eosinophilic core with a peripheral halo appear-
ance were detected on H&E staining in a sporadic ALS
case (Fig. 4a, ¢). A fter the H& E st ained se ction wa s
decolorized by al cohol, t ransferrin staining was per-
formed, sho wing a s lightly st ronger im munoreaction
for Lewy bo dy-like inclusions at the core thanin the
cytoplasm (Fig. 4b, d). However, the staining level was
obviously weak compared to that of Bunina bodies.

Fig. 2 Transferrin immunoreactivitiy in small circular structures.
a Immunostaining for transferrin. b Immunostaining for transfer-
rin p reabsorbed w ith hum an t ransferrin. Transferrin i mmuno-
staining was obviously specific. Scale bar: 20 m
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Fig. 3 Transferrin immuno-
reactivity in Bunina bodies. a,
¢ H&E staining. b, d Inmuno-
staining for transferrin. Bun-
ina bodies (a, €) were
transferrin positive. The pres-
ence of Bunina bodies was
confirmed with H&E staining
(a, ¢), and the same section
was examined with anti-trans-
ferrin antibody (b, d). Scale
bar:20 m

Fig. 4 Transferrin immuno-
reactivity for Lewy body-like
inclusions. a, ¢ H&E staining.
b, d Inmunostaining for trans-
ferrin. The presence of Lewy
body-like inclusions was con-
firmed with H&E staining (a,
¢), and the same section was
examined with anti-transfer-
rin antibody (b, d). Scale bar:
20 m

Confirming t he horseshoe-shaped, m ultilobulated,
globular, tubular or spheroid inclusions that appeared
basophilic in t he cy toplasm of a nterior horn cells on
H&E s taining, which we re r ecognized a s basophilic
inclusions (B1), (Fig. 5a, c, e, g), we examined 15B1

f

detected in two A LS cases to determine whether the
structures w ere p ositive fo r tr ansferrin. The findings
demonstrated that immunoreactive patterns for trans-
ferrin we re 1o ughly cla ssified into th ree typ es. Fi ve
obvious tr ansferrin-positive BI w ere de tected am ong
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15 inclusions (Fig. 5b, d), although the immunoreactivity
was h eterogeneous noth omogeneous. Furthermore,
detectable but weak heterogeneous immunostaining was
observed in five inclusions (Fig. 5f). There were five BI
that were almost transferrin negative (Fig. Sh).

We observed num erous skein-like in clusions show-
ing p 62-positive staining o f sections from ALS cases,
however, these inclusions were transferrin ne gative in
the adjacent sections (data not shown). Furthermore,
other structures such as granulovacuolar degeneration
and neurofibrillary tangles in Alzheimer’s disease were
not immunostained for transferrin (data not shown).

Discussion

Among comparatively ALS-specific structures such as
Bunina bodies [21, 23], skein-like inclusions [9], Lewy
body-like inclusions or rou nd inclusions [6, 7, 14] and
basophilic inclusions [ 4], Bunina bodies showed ob vi-
ous immunoreactivity fo r transferrin. Th e or igin of
Bunina bo dies i s unknown, h owever, s everal a uthors
have reported that it could be re lated t o a utophagic
vacuole [5] and Golgi apparatus [19, 22]. Recently, we
found that skein-like inclusions, LBLI or r ound inclu-
sions, and so me of t he b asophilicin clusionsin the
remaining anterior ho rn ce lls we re p6 2 positive [ 13],
while Bunina bodies were negative for p62. These find-
ings are interesting because skein-like inclusions, LBLI
or round inclusions, and some of the basophilic inclu-
sions are immunoreactive for ubiquitin.

Cystatin Cis a member of a super family of protease
inhibitors, a ndi nvolved in p rocesses su ch a st umor
invasion and m etastasis, in flammatory pro cesses, and
some ne urological di seases [25]. Ok amoto e t al. [ 23]
reported that cystatin Cloca lizes in B unina bodies of
ALS cases. In addition to the increase of14-3-3 pro-
teins in the cerebrospinal fluid (CSF), cystatin C could
also be one of t he i nteresting diagnosticm arkers o f
sporadic Cr eutzfeldt-Jakob dis ease [24]. In contrast,
cystatin C in the CSF has been found to be down-regu-
lated in pa tients with le ptomeningeal metastasis [18],
Guillain-Barre sy ndrome | 17], or chro nicin flamma-
tory demyelinating polyneuropathy [17]. Transferrin is
a major glycoprotein playing an important role in the
transport o f circulating ferriciron andits delivery to
tissues th at ex press surface tr ansferrin re ceptor. T he
presence of unusual glycosylated isoforms of transfer-
rin and the specific enrichment and oxidation of trans-
ferrini soforms ha sb eenre portedin Al zheimer’s
disease (AD) plasma [29]. Moreover, Piubelli et al. [24]
demonstrated that transferrin is fivefold up-regulated

Fig.5 Transferrin immunoreactivity for bas ophilic inclusions.
a, ¢, e, g H&E staining, b, 4, f, h Immunostaining for transferrin.
Basophilic i nclusions s howed str ongly t ransferrin-positive (b,
d), weak (f) and neg ative (h) reaction. The presence of these
structures was confirmed with H&E on same sections. Scale bar:
20 m



