Human Molecular Genetics, 2006, Vol. 15, No. 20 3029

A Cc

d & e pERK1/2 2 o mae= pERK1/2
= e e CRK1/2 & === = ERK1/2
s DAKL
s -~ pAKkl
ST\ |
o e G
100 [> - = -~ —— oon> ‘”
DISC]
73> m — —— 750> =
D —— 1)) KD — T |
..c“v— & ‘9\@}\ ";‘\i\\b\l,\‘“ o {{S}

o
o
i) T
o

'RK 53 CIpERK]
Emfuxlz 2 _ EEpIRK2
1.2 5 & 5 #*
1.D) = Z 4.0
08 z g5
=0.0 3 e = 0
.4 : 3 2.0
02 |+| S
- * =
v = g ! NS
. AN - & N = £ Ko
& A A Ng a0 O Z Fa S Y
& 3 ) % v e
& & F & F ‘F 9
& x & & N -

o
O

£ - R pERK1/2
A~ 0.8 e oS

206 e e i LRK 1/2
=0 vy
—5:); T = e e DAkt
;‘ 0 ~ —— e A K
e &
<& && R A GIP
< g 100> .
730 — DISC
B kD o TU J 1
— 4 4 sibisci
— — 4 —shisd
—_—— +\:l)l.“(.'l
b
: ‘ ,'_3:4.0
b GFP DISC1 230
g3
-4
22
sDISC1 %
S1.0
tsraes ’ —_ si-DISC
¢DISC] = i. T tsm)sz(ll
— = = DISCt

Figure 3. Effects of the DISCI protein on the ERK and Akt signaling in cortical neurons. (A) Suppression of phosphorylation of ERK and Akt in
DISC1-siRNA-transfected cultures. Cortical cultures after DIV4 were treated with siRNA for DISC1 (si-DISC1: 100 nat) or control (scramble; 100 na1) for
72 h. Cortical cultures were harvested at DIV7 for western blotting for pERK1/2, ERK1/2, pAkt, Akt, DISC1 or TUIL. The immunoblots shown are representa-
tive of four independent experiments (a). Quantification of the immunoreactivity of pERK1/2 (b), pAkt (c) or DISCI (d). Quantitative data represent the
mean + SD (n=4). P < 0.001 versus scramble. (B) (a) Double staining with GFP (green) signal and immunostaining signal by anti-MAP2 (red, a neuronal
marker) antibody after sindbis virus-mediated gene transfer. Representative control (GFP only)-infected cortical cultures were shown. (b) GFP and DISCI signal
after sSDISC1 (upper) or cDISC1 (lower) gene transfer, respectively. DISCI localization was detected as a red signal. Virus infection was performed at DIV4 and
infected cultures were fixed at DIV6 for immunostaining. Bar = 50 pum. (C) Differential activation of ERK and Akt between sDISC1 and ¢cDSICIL. Samples for
blotting pERK1/2, ERK1/2, pAkt, Akt, GFP, DISCI or TUJI were prepared 24 h (DIV5) after viral infection at DIV 4 (a). The quantification of pERK1/2 (b) or
pAkt (c) levels after overexpression of sDISC1 or cDISC was shown. The immunoblots shown are representative of four independent experiments. Quantitative
data represent the mean + SD (n =4). "*P < 0.01, *P < 0.05 versus control, ## P < 0.001 versus sDISC1. (D) (a) Recovery of the activation of ERK1/2 and
Akt after sDISC1 and ¢DISC overexpressing in DISC1 knockdown cultures. To downregulate endogenous DISCI. si-DISC1 was applied at DIV4 or DIVS cul-
tures. Sindbis virus-infection for sDISC1 or ¢cDISC1 overexpression was performed 48 h after the si-DISCI treatment. Samples for blotting for pERK1/2, ERK1/2,
pAkt, Akt, GFP, DISC1 or TUJ1 were prepared 48 h after viral infection. The immunoblot images are representative of five independent experiments. (b) The
quantification of pERK1/2 for each experimental condition was shown. Quantitative data represent the mean + SD (n=35). =P < 0.01, *P < 0.05 versus
si-DISCI. ‘
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We demonstrated that healthy subjects with the risk allele
carriers for MDD (cys-DISC1) had relatively reduced the
gray matter volumes in cingulate cortex, relatively expanded
CSF space and reduced the FA values in the prefrontal white
matter. This pattern of changes on magnetic resonance
imaging (MRI) scanning, specifically the gray matter
volume deficits in the ACC, expanded the CSF and
reduced the FA values in prefrontal cortex, has been repeat-
edly reported in the studies of patients with schizophrenia
and MDD (22,27-29). Several studies demonstrated a
decreased volume in the ACC in patients with MDD in
remission, MDD with a family history or in early onset
depression (30-33) and abnormalities of cortical neuronal
organization in postmortem brain of MDD have been
reported in the ACC (34). It has been reported that relatively
higher FA is associated with remission of MDD, following
treatment with drugs or electroconvulsive therapy; however,
reduced prefrontal FA has not been reported consistently in
MDD (29,35-37). These various findings suggest that
decreased gray matter volume and FA in the frontal area
might be associated with the increased risk for MDD. Pre-
vious studies found that the risk haplotype of the DISCI
gene affected cortical gray matter and that Ser704Cys SNP
had an impact on the hippocampal structure and function
(9.11); however, we did not observe either effects of SNPs
associated with schizophrenia in our sample on cortical
gray matter or effects of Ser704Cys SNP on hippocampal
volume. Moreover, in our study of the effect of Ser/Cys gen-
otype on brain imaging derived phenotypes and clinical
association, it is the cys allele that is relatively deleterious,
whereas in an earlier study, it was the ser allele (9). These
inconsistencies may telate to sample differences, methodo-
logical differences, and also to possible genetic and allelic
heterogeneity.

We found robust effects of DISC! on ERK and Akt signal-
ing and evidence that the cDISCI (the risk allele for MDD)
might exert a weaker effect on the ERK activation than
sDISC1. The involvement of ERK in the therapeutic mechan-
isms of mood disorder has been proposed (38,39). It has been
shown that ERK can phosphorylate PDE4 and alter its activity
(40,41) and that PDE inhibitors might have antidepressant effi-
cacy (24). Taken together, the regulation of ERK signaling by
DISC1 may contribute, at least in part, to the mechanisms of
the risk for MDD. Structural imaging studies have demon-
strated reduced gray matter volumes and white matter abnorm-
ality in several brain areas of patients with mood disorders
relative to healthy controls, and postmortem morphometric
brain studies also demonstrated cellular atrophy and/or loss
(24). As the ERK kinase signaling is implicated in cytoskeletal
remodeling, neurite outgrowth and cell survival (24) and
decreased expression of ERK was observed in the postmortem
brain of depressive patients (42), impaired ERK signaling
could be related to the structural abnormality in major
depression.

In conclusion, we have found evidence for association
between genetic variation of DISCI and MDD, brain mor-
phology and ERK signaling pathway. Our data suggest that
Ser704Cys might be a functional variant that impacts on
neural mechanisms implicated in the biology of major
depression.

MATERIALS AND METHODS
Subjects

Subjects for the clinical association study were recruited at
Fujita Health University School of Medicine, Showa
University School of Medicine and National Center of
Neurology and Psychiatry, Japan. They were 373 patients
with MDD [147 males and 226 females with mean age of
54.0 years (SD 16.0); mean age of onset of 46.5 years (SD
15.3)], 658 patients with schizophrenia [340 males and 318
fernales with mean age of 43.6 years (SD 14.6); mean age
of onset of 24.2 years (SD 8.6)] and 717 healthy comparison
subjects [351 males and 366 females with mean age of 41.3
years (SD 16.9)]. All the subjects were Japanese. Consensus
diagnosis was made for each patient by at least two psychia-
trists, according to the Diagnostic and Statistical Manual of
Mental Disorders, 4th edition (DSM-1V Criteria). Control sub-
jects were healthy volunteers who had no current or past
contact to psychiatric services.

One hundred and eight healthy Japanese (biologically unre-
lated) for MR experiments were recruited at the National
Center of Neurology and Psychiatry and screened by a ques-
tionnaire on medical history and excluded if they had neuro-
logical, psychiatric or medical conditions that could
potentially affect the central nervous system, such as sub-
stance abuse or dependence, atypical headache, head trauma
with loss of consciousness, asymptomatic or symptomatic cet-
ebral infarction detected by the T2-weighted MRI, hyperten-
sion, chronic lung disease, kidney disease, chronic hepatic
disease, cancer or diabetes mellitus. Detail demographics of
subjects in genotypes of SNP1, SNP7, SNP9 and SNPI2
(Ser704Cys) were noted in Supplementary Material. After
description of the study, written informed consent was
obtained from every subject. The study protocol was approved
by institutional Ethics Committees.

Genetic analysis

Venous blood was drawn from subjects and genomic DNA
was extracted from the whole blood according to the standard
procedures. Thirteen SNPs were genotyped using the TagMan
5'_exonuclease allelic discrimination assay as described pre-
viously (43,44). Primers and probes for detection of the
SNPs are available upon request. Statistical analysis of associ-
ation studies was performed using SNPAlyse (DYNACOM,
Yokohama, Japan). Allele distributions between patients and
controls were analyzed by the X° test for independence. The
measure of LD, denoted as D' and 2, was calculated from
the haplotype frequency using the expectation—maximization
algorithm. Case—control haplotype analysis was performed
by the permutation method to obtain the empirical significance
(45). The global P-values represent the overall significance
using the x* test when the observed versus expected frequen-
cies of all the haplotypes are considered together. The individ-
ual haplotypes were tested for association by grouping all
others together and applying the x°-test with 1 df. P-values
were calculated on the basis of 10000 replications. All
P-values reported are two tailed. Statistical significance was
defined at P < 0.05.



Neuroimaging analysis

Brain MR procedure is described in Supplementary Material.
The basic principle of TBM is to analyze the local defor-
mations of an image and to infer local differences in the
brain structure. The method was described in detail previously
(46) (Supplementary Material). Diffusion tensor imaging
(DTI) analysis was performed using FA maps by a
voxel-by-voxel analysis (Supplementary Material). The stat-
istical parametric maps of Jacobian determinants and FA
values were analyzed using statistical parametric mapping
(SPM) 2, which implements a ‘general linear model’. To
test hypotheses about regional population effects, data were
analyzed by a two-sample r-test without global normalization.
We used P < 0.001 without a correction for multiple compari-
sons to avoid type-II error to explore whole brain and then
applied small-volume correction (P < 0.01) to each cluster.
Since there has been no a priori hypothesis for FA changes
associated with DISCI polymorphism, we applied conserva-
tive statistical threshold (P < 0.001) for the analysis of FA
values. The resulting sets of -values constituted the statistical
parametric maps {SPM (t)}.

Molecular biology

Primary cultures were prepared from the cerebral cortex of
postnatal 2-day-old rats (Wister ST; SLC, Shizuoka, Japan)
as reported previously (47,48).

The siRNA transfection was performed as reported pre-
viously (49). We used 21 nt siRNA duplexes with two nucleo-
tides of the rat DISCl mRNA coding region (113131,
GACCAGGCTACATGAGAAG, NM_175596). Sense (GAC
CAGGCUACAUGAGAAGtt) and antisense (CUUCUCAU
GUAGCCUGGUCtc) strands were chemically synthesized
by Ambion Ltd (Cambridge, UK). The siRNA (GCGCGC
UUUGUAGGAUUCG) named Scramblell from Dharmacon
Research Inc. was used as a scramble control. The plasmid
for viral construction of the DISC! gene was derived from
pSinRepS (Invitrogen, USA) and had two subgenomic promo-
ters followed by a multiple cloning site for an arbitrary gene
insertion and an enhanced GFP open-reading frame, thus the
virus can produce both arbitrary protein and enhanced GFP
independently in the infected cell (50). The control virus pro-
duces GFP only, whereas DISCI virus produces both DISCI
and GFP independently. Detail procedure for viral construc-
tion is in Supplementary Material.

Immunocytochemistry was performed, as described pre-
viously (51): We used anti-MAP2 (1:1000; Sigma) or
anti-DISC (1:100) (17) antibodies as a primary antibody,
respectively. Alexa Fluor (1:1000, Molecular Probes) was
applied as a secondary antibody. Fluorescent images were
observed by an inverted microscope (Axiovert 200, ZEISS)
with a CCD (cool SNAPfx, ZEISS).

Immunoblotting was carried out as described previously
(47). Primary antibodies for immunoblotting were used at

the following dilutions: anti-Akt (1:1000, Cell Signaling), -

anti-phospho-Akt  (1:1000, Cell Signaling), anti-ERK
(1:1000, Cell Signaling), anti-phospho-ERK (1:1000, Cell
Signaling), anti-TUJL (1:5000, Berkeley antibody company),
anti-GFP (1:1000, Medical & Biological Laboratories) and
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anti-DISC1 antibodies (1:1000) (17). To quantify the amount
of proteins after immunoblotting, we measured the density
of immunoblots with an image-analysis software (Science
Lab 98 Image Gauge; Fuji Photo Film Co. Ltd, Tokyo,
Japan). The level of protein expression was indicated as a
ratio that was normalized to control the condition (none,
sole GFP-infected, or scramble-transfection, respectively) in
each experiment. Statistical analysis was performed with
unpaired t-test or ANOVA, followed by the Tukey post hoc
comparisons when applicable.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG Online.
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