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function, molecular weight, and subcellular localization was obtained from Biomo-
lecular Interaction Network Database (BIND; www.bind.ca), Human Protein Ref-
erence Database (HPRD; www.hprd.org), Prediction of Protein Sorting Signals and
Localization Sites in Amino Acid Sequence Database (PSORT II; psort.ims.u-
tokyo.ac.jp), and PubMed Database (www.pubmed.gov). The 14-3-3-binding con-
sensus motif mode I (RSXpSXP) located in target proteins was surveyed by the
Scansite 2.0 Motif Scanner (scansite.mi.edu),’® which assesses the probability of a
site matching the candidate motif under high, medium or low stringent conditions
(Figure 13.3).

RESULTS

PROTEIN MICROARRAY ANALYSIS 1DENTIFIED
20 DistiNeT 14-3-3-INTERACTORS

Western blot analysis verified the purity and specificity of the recombinant 14-3-3¢
protein tagged with V5 (Figure 13.1). Among 1752 proteins on the microarray, 20 were
identified as the proteins showing significant binding to the probe, all of which
were previously unreported 14-3-3-binding partners by the BIND search.5¢ Seven
were categorized into hypothetical clones of uncharacterized function, derived from
either the Mammalian Genome Collection (MGC) or the Full-Length Long Japan
(FLJ). They include FLY10415 (GenBank accession number NM_018089),
LOC57228 (NM_020467), MGC17403 (NM_152634), LOC137781 (BC032347),
LOC92345 (NM_138386), FLJ10156 (NM_019013), and FLJ25758
(NM_001011541). Thirteen proteins with annotation are as follows:

1. EAP30 subunit of ELL complex (EAP30; NM_007241) (Figure 13.2b).
This is a 30-kDa component of the ELL complex (estimated MW is
28,866 suggested by HPRD; putative subcellular location is cytoplasmic
suggested by PSORT II), which confers derepression of transcription
by RNA polymerase I EAP30 is also named VPS22, a component of
the ESCRT-II endosomal sorting complex that plays a key role in the
multivesicular body (MVB) pathway.® The 14-3-3-binding consensus
motif mode I is not identified by the Scansite Motif Scanner, although
the Z-Score of two corresponding spots on the array shows the highest
values, 22.9 and 24.6 respectively. The similarity in the scores between
distinct spots supports the reproducibility of the results of protein
microarray analysis.

2. Lymphocyte cytosolic protein 2 (LCP2; NM_005565). This is a 72-kDa
protein (MW 60,191; nuclear), alteratively named SH2 domain-containing
leukocyte protein of 76kD (SLP76), which associates with the Grb2 adap-
tor protein and provides a substrate of the ZAP-70 protein tyrosine
kinase.® LCP2 plays a key role in promoting T cell development and
activation. It contains three mode I motifs with low stringency; pS297
(TTERHERSSPLPGKK), pS376 (SSFPQSASLPPYFSQ), and pT456
(DSSKKTTINPYVLMV).
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3. Methionine aminopeptidase 2 (METAP2; NM_006838). This is a 67-kDa
protein (MW 52,894; cytoplasmic) that interacts with eukaryotic initiation
factor-2 (eIF-2) and regulates protein synthesis [62]. It contains two mode
I motifs with low stringency; pT113 (KRGPKVQIDPPSVPI) and pS152
(TAAWRTTSEEKKALD).

4. Melanoma antigen family B, 4 (MAGEB4; NM_002367). This is a member
of the MAGEB family (MW 38,925; nuclear) expressed abundantly in
testis whose function remains unknown.® It contains three mode I motifs;
T18 (AREKRQRTRGQTQDL) with medium stringency, and pT194
(GNQSSAWTLPRNGLL) and pS339 (SAYSRATSSSSSQPM) with low
stringency.

5. Chondroitin 4 sulfotransferase 11 (CHST11; NM_018413). This is a mem-
ber of the HNK1 sulfotransferase family GalNAc 4-O-sulfotransferase
(MW 41,557; endoplasmic reticulum and mitochondria) that plays a role
in chondroitin sulfate and dermatan sulfate biosynthesis.® It contains three
mode I motifs; pS93 (TDTCRANSATSRKRR) with medium stringency,
and pS56 (DICCRKGSRSPLQEL) and S194 (EPFERLVSAYRNKFT)
with low stringency.

6. Zinc finger, C3HC-type containing 1 (ZC3HCI1; NM_016478). This is a
60-kDa protein (MW 55,258; nuclear) that interacts with anaplastic lym-
phoma kinase (ALK) and plays an antiapoptotic role in nucleophosmin-
ALK signaling event.5> The 14-3-3-binding consensus motif mode I is not
found.

7. Minichromosome maintenance deficient 10 (MCM10; NM_018518). This
is a key component of the pre-replication complex (pre-RC) (MW 98,188;
nuclear) essential for the initiation of DNA replication.® It contains five
mode I motifs; pS90 (AQPPRTGSEFPRLEG) with medium stringency,
and pS35 (KPAIKSISASALILKQ) S55 (LEMRRRKSEEIQKRF), pS302
(PCGNRSISLDRLPNK), and T329 (DGMLKEKTGPKIGGE) with low
stringency.

8. DEAD box polypeptide 54 (DDX54; NM_024072) (Figure 13.2¢). This is
a 97-kDa RNA helicase (DP97) (MW 98,601; nuclear) that interacts with
estrogen receptor (ER) and represses the transcription of ER-regulated
genes. It contains two mode I motifs with low stringency; pT95 (EDKK-
KIKTESGRYIS) and pS102 (TESGRYISSSYKRDL).

9. Heterogeneous nuclear ribonucleoprotein C (HNPRC; NM_004500). This
is a member of heterogeneous nuclear ribonucleoproteins (hnRNPs) (MW
33,291; nuclear) involved in pre-mRNA processing, mRNA metabolism
and transport.%® It contains four mode I motifs; pS125 (DYYDRMYSY-
PARVPP) with high stringency, and pS158 (NTSRRGKSGFNSKSG),
pS170 (KSGQRGSSKSGKLKG), and pS240 (ETNVKMESEGGADDS)
with low stringency.

10. Fibroblast growth factor 12 (FGF12; NM_004113). This is a member of
the FGF family (MW 27,401; nuclear) that plays a role in nervous system
development and function.® It contains two mode I motifs with low
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stringency; pS150 (VCMYREQSLHEIGEK) and pS165 (QGRSRKSS-
GTPTMNG).

11. Glutathione S-transferase M3 (GSTM3; BC030253). This is a cytoplasmic
glutathione S-transferase of the mu class (MW 26,561 ; cytoplasmic) that
plays a role in detoxification of carcinogens, therapeutic drugs, environ-
mental toxins, and products of oxidative stress.” It contains one mode I
motif with low stringency; pS64 (GIKLRSFSV).

12. Src homology three (SH3) and cysteine rich domain (STAC; NM_003149)
(Figure 13.2d). This is a 47-kDa protein containing a SH3 domain and a
cysteine-rich domain (MW 44,556; nuclear) that plays a role in the neuron-
specific signal transduction pathway.” It contains seven mode I motifs;
pS172 (KGFRRYYSSPLLIHE) with high stringency (Figure 13.3c), pS56
(TKSLRSKSADNFFQR) and pS255 (DLRKRSNSVFTYPEN) with
medium stringency, and pS46 (QKLKRSLSFKTKSLR), pS51 (SLSFK-
TKSLRSKSAD), pS66 (NFFQRTNSEDMKLQA), and pS$253 (GYDL-
RKRSNSVFTYP) with low stringency.

13. ATPase, H* transporting, lysosomal, 21 kD, VO subunit C" (ATP6VOB;
NM_004047). This is a 23-kDa component of vacuolar ATPase (MW
21,408; endoplasmic reticulum) that mediates acidification of intracellular
organelles.” The 14-3-3-binding consensus motif mode I is not found.

IMMUNOPRECIPITATION ANALYSIS VALIDATED
THE SPECIFIC BINDING TO 14-3-3

EAP30, DDX54, and STAC were selected to verify the results of microarray analysis
in view of higher Z-Score values.’ The recombinant proteins were expressed in
HEK293 cells that constitutively express a substantial amount of endogenous 14-3-3
protein. The cells were homogenized in the lysis buffer either with inclusion of
phosphatase inhibitors or with inclusion of recombinant protein phosphatase-1 (PP1)
instead of phosphatase inhibitors. Total cell lysate was processed for immuno-
precipitation (IP) with rabbit anti-14-3-3 protein antibody (K-19) or with normal
rabbit IgG. K19 coimmunoprecipitated 14-3-3 and STAC from the lysate of HEK293
cells that express the recombinant STAC protein, whereas normal rabbit IgG did not
pull down these proteins (Figure 13.1). K-19 immunoprecipitated EAP30 and
DDX54 from the lysate of HEK293 cells that express the recombinant EAP30 or
DDX54 protein, respectively (Figure 13.1). These results indicate that EAP30,
DDX54 and STAC interact with the endogenous 14-3-3 protein in HEK293 cells
where the corresponding recombinant proteins were expressed.

STAC has the highly stringent 14-3-3-binding consensus motif RY'YSSP in amino
acid residues 169 to 174 (pS172) by the Scansite Motif Scanner search (Figure 13.3).
Therefore, a possible involvement of this motif in binding to 14-3-3 was further
investigated by IP analysis of a panel of mutant and truncated STAC proteins. K-19
immunoprecipitated the full-length wild-type (WT) STAC consisting of amino acid
residues 2 to 402 (Figure 13.1). K-19 aiso pulled down the S172A mutant (SMT),
and the S172A and S173A double mutant (DMT) from the lysate of HEK293 cells
that express the corresponding recombinant proteins.®® K-19 immunoprecipitated
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the N-terminal half (NTF; amino acid residues 2 to 233) but not the C-terminal half
(CTF; amino acid residues 234 to 402) of STAC (Figure 13.1). These observations
indicate that the RY'YSSP motif is not involved in binding of STAC to 14-3-3. This

was confirmed by the observations that K-19 immunoprecipitated the truncated -

STAC protein lacking the RYYSSP motif (TRA; amino acid residues 2 to 164)%
and the shortest form lacking both the RYYSSP sequence and the cysteine-rich
domain (CRD) (TRB; amino acid residues 2 to 105) (Figure 13.1). Finally, K-19
pulled down the full-length WT STAC, EAP30, and DDX54 under the dephospho-
rylated condition (PP1) (Figure 13.1). These observations indicate that the 14-3-3-
interacting domain is located in the N-terminal segment spanning amino acid residues
2 to 105 of STAC. The interaction of 14-3-3 with STAC, EAP30, and DDX54 is
independent of serine/threonine-phosphorylation of the binding domains.

DISCUSSION

PROTEIN MICROARRAY ANALYSIS EFFECTIVELY IDENTIFIES
14-3-3-BINDING PROTEINS

Protein microatrays provide a valuable tool for global proteome analysis with a wide
range of applications, particularly to identification and characterization of protein
function and molecular pathways closely associated with disease markers and ther-
apeutic targets.** The great advantage of this technology exists in low reagent and
sample consumption, rapid interpretation of the results, and the ability to easily
manipulate experimental conditions.

The present study was designed to identify 14-3-3-binding proteins by using a
high-density human protein microarray. The array contains 1752 proteins derived
from multiple gene families of biological importance, including cell-signaling proteins,
kinases, membrane-associated proteins, and metabolic proteins. The entire procedure
could be accomplished within five hours of obtaining a specific probe. By probing
with V5-tagged 14-3-3¢, we identified twenty 14-3-3 interactors, most of which were
previously unreported except for glutathione S-transferase M3 (GSTM3) that was
reported previously.>® Unexpectedly, the highly stringent 14-3-3-binding consensus
motifs (STAC and HNPRC) were identified only in two by the Scansite Motif
Scanner search. The specific binding to 14-3-3 of EAP30, DDX54 and STAC was
validated by coimmunoprecipitation analysis of the recombinant proteins expressed
in HEK293 cells. These results indicate that protein microarray is an effective tool
for the rapid and systematic identification of protein—protein interactions, including
those not predicted by the Database searching.

POTENTIAL PROBLEMS REMAIN TO BE SOLVED IN THE PRESENT STUDY

In general, protein microarray has its own limitations associated with the efficient
expression and purification of native target proteins.***! The target proteins spotted
on the microarray we utilized were expressed by a baculovirus expression system
and purified under non-denaturating conditions to maximize the preservation of
native folding, posttranslational modifications, and proper functionality. In contrast,
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bacterially expressed proteins lack glycosylation and phosphorylation moieties, and
are often misfolded during purification. Post-translational modifications play a pivotal
role in a range of protein—protein interactions. Immuno-labeling with anti-phospho-
tyrosine (pTyr) antibody showed that approximately 10 to 20% of the proteins on
the array are phosphorylated (Invitrogen, unpublished data). When it was utilized
for kinase substrate identification, most of known kinases immobilized on the array
are enzymatically active with the capacity of autophosphorylation, suggesting that
they are certainly phosphorylated on tyrosine residues, probably on serine and
threonine residues (Invitrogen application note). However, we could not currently
validate the precise level of serine and threonine phosphorylation of individual target
proteins due to a lack of anti-phosphoserine (pSer) and anti-phosphothreonine (pThr)
antibodies suitable for detection on glass slides.

The protein microarray we utilized includes 11 known 14-3-3-binding proteins,
such as PCTAIRE protein kinase 1 (PCTK1),” protein kinase C zeta (PRKCZ),™
keratin 18 (KRT18),” myosin light polypeptide kinase (MYLK),”s v-abl Abelson
murine leukemia viral oncogene homolog 1 (ABL1),” v-akt murine thymoma viral
oncogene homolog 1 (AKT1),” epidermal growth factor receptor (EGFR),” cell
division cycle 2 (CDC2),® mitogen-activated protein kinase kinase kinase 1
(MAP3K1),% mitogen-activated protein kinase-activated protein kinase 2
(MAPKAPK?2),®2 and stratifin (SFN).3” However, none of these were identified as
positive. Therefore, there exists the possibility that some 14-3-3 binding partners
were not detected due to imperfect phosphorylation of target proteins, inaccessibility
by a sterical hindrance of epitope tags,® or a 14-3-3 isoform-specific binding ability.
Calmodulin, another known 14-3-3 interactor, is included as a negative control on
the array. It was found as negative in the present study, because the calcium-
dependent interaction between 14-3-3 and calmodulin could not be detected under
the calcium-free conditions we employed. Recently, by using two dimensional (2-D)-
gel electrophoresis and mass spectrometry, we showed that vimentin, an intermediate
filament protein, interacts with 14-3-3¢ in cultured human astrocytes.?® More
recently, we found that heat shock protein Hsp60 and the cellular prion protein PrPC
interact with 14-3-3( in human neurons in culture and brain tissues.8 Unfortunately, the
protein microarray we examined here includes neither vimentin, Hsp60 nor prion protein.

Recent evidence indicates that 14-3-3-binding phosphorylation sites do not
exactly fit the consensus motif,'?>7 and an accessory site is required to enhance a
stable 14-3-3-target interaction.**¢ Furthermore, 14-3-3 interacts with a set of target
proteins in a phosphorylation-independent manner.26-2° We found that the interaction
is independent of serine/threonine-phosphorylation of the binding sites of EAP30,
DDX54 and STAC, supporting this possibility.

BioLocGicAL RoLes oF 14-3-3-INTERACTING PROTEINS

Among the 14-3-3 interactors we identified, several proteins are categorized as a
component of multimolecular complexes involved in transcriptional regulation. ELL
is a human oncogene encoding a RNA polymerase II (Pol II) transcription factor
that promotes transcription elongation. EAP30 is a component of the ELL complex
where EAP30 mediates derepression of transcription by Pol I1,* although the PSORT
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II search suggests that its putative location is cytoplasmic. A recent study showed
that EAP30 interacts with the tumor susceptibility gene TSG101 product, a cellular
factor that mediates packaging of HIV virions.®” DDX54 is a RNA helicase that
interacts with estrogen receptor (ER) and represses the transcription of ER-regulated
genes.” A chromatin immunoprecipitation (ChIP) assay showed that hepatocyte
nuclear factor 4-alpha (HNF40), a master regulator of hepatocyte gene expression,
interacts with the DDX54 gene promoter, together with Pol I1.%# HNPRC belongs
to a member of heterogeneous nuclear ribonucleoproteins (hlnRNPs) involved in pre-
mRNA processing, mRNA metabolism and transport.5® Increasing evidence indicates
that the 14-3-3 protein and its targets are widely distributed in nearly all subcellular
compartments, including the nucleus.?3*

STAC has a cysteine-rich domain (CRD) of the protein kinase C family in the
N-terminal balf (NTF) and a src homology three (SH3) domain in the C-terminal
half (CTF), suggesting its role as an adapter on which divergent signaling pathways
converge.”'® STAC is expressed predominantly in the brain with the distribution in
a defined population of neurons.” IP analysis of mutant and truncated forms of
STAC argued against an active involvement of the most stringent motif RYYSSP
(pS172) in its binding to 14-3-3, and indicated that the interacting motif is located
in the N-terminal amino acid residues 2 to 105 without requirement of serine/thre-
onine phosphorylation.

FUTURE DIRECTIONS

Protein microarrays are a powerful tool for the rapid and systematic identification
of protein—protein and other biomolecule interactions. However, they are still under
development in methodological aspects. The strict quality controls of analytical
procedures,® validation of the results by different methods, and evaluation of enor-
mous data by bioinformatic approaches are highly important. The applications of
protein microarrays include characterization of antibody specificity and autoantibody
repertoire, and identification of novel biomarkers and molecular targets associated
with disease type, stage and progression, leading to establishment of personalized
medicine.*! Theoretically, this technology could determine all of the binding
partners at once, consisting of “the whole interactome” in a subset of cells responding
to specific treatment. It would open up a new avenue of drug discovery research.
Development of an ultrahigh-density protein microarray containing all spliced vari-
ants of target proteins could facilitate achievement of this purpose. A cell-free
transcription and translation-coupled system might provide an effective tool for
producing ideal proteins.®® At present, the most advanced version of human protein
microarray contains approximately 5000 GST-tagged proteins, commercially avail-
able from Invitrogen (ProtoArray v3.0), accompanied by an upgraded version of the
analytical software (ProtoArray Prospector). It seems highly efficient to screen a
large number of protein—protein interactions in human cells, including those unrec-
ognized by the conventional methods such as Y2H 9% However, when faced with
a huge amount of data, bioinformatic and statistical analyses become crucial (visit
the useful website of Pathguide for a comprehensive pathway resource list;
cbio.mskcc.org/prl). Recently, an ultrahigh sensitive detection method armed with
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silicon-nanowire field-effect sensors has come into use with its application to protein
microarray analysis.”® This promising technology could detect the low-femtomolar
range of interacting proteins, and greatly increase the detection sensitivity and
specificity.

SUMMARY AND CONCLUSIONS

The 14-3-3 protein family consists of acidic 30-kDa proteins composed of seven
isoforms in mammalian cells, expressed abundantly in neurons and glial cells of the
CNS. The 14-3-3 isoforms form a dimer that acts as a molecular adaptor interacting
with key signaling components involved in cell proliferation, transformation, and
apoptosis. Until present, more than 300 proteins have been identified as 14-3-3-
binding partners, although most of previous studies focused on a limited range of
14-3-3-interacting proteins. In this chapter we describe a comprehensive profile of
14-3-3-binding proteins by analyzing a high-density protein microarray (1752 proteins;
ProtoArray v1.0) using recombinant human 14-3-3¢ protein as a probe. We identified
twenty 14-3-3 interactors, most of which were previously unreported 14-3-3-
binding partners, although eleven known 14-3-3-binding proteins on the array,
including KRT18 and MAPKAPK?2, were undetected. The assay required less than
five hours. Unexpectedly, highly stringent 14-3-3-binding consensus motifs, such as
STAC and HNPRC, were identified only in two proteins by the Scansite Motif
Scanner search. The specific binding to 14-3-3 of EAP30, DDX54 and STAC was
verified by coimmunoprecipitation analysis of the recombinant proteins expressed
in HEK293 cells. These results suggest that protein microarray is a valuable tool
for rapid and comprehensive profiling of 14-3-3-binding proteins.
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To clarify the molecular mechanisms underlying multiple sclerosis
(MS)-promoting autoimmune process, we have investigated a compre-
hensive gene expression profile of T cell and non-T cell fractions of
peripheral blood mononuclear cells (PBMC) isolated from 72 MS
patients and 22 age- and sex-matched healthy control (CN) subjects by
using a cDNA microarray. Among 1258 genes examined, 173 genes in T
cells and 50 genes in non-T cells were expressed differentially between
MS and CN groups. Dewnregulated genes greatly outnumbered
upregulated genes in MS. More than 80% of the top 30 most
significant genes were categorized inte apoptosis signaling-related
genes of both proapoptotic and antiapoptotic classes. They included
upregulation in MS of orphan nuclear receptor Nurrl (NR4A2),
receptor-interacting serine/threonine kinase 2 (RIPK2), and silencer of
death domains (SODD), and downregulation in MS of TNF-related
apoptosis-inducing ligand (TRAIL), B-cell CLL/lymphoma 2 (BCL?2),
and death-associated protein 6 (DAXX). Furthermore, a set of the
genes involved in DNA repair, replication, and chromatin remedeling
was downregulated in MS. These results suggest that MS lymphocytes
show a complex paitern of gene regulation that represents a counter-
balance between prometing and preventing apoptosis and DNA
damage of lymphocytes.
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Introduction

Multiple sclerosis (MS) is an inflammatory demyelinating
disease of the central nervous system (CNS) white matter.
Although the etiology of MS remains unknown, immunological
studies have suggested that MS is an autoimmune disease mediated
by T-lymphocytes secreting proinflammatory T helper type 1 (Thl)
cytokines, whose development is triggered by a complex interplay
of both genetic and environmental factors (Compston and Coles,
2002). Increasing evidence indicates that the climination of
autoreactive T cells via apoptosis, a common regulatory mecha-
nism for normal development and homeostasis of the immune
system, is impaired in MS (Zipp et al., 1999). The mRNA levels of
Fas, Fas ligand, and I’NF»related apoptosis-inducing ligand
(TRAIL) are elevated in peripheral blood mononuclear cells
(PBMC) of relapsing—remitting MS (RRMS) patients, while T
cell lines established from these patients show a functional defect
in the Fas signaling pathway (Comi et al., 2000; Gomes et al,,
2003; Huang et al, 2000). The expression of B-cell CLL/
lymphoma 2 (BCL2) family proteins is dysregulated in lympho-
cytes of clinically active MS patients in a manner that promotes
resistance to apoptosis (Sharief et al., 2003). Furthermore,
apoptosis-regulatory proteins are aberrantly expressed in active
MS brain lesions (Bonetti et al., 1999; D’Souza et al., 1996).
However, the precise implication of these observations in
immunopathogenesis of MS is fairly limited, because most of
these studies have focused on a limited range of apoptosis-
signaling regulators.

The DNA microarray technology is a novel approach that
allows us to systematically and simultaneously monitor the
expression of a great number of genes. Application of this
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technique has begun to give us new insights into the complexity
of molecular inferactions involved in the MS-promoting auto-
immune process (Steinman and Zamvil, 2003). Actually, micro-
array analysis identified upregulation of a set of genes in active
MS brain lesions, whose pathological role has not been
previously predicted in MS (Lock et al, 2002). Recently, we
have studied the gene expression profile of T cells and non-T
cells derived from RRMS before and after treatment with
interferon-beta (IFNR) (Koike et al, 2003). [FNpB altered the
expression of 21 genes, including nine with IFN-responsive
promoter elements, thereby contributing to the therapeutic effects
of TFNB in MS. Supporting our observations, different studies
using distinct ¢cDNA microarrays identified IFNpB-responsive
genes expressed in PBMC of RRMS patients receiving IFN[
(Stiirzebecher et al., 2003; Weinstock-Guttman et al, 2003).
Importantly, a recent study showed that a battery of the genes
relevant to development of MS include those encoding apoptosis
regulators, although this study enrolled only four MS patients
(Maas et al., 2002).

Here we investigated a comprehensive gene expression profile
of CD3™ T cells and CD3™ non-T cells isolated from 72 MS
patients and 22 healthy subjects by using a cDNA microarray
containing 1258 genes of various functional classes. We found that
173 genes in T cells and 50 genes in non-T cells were differentially
expressed between MS and control (CN) groups. Unexpectedly,
more than 80% of the top 30 most significant genes were
categorized into apoptosis signaling-related genes of both proa-
poptotic and antiapoptotic classes, reflecting a counterbalance
between resistance and susceptibility of lymphocytes toward
apoptosis in MS.

Materials and methods
The study populations

The present study enrolled 72 Japanese, clinically active MS
patients and age- and sex-matched 22 Japanese healthy control
(CN) subjects. Their demographic characteristics are listed in
Table 1. The MS patients were diagnosed according to the
established criteria (McDonald et al., 2001). No patients had a
past history of treatment with interferons, glatiramer acetate, or
mitoxantrone. No patients had received corticosteroids or other

Table |
Demographic characteristics of the study populations

J. Satoh et al / Neurobiology of Disease 18 (2005) 537-550

immunosuppressants at least 1 month before blood sampling.
Written informed consent was obtained from all subjects.

RNA isolation from T cell and non-T cell fractions

Thirty milliliters of heparinized blood was taken in the
morning. Within 6 h, PBMCs were isolated by centrifugation on
a Ficoll density gradient. Immediately, they were labeled with anti-
CD3 antibody-coated magnetic microbeads and separated by
AutoMACS (Miltenyi Biotec, Auburn, CA) into a CD3” T cell
fraction and a CD3"™ non-T cell fraction, the latter composed of
monocytes, B cells, and NK cells. The viability of the cells and the
purtity of each fraction were verified by trypan blue dye exclusion
test and flow cytometric analysis. Total RNA was isolated from
each fraction by using RNeasy Mini Kit (Qlagen, Valencia, CA).
Five micrograms of purified RNA was in vitro amplified within a
linear range of the amplification, and the antisense RNA (aRNA)
was processed for ¢cDNA microarray analysis as described
previously (Koike et al., 2003).

cDNA microarray analysis

The present study utilized a custom microarray containing
duplicate spots of 1258 ¢cDNA immobilized on a poly-L-lysine-
coated slide glass (Hitachi Life Science, Kawagoe, Saitama,
Japan). They were prepared by PCR of sequence-known genes
of various functional classes, including cytokines/growth factors
and their receptors, apoptosis regulators, oncogenes, transcription
factors, cell cycle regulators, and housckeeping genes. The
complete gene list of the microarray is available upon request
(express(wls hitachi.co jp). Individual aRNA of MS patients and
CN subjects was labeled with a fluorescent dye Cy3 by reverse
transcriptase reaction. Pooled aRNA of three independent healthy
volunteers who were not included in the study was labeled with
Cy3 and used as a universal reference to standardize the gene
expression levels throughout the experiments as described pre-
viously (Koike et al., 2003). The arrays were hybridized at 62°C
for 10 h in the hybridization buffer containing equal amounts of
Cy3- or Cy5-labeled ¢cDNA, and they were then scanned by the
ScanArray 5000 scanner (GSI Lumonics, Boston, MA). The data
were analyzed by using the QuantArray software (GSI Lumenics).
The average of fluorescence intensities (FI) of duplicate spots was
obtained after global normalization between Cy3 and Cy5 signals.

Characteristics

Multiple sclerosis (MS) patients Healthy control (CN) subjects

The number of the study population ()

Age (average + 8D, year)

Sex (male vs. female)

Disease course (RRMS vs. SPMS)

Disease subtype (conventional MS vs. non-conventional MS)
Disease duration (average + SD, year)

EDSS score (average + SD, score)

Number of lesions on T2-weighted MRI (average + SD, number)

Number of relapses during 2 years before blood sampling (average = SD, number)
- SD, day)
Day of hospitalization during 2 years before blood sampling (average & SD, day)

Day of IVMP treatment during 2 years before blood sampling (average

72 22

36.1 £ 103 386: 4 12.3
17 vs. 55 6vs 16
65 vs. 7 (=)

57 vs. 15 (-)

7.7 + 5.4 ()

28 +20 {(—)
24.7 & 31.9 (-)

1.9 + 1.5 =)

59 & 58 (-}
49.7 + 70.0 ()

Based on the lesion distribution pattern, MS was separated into twe subtypes, that is, the conventional M that affects various regions of the CNS white matier

and non-conventional MS that affe

S

chiefly the optic nerve and the spinal cord. Abbreviations: RRMS, relapsing-remitting MS; SPMS, secondary

progressive MS: EDSS, expanded disability status scale: and TVMP, intravenous methylprednisolone pulse.
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The impact of inter-experiment variability was verified by
analyzing a scatter plot. The genes exhibiting the average FI
smaller than the level of 1000 were omitted to be processed for
further analysis. The gene expression level (GEL) was calculated
according to the formula: GEL = FI (Cy5) of the sample/FI (Cy3)
of the universal reference. Some results were expressed as box and
whisker plots.

The genes were categorized into the group of apoptosis
signaling-related genes, when their involvement in regulation of
apoptosis was identified through computerized searches in
PubMed.

Statistical analysis

The statistical significance of differences in GEL between MS
and CN samples was evaluated by a regularized 1 test (Cyber-T)
using the Bayesian inference of variance, where they were
considered as significant when the error rate of this test was
smaller than 0.05 (Baldi and Long, 2001).

Northern blot analysis

Unfractionated PBMCs of a healthy subject were suspended at
5 x 105 cells/ml in RPMI 1640 medium containing 10% fetal
bovine seram, 2 mM L-glutamine, 55 pM 2-mercaptoethanol, 100
U/l penicillin, and 100 pg/ml streptomycin. The cells were then
incubated in a 5%CO0,/95% air incubator at 37°C for 6 h in
medium with inclusion of both 25 ng/ml phorbol 12-myristate 13-
acetate (PMA; Sigma, St. Louis, MO) and 1 pg/ml ionomyein
(IOM; Sigma), or incubated for 24 h in the plate coated with 1 pg/
ml! mouse monoclonal antibody (mAb) against human CD3
(OKT3) or in the medium containing 100 ng/ml recombinant
human IFN-gamma (IFNv) (a specific activity of >2 X 107 wunits/
mg, PeproTech, London, UK). They were processed for RNA
preparation as described previously (Satoh and Kuroda, 2001).
Three micrograms of total RNA was separated on a 1.5% agarose—
6% formaldehyde gel and transferred onto a nylon membrane.
After prehybridization, the membranes were hybridized at 54°C
overnight with the DIG-labeled DNA probe synthesized by the
PCR DIG probe synthesis kit (Roche Diagnostics, Mannheim,
Germany) using the sense and antisense primer sets listed in
Supplementary Table 1 online. The specific reaction was visualized
on Kodak X-OMAT AR X-ray films by the DIG chemilumines-
cence detection kit (Roche Diagnostics).

Results

Microarray analysis identified differentially expressed genes in
peripheral blood lymphocytes between MS and controls

Among 1258 genes examined, 173 genes in T cell fraction and
50 genes in non-T cell fraction were expressed differentially
between 72 MS patients and 22 CN subjects (see Supplementary
Table 2 online for all data set). In T cell fraction, 25 genes were
upregulated, while 148 genes were downregulated in MS. In non-T
cell fraction, 11 genes were upregulated, while 39 genes were
downregulated in MS. Thus, downregulated genes greatly out-
numbered upregulated genes in MS. No genes showed an opposed
pattern of regulation between T cell and non-T cell fractions. The
top 30 most significant genes are listed in Tables 2 and 3, and

among them, top 10 are expressed as box and whisker plots (Figs. 1
and 2). Among top 30 genes, six genes, such as regulator of G
protein signaling 14 (RGS14), SWI/SNF-related, matrix-associated,
actin-dependent regulator of chromatin, subfamily a, member 3
(SMARCA3), transcription factor 17 (TCF17), carbohydrate sulfo-
transferase 4 (CHST4), cytochrome ¢ oxidase assembly protein
(COX15), and death-associated protein 6 (DAXX), were down-
regulated coordinately in both cell fractions.

The majority of top 30 differentially expressed genes between MS
and controls were calegorized inlo apoptosis signaling-related
genes

In T cell fraction, the top 30 contained 25 genes closely related
to apoptosis signaling (Table 2). They included upregulation in MS
of nuclear receptor subfamily 4, group A, member 2 (NR4A2; No.
1), transcription factor 8 (TCF8; No. 2), and cytochrome P450
family 1, subfamily A, polypeptide 2 (CYP1A2; No. 3). They also
included downregulation in MS of RGS14 (No. 4), mitogen-
activated protein kinase 1 (MAPKI; No. 6), SMARCA3 (No. 7),
TCF17 (No. 9), heat shock 70-kD protein 1A (HSPAIA; No. 10),
TRAIL (No. 12), topoisomerase 1 (TOP1; No. 13), protein tyrosine
phosphatase, non-receptor type 6 (PTPNG6; No. 14), chemokine,
CC motif, receptor 5 (CCR5; No. 15), v-erb-a erythroblastic
leukemia viral oncogene homolog 4 (ERBB4; No. 17), tran-
scription factor 21 (TCF21; No. 18), ATPase, hydrogen-trans-
porting, lysosomal, 56/58 kDa, V1 subunit B, isoform 2
(ATP6VIB2; No. 19), cAMP responsive element-binding protein
1 (CREBI; No. 20), integrin, beta 1 (ITGB1; No. 21), COX15 (No.
22), Myc protooncogene (MYC; No. 23), BCL2-associated
athanogene 1 (BAGI; No. 24), cell division cycle 16 (CDCl6,
No. 25), DAXX (No. 27), TGFB-stimulated gene 22 (TSC22; No.
28), GA-binding protein transcription factor, beta subunit 1
(GABPBI1; No. 29), and poly(ADP-ribose) polymerase (PARP;
No. 30). Surprisingly, the top 30 included none of Thl-specific
marker genes except for CCRS. The concurrent downregulation of
proapoptotic and antiapoptotic genes such as TRAIL, DAXX, and
BAG1 suggests that the gene expression pattern in T cells of MS
represents a counterbalance between promoting and preventing
apoptosis.

In non-T cell fraction, the top 30 contained 27 apoptosis
signaling-related genes (Table 3). They included upregulation in
MS of cell division cycle 42 (CDC42; No. 2), receptor-interacting
serine/threonine kinase 2 (RIPK2; No. 3), Max dimerization
protein (MAD; No. 5), chemokine, CXC motif, ligand 2 (CXCL2;
No. 6), silencer of death domains (SODD; No. 7), topoisomerase 2
alpha (TOP2A; No. 8), and intercellular adhesion molecule-1
(ICAMI; No. ). ICAMI was listed as an apoptosis signaling-
related gene because it provides a costimulatory signal to protect T
cells from apoptosis by upregulation of BCL2 (Kohlmeier et al.,
2003). They also included downregulation in MS of SMARCA3
(No. 9), RGS14 (No. 10), COX15 (No. 11), A-kinase anchor
protein 11 (AKAP11; No. 12), TCF17 (No. 13), cell division cycle
25B (CDC25B; No. 14), granzyme A (GZMA; No. 15), BCL2
(No. 17), complement component receptor 2 (CR2; No. 18),
replication protein Al (RPAI; No. 19), RNA polymerase II,
subunit I (POLR2H; No. 20), E2F transcription factor 5 (E2F5;
No. 21), Ras associated protein RAB7-like 1 (RAB7L1; No. 22),
nuclear factor of activated T cells, cytoplasmic, calcineurin-
dependent 3 (NFATC3; No. 23), heat shock 70-kD protein-like 1
(HSPA1L; No. 24), retinoblastoma-binding protein 4 (RBBP4; No.
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