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Abstract

We performed screening of B-galactosidase-deficient fibroblasts for possible chemical chaperone therapy using N-octyl-4-epi-B-
valienamine (NOEV) in patients with Gyy-gangliosidosis and Morquio B disease (B-galactosidosis). Fibroblasts were cultured with
NOEY for 4 days and B-galactosidase activity was measured. Mutation analysis was performed simultaneously. Two separate cri-
teria were set for evaluation of the chaperone effect: a relative increase of enzyme activity (more than 3-fold), and an increase up to
more than 10% normal enzyme activity. Among the 50 fibroblast strains tested, more than 3-fold increase was achieved in 17 cell
strains (34%), and more than 10% normal activity in 10 (20%). Both criteria were satisfied in 6 (12%), and either of them in 21 (42%).
Juvenile Gy -gangliosidosis was most responsive, and then infantile Gwmi-gangliosidosis. This enhancement was mutation-specific.
We estimate that the NOEV chaperone therapy will be effective in 20—40% of the patients, mainly in juvenile and infantile Gy;-gan-
gliosidosis patients. A molecular design may produce mutation-specific chaperone compounds for the other disease phenotypes.
This cellular screening will be nseful for identification of human patients with B-galactosidase deficiency for chaperone therapy

to be started in the near future.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Hereditary deficiency of lysosomal acid B-galactosi-
dase (B-galactosidosis) causes two clinically distinct dis-

" Corresponding author. Tel./fax: +81 287 24 3229.

E-mail addresses: hiwasaki@iuhw.ac.jp (H. Iwasaki), watanabeh@
iuhw.acjp (H. Watanabe), masami.iida@seikagaku.co.jp (M. Iida),
sogawa379@ybb.ne.jp (S. Ogawa), m-tabe@srl.srl-inc.co.jp (M. Tabe),
kh4060@grape.med.tottori-u.acjp (K. Higaki), enanba@grape.med.
tottori-u.acjp (E. Nanba), SuzukiY@iuhw.ac.jp (Y. Suzuki).

! Fax: +81 42 563 5846.
% Fax: +81 45 566 1551.
® Fax: +81 426 48 4161.
* Fax: +81 859 34 8284.

0387-7604/3 - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.braindev.2006.02.002

eases in humans, Gpy-gangliosidosis and Morquio B
disease [1]. The mode of inheritance is autosomal reces-
sive. Gy1-gangliosidosis is a generalized neurosomatic
disease occurring mainly in early infancy, and rarely in
childhood or young adults. Morquio B disease is a rare
bone disease without central nervous system involve-
ment. Glycoconjugates with terminal B-galactose resi-
dues accumulate in tissues and urine from patients
with these clinical phenotypes. Ganglioside Gy and
its asialo derivative G4y accumulate in the Gy-gangli-
osidosis brain. High amounts of oligosaccharides
derived from keratan sulfate or glycoproteins are detect-
ed in visceral organs and urine from Gy;-gangliosidosis
and Morquio B disease patients.
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At present only symptomatic therapy is available for
human B-galactosidosis patients. Allogeneic bone mar-
row transplantation did not modify the subsequent clin-
ical course or cerebral enzyme activity in a Portuguese
water dog affected with Gy;-gangliosidosis [2]. Amniot-
ic tissue transplantation was not effective in a patient
with Morquio B disease [3]. Enzyme replacement thera-
py conducted for Gaucher disease and other lysosomal
storage diseases is not available at present for
B-galactosidosis.

Recently we reported results of a molecular approach
(chemical chaperone therapy) for restoration of mutant
o-galactosidase in Fabry disease. Galactose and its
structural analog, 1-deoxygalactonojirimycin, enhanced
residual enzyme activity in cultured human lympho-
blasts from patients with o-galactosidase deficiency
[4,5), and transgenic mouse tissues expressing a mutant
enzyme causing Fabry disease [5,6]. Some mutant pro-
teins are unstable at neutral pH in the endoplasmic retic-
ulum/Golgi apparatus and are rapidly degraded without
appropriate molecular folding [7,8]. Exogenously sup-
plied chemical compounds that inhibit enzyme activity
in vitro bind to the enzyme intracellularly to form a
complex, stabilizing and transporting the catalytically
active enzyme to lysosomes. The complex dissociates
under the acidic condition in lysosomes, and the mutant
enzyme remains stabilized and functional.

In a previous report we confirmed the effect of a new
chemical compound N-octyl-4-epi-B-valienamine
(NOEV) on cultured fibroblasts and model mice
expressing a mutant P-galactosidase protein R201C
[9]. In this study, we conducted screening of the patients
with B-galactosidase deficiency for possible chaperone
therapy in the near future.

2. Materials and methods
2.1. Chaperone compound NOEV

NOEV was synthesized by modification of a gluco-
cerebrosidase inhibitor [9,10]. It is stable at room tem-
perature and strongly inhibits human -galactosidase
in vitro. It is freely soluble in methanol or dimethylsulf-
oxide, and soluble in water up to 3-5 mM at room tem-
perature. The molecular weight is 287.40.

2.2. Fibroblast culture

Fibroblasts from patients with B-galactosidase defi-
ciency (Gui-gangliosidosis or Morquio B disease) were
stored in our laboratories, purchased from Coriell Cell
Repositories (Camden, NJ, USA), or provided by the
following colleagues at medical and scientific institu-
tions: Mark Abramowicz and Patrick Van Bogaert
(Brussels), Nils U. Bosshard (Zurich), Ernst Christensen

(Copenhagen), Fatih Siiheyl Ezgli (Ankara), Mirella
Filocamo (Genova), Agata Fiumara (Catania), Erent-
raud Irnberger (Salzburg), Koji Inui (Osaka), Wim J.
Kleijer (Rotterdam), Jana Ledvinova (Prague), Gert
Matthijs (Leuven), Toshihiro Oura (Sendai), Alan Percy
(Birmingham, AL), Konrad Sandhoff and Gerhild van
Echten-Deckert (Bonn), George H. Thomas (Baltimore,
MD), David A. Wenger (Philadelphia, PA), and Marie-
Therese Zabot (Lyon). The fibroblasts were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal bovine serum and antibiotics,
and harvested by scraping. They were collected by cen-
trifugation, washed once with phosphate-buffered saline,
and suspended in water. The cell suspension was soni-
cated, and used for enzyme assay (enzyme solution).

2.3. Enzyme assay

B-Galactosidase assay was performed on 96-well
plates. The enzyme assay mixture consisted of 10 pl
enzyme solution, with or without NOEV at the final
concentration up to 5 uM, and 10 pl substrate solution
containing 1 mM of 4-methylumbelliferyl-p-galactoside
(Sigma, St. Louis, MO, USA) in 0.1 M citrate buffer
(pH 4.5) and 0.1 M NaCl. After incubation for 1h
at 37 °C, the enzyme reaction was terminated by add-
ing 0.2 M glycine-NaOH buffer (pH 10.7), and the lib-
erated 4-methylumbelliferone was measured by
fluorometry (excitation 355 nm; emission 460 nm) as
described previously [11]. Protein was determined with
the BCA Protein Assay Kit (Pierce, Rockford, IL,
USA).

2.4. In vitro NOEV experiment

In this experiment human fibroblasts expressing nor-
mal (wild-type) B-galactosidase activity were used as an
enzyme source, and NOEV was added to the enzyme
assay mixture at final concentrations of 0-5 pM.

2.5. In situ NOEV experiments

Confluent fibroblasts (wild-type or mutant) were cul-
tured in DMEM with or without NOEV (0, 0.2, 2, or
6 uM) on a 3.5-cm culture dish for a short-term experi-
ment (4 days), or on a 10-cm culture dish for a long-term
experiment up to § weeks. During the long-term culture
the culture medium was changed regularly twice a week.
Every 7-8 days, the cells were trypsinized, one-half was
stored for enzyme assay and the other half was kept on
culture.

For final harvesting and enzyme assay, the cells were
scraped, collected by centrifugation, washed once with
phosphate-buffered saline, suspended in water, and
homogenized by sonication. The cell pellets were kept
frozen at —80 °C until enzyme assay.



484 H. Iwasaki et al. | Brain & Development 28 (2006) 482-486

2.6. Gene mutation analysis

We tried to collect information about clinical and
genetic data for each of the patients. However, informa-
tion about phenotype and genotype was not always sat-
isfactory. Enzyme deficiency was confirmed in our
laboratory for all fibroblast strains in this study. Some
cell strains without known genotype were subjected to
gene mutation analysis [12]. After extraction of genomic
DNA from human fibroblasts, each of the 16 exons with
flanking sequence was amplified by polymerase chain
reaction under the standard conditions. All exons except
1, 4,7, and 9 were sequenced directly using ABI Prism
3100 Genetic Analyzer (Applied Biosystems Japan,
Tokyo, Japan). The amplified exons 1, 4, 7, and 9 were
subjected to single strand conformation polymorphism
[13]. Exons with aberrant bands were subcloned into
PGEM-T vector (Promega, Madison, WI, USA) and
sequenced.

3. Results
3.1. In vitro NOEYV experiment

Addition of NOEYV resulted in a dose-dependent inhi-
bition of the normal human B-galactosidase activity
in vitro (Fig. 1). It was reduced to 20% of the back-
ground activity at the concentration of 0.5 uM in the
assay mixture. The ICso was calculated as 0.125 pM.

3.2. Time course of enzyme activity in cultured fibroblasts
in response to NOEV

The background enzyme activity was variable in
patients with various clinical phenotypes. In general,
the cells from late-onset patients showed higher
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Fig. 2. B-Galactosidase activity after incubation for 4 days with or
without NOEYV. In some cell strains the enzyme activity was enhanced
by 0.2-2 uM NOEY in the culture medium. Each value is the mean of
triplicate assays. Two peaks of maximal activity were observed.
Normal control values: mean 538 4 230 nmol/h/mg protein; range:
220-1071 (n=19), and 10% of the control mean: 54 nmol/h/mg
protein.

residual enzyme activities. In some cell strains, the
enzyme activity was significantly enhanced after incu-
bation for 2-4 days with 0.2-2 uM NOEYV in the cul-
ture medium (Fig. 2). The increase continued up to 7
days and then remained at the same level for 8 weeks
(data not shown). The rate of cell proliferation
remained the same as that for the cells without
NOEV treatment.

3.3. NOEV effect and phenotype

Table 1 shows the cumulative summary of the cell
study. The positive response was defined either as more
than 3-fold increase, or as an increase up to 10% or more
of the control mean (54 nmol/h/mg protein). The first
condition was satisfied in 17 cell strains (34%), and the
second condition in 10 (20%); both conditions were sat-
isfied in 6 (12%), and either of them in 21 (42%). The

Table 1
NOEYV effect and phenotype
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Fig. 1. Inhibition of B-galactosidase activity by NOEV in control
human fibroblasts. NOEV was added to the enzyme assay mixture at
final concentrations up to 0.5 pM. Inhibition of enzyme activity was
dose-dependent. Each value is the mean of triplicate assays. (4) normal
control; (J) pathological control (dysostosis multiplex congenita).

Phenotype Onset Total Positive response
>3-fold >10%

Gyi-gangliosidosis Infantile 31 10 2
Juvenile 8 7 4
Adult 7 0 4
Morquio B 3 0 0
Intermediate 1 0 0
50 17 10

The fibroblasts were cultured in the medium containing 2 pM NOEV
for 4 days, and the enzyme activity was assayed. The positive response
was defined as a more than 3-fold increase (>3-fold), or as an increase
up to more than 10% of the control mean (>10%). The background
activity was 3-10% in adult Gy -gangliosidosis, and the resulting
relative increase was not high as compared to infantile or juvenile
Gypi-gangliosidosis.
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maximal enzyme activity was observed in two peaks
either at 0.2 or 2 uM in most cell strains with positive
response.

Juvenile Gy -gangliosidosis was most responsive
among the four clinical phenotypes tested in this study;
relative increase in 7 of 8, and higher than normal 10%
activity in 4 of 8. There was a relative increase of enzyme
activity in 10 of 31 infantile Gyy;-gangliosidosis cells in
response to NOEV, but the enzyme activity reached
more than the 10% normal level in only 2 cell strains.
Adult Gpp-gangliosidosis and Morquio B disease
apparently did not respond well to NOEV under the
experimental conditions in this study. In general they
showed relatively high residual enzyme activity, and
the enzyme activity after NOEV treatment did not reach
the 3-fold increase level, although an increase up to 10%
of the normal control mean activity was achieved in four
of seven cell strains.

3.4. NOE VAeﬁ’ect and genotype

We collected more than 50 different B-galactosi-
dase gene mutations [1]. In this study gene mutation
analysis revealed several new or known mutations
(data not shown). The effect of NOEV was geno-
type-specific (Table 2). Among the mutations exam-
ined, the amino acid substitution at 201 (R201C,
R201H) causing juvenile Gyy;-gangliosidosis respond-
ed maximally to NOEV at 2uM, and the amino
acid substitution at 457 (R457Q) causing infantile
Gy-gangliosidosis at 0.2 pM. The effect for these
amino acid 457 or 201 mutations was confirmed in
homozygous mutants. The response was less remark-
able in compound heterozygotes with Q255H,
V439G, Y57X, Y324C, or other mutations in human
fibroblasts with p-galactosidase deficiency disorders
(Table 2).

Table 2

NOEYV effect and genotype

Mutation Relative increase Optimal NOEV
concentration (uM)

R457Q 5- to 10-fold 0.2

R201C, R201H 5- to 10-fold 2

Q255H, V439G, 2- to 6-fold 0.2-2

Y57X, Y324C, others

I51T, W273L, others 0.5- to 1.2-fold -

The fibroblasts were cultured in the medium containing 2 pM NOEV
for 4 days, and the enzyme assay was performed. The relative increase
was calculated as compared to the activity without NOEV in the cul-
ture medium. In the homozygous mutants, the NOEV effect was
clearly and unambiguously concluded under the conditions in this
study; such as R457Q, R201C, or R201H (positive), and I51T or
‘W273L (negative). No definite conclusion was possible for the optimal
concentration of NOEV on the other mutations, such as Q255H,
V439G, Y57X, Y324C, and others, because they were found as
heterozygous with another known or unidentified mutation.

4. Discussion

Low molecular weight compounds for chemical chap-
erone therapy act as in vitro inhibitors at high concen-
trations and as in situ activators at low concentrations.
We first demonstrated this apparently paradoxical phe-
nomenon in Fabry disease [4-7], and then in Gy-gan-
gliosidosis [9] and Gaucher disease [14]. The mutant
protein expressed in the cell does not exhibit catalytic
activity because of a defect in molecular folding and
rapid degradation after biosynthesis [8,15]. This princi-
ple was recently demonstrated in a patient with Fabry
disease with deficiency of a-galactosidase A by infusion
of galactose for a short period [16].

We synthesized a new chemical compound NOEV as
a potent inhibitor of human B-galactosidase [10], and
anticipated that it would be useful for chemical chaper-
one therapy of patients with B-galactosidase deficiency.
Our previous study confirmed stabilization and restora-
tion of the enzyme activity by this chaperone compound
in the Gyq;-gangliosidosis model mouse expressing the
R201C mutation [9].

In this study, we tried a screening of patients with
B-galactosidase deficiency for possible chaperone thera-
py using NOEV in the near future. Six cell strains in this
study satisfied the two criteria for significant restoration
of enzyme activity (3-fold increase and 10% of the con-
trol mean) to the level possibly sufficient for intraneural
substrate degradation. We anticipate that the patients
with the mutant genes satisfying one of two criteria in
this study (at least 12% and at most 42%) will be good
candidates for treatment and prevention of neurological
manifestations during the course of the disease.

We postulate the lower limit of the enzyme activity
for intracellular degradation of the substrates is 10%
of the control mean (54 nmol/h/mg protein) based on
our previous cell and tissue experiments (unpublished
data). However, there are a few cell strains, particularly
from adult Gy -gangliosidosis patients, with the residu-
al enzyme activity already at this level. We are fully
aware that the above working hypothesis is based on
in vitro experiments using fibroblasts (not neural cells)
and a synthetic (not physiological) substrate for enzyme
assays.

A few common mutations are known to cause specific
phenotypes, such as R428H and R208C for infantile
Gu-gangliosidosis, R201C for juvenile Gy -gangliosi-
dosis, I51T for adult Gy;-gangliosidosis, and W273L
for Morquio B disease [17-19]. In the present study
the cells were collected randomly. However, the degree
of efficacy in this study was dependent on the number
of patients with common mutations causing individual
phenotypes.

Under the conditions of our study, we found two
different response types among the cells studied. Some
cells responded to NOEV maximally at 0.2 uM and
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the others at 2 uM. This result indicates that the molec-
ular interaction between the chaperone compound and
mutant protein is mutation-specific. We anticipate that
a molecular design will be possible for synthesis of
new chaperone molecules for mutation-specific activity
in future.

A similar therapeutic trial but in the opposite direc-
tion has been reported by inhibition of substrate biosyn-
thesis, substrate deprivation therapy, for Gaucher
disease [20] and Gy-gangliosidosis [21]. In the latter
using the disease model mice, ganglioside Gy was
reduced in the brain but asialo-ganglioside Ga; was
not. More studies are necessary for solid conclusion
on the biochemical and clinical effects of this trial.

The purpose of our study is to develop a new drug for
Gi-gangliosidosis, an intractable neurogenetic disease
in children and adults. Chemical chaperone therapy
has two major advantages over enzyme replacement
therapy currently in use for medical practice: oral
administration and accessibility to the brain [9]. Biosyn-
thesis of a catalytically active enzyme is a prerequisite
for chemical chaperone therapy. Although this new
molecular approach is not efficient in all patients with
a single lysosomal enzyme deficiency disorder, it is
important that prevention or treatment could be
achieved even in some of the patients with an intractable
progressive neurological disorder.
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EEth D EAXH

fEsk, BEFEERFEITITISSCPE (single-
strand conformation polymorphism) SYLA & A
Ta&zzv., ffF, K3 X b THZ L v DHPLC
% (denatured high-performance liquid chromatog-
raphy | 4 F V3t EEEEEA s O b S
774 =) BSSCPEIRIERLTETW
52,

B, UTEBYTHAE. EFETIDNA &
RETIDNA DER % &L5818% PCR THIEE,
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GHLBESSE, 2BEOAT OB L2
BEORE_RBEETRR S TS, BEDDH HE
UTRIZAT Y FDR0, KEFEEITEREN
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Henrggdnzl, BHEBEOZEL LTRET
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TAYNTEERD AT 4L HPLC % M A A7
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LTz, bbb L7z WAVE ¥ 2 5
LERNIZL-TT T by ¥ — VBT ERBN
IZD2DWTiHRN5,
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2031 FFEZI—-—FLTWwWE., Zhbl6DLy
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EIESNAPCR /IS4 v—%2F&st L7 (F1).
INLTIA4v—%HW, L NEEMEB IOV
B BAEF MR L VB L2/ L DNA 24
f&£& U Ampli Taq Gold (Applied Biosystems) %
AW7295T 54, 95C14r, 60C14, 72°C
150 35HA27WV), 2C50DF A 7 LT
PCR L % 4T © 72 (Gene Amp PCR System
9700, Applied Biosystems). PCR E¥ D —E %
THU = A7 VESIKE) TR, Y — <L
A2 7 —=12T 95 C a4 MnEkt 45 BT T
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1 DHPLCE[C KBEEMRTDERE
http: //www.transgenomic.com/& ¥) 8|
EREECPCRENEEEPCREN#ELE LNSMEBEEA TS 2
ETATOZEHEREZEHEATR S Y, HPLC THET 3 =
EICENELZBEOE -V HBHETE3

BCETT=—) U788, "TU_EH#HOT
BaiTol:. ZE#HOEBRIIEFR Y bo—
)V DNA, BEDNABLUIEE L EEDNA D
BAEBD3EY MZDOWTIFV, DHPLC T
L.

DHPLC T DAEZRMRMBEE 2 AT 5 01,
TREDRE Tm B L UBHEN 5V Ty b2
EDTHEHRDBEETH A, TmiIHFET S
V7 FY =7 (WAVEMAKER™ software
Transgenomic, Inc.) &, the Stanford Genome
Technology Center software ( http://insertion.
stanford.edu/melt.html) D5 % A\, &
SN TMEBLIVTLET2CO=ZETHOR Y
V==Y 7 %47 o 72. WAVE fragment fRfT3E
T, A= 751280 oy 7
DHBED T DITIEATE, DNA DA 2 v 3iiARZs
MERREI O N7 —I2L ) BEES
B, BHE 254 nm IS BT BELEIZ L DT
N5, EEEDNA DADGE, REZREBD 1
KDY -7 5 SN 555, ¥ 7IVDNAIC
RRITZEZENVELET 254, EEEDNA
CEERDL2ER, bLLFFAUEOY -2 &



LTHHESNE.

RBICEEOY - I BRONLERICONT
3, BE¥Y— 7 A (ABI Prism 3130xl
DNA Seqencer; Applied Biosystems) (2 & V) E1&
FEEOFRE fT-o7 (F2). ThET, 13
ANDB-FF7 Mo & —EBRBEDEZEIZDONT
BEBINEToHEREILAKCDOVWT200EE
rAEL, 209 LOEEFHFREETH -7
(F2).

WAVE & QBRI 1EH 720 105
RELRAETH D, WAVE BITEE DML
SSCPEICHAREMTH 5748, EATE ITR
®, BEIPOEKIANRFETH A,

BRET—5 DR

01%D%7 /) LEFIETRTOE FTEZoT
BY, Boro B EFOEENREEDEREIC
BB EIDETTIEETHILEND S,
WAAMICIIRBEERRICLY, BETFEREDY
BIZFEY (BH) OBEEELZETTILE
ST A EAEMETHE, LrL, TNITER
RZHE LTHWAICIIAENTII 2\,

BEIL, A5 -4y PETHABETESET—
FR—REDBEETV, BEETHANE D H
RHERT L, EESHOT—IR—ALLTRHE
NCBI & SNP 7 — % (http ://www. ncbi. nlm.
nih.gov/SNP/) 2% V), BZFEEDT— %

£K1 ERB-AST MNF—EBIGFICHWT S PCR TS5 A V—& PCRIBIEEYMOT X

- o PCR size
exon sense (50—30) antisense (50—30)
(bp)
1 caggccgtgggtccttagtcaagt gccagecctgtecectagcaatyg 204
2 gctactctcaaaggatcggecttctgaaa tatcttctctecagagtgggtgttcagg 303
3 gecttctecctettatecatgtgttage taaaagacacctgtgctgggtacagtcc 401
4 ccccttgteccttgaagettttattett tgtatttttagtaggggcgaggttttge 347
5 agtttacgaatttgtgttgggccacatt gccttecccaaatgcaattgaactaaaag 358
6 aggatctecctcatttttcecetgetettt atgaaaaatctcaatctgcccatgacac 330
7 actaacattctgaccgtagcagggette tcattcacatgtccagaatggctatgac 325
8-9 ctttacacctgtcatagatggggcattg cacacccctcecctcaaattaatcaacaga 412
10 cgtctgtgtcteccaacaagtggtttta gtgagttcaaaagaggctetgtccaaga 312
11 gcactgttgagtctttgaccttgcttte ttcgcagaaaaataacgaaccaattcct 301
12 gggagtagatggagaggactgaaggaga ggatctgatgcatttgettaccattttg 391
13 ggaggtggaggaagattttcattcecttia ctgaaaaggtgagcaaagaccccaaat 343
14 tctecttgetgaccttettacectecaat tattttacccaggctggtecttgaactee 348
15 atttcgaggttcatttectgttggtgtt aagtttaggcctgaattcaaacccttce 427
16 ggggttgatggttctctgtectetetete gaaacctcaggtgaaaatgcacatccta 467
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DHPLC BEMIC L WER E BA 3188 - p BN 3. ATHAAEENBAE2EE LT, EENE, &, RELIEDN3
oy FOY L TLERETS. BENICEEEY -/ I AN TRERETS

2 BERB-ASY NS —EBIEFHRIFOER (MMBID £+ —538)

NS mutation exon | amino acid base phenotype note
1 I181K 5 181lle — Leu 542T— A | Hm | Turkish, Inf GMnew
2 D640E 16 | 640Asp — Glu 1920C—G | ht | Japanese, Inf GM! | new
M430V 14 | 480Met — Val 1438A—G | ht new
R482H 14 | 482Arg — His 1445G—A | ht ~ Italian Inf GM1, Caucasian MB
3 | no mutation in all exons Japanese, Inf GM1
4 | no mutation in all exons Japanese, Inf GM1
5 R148C 4 | 148Arg— Cys 442C—T | ht |Japanese, Inf GM! | new
6 R208C 6 | 208Arg — Cys 622C—T | Hm | Japanese, Inf GM1 | ~ American Inf GMI
7 R59H 2 59Arg —> Cys 176G~ A | ht | Japanese, Inf GMI | ~ Brazilian Inf GM]1
D332E 10 | 332Asp — Glu 996C—~G | ht new
8 R482H 14 | 482Arg — His 1445G — A ht | Japanese, Inf GM1 | ~ Italian Inf GM1, Caucasian MB
P549L 15 | 549Pro — Ley 1646C—T | ht new
9 1276-277ins G| 3 | frame shift + stop codon Hm | Japanese, Inf GM1 | new
10 R201C 6 | 201Arg— Cys 601C—T | ht |unknown ~ Japanese Juv. GM1
R201H 6 | 201Arg — Hys 601C—T | ht ~ Caucasian Adult GM1
R201Y 6 | 201Arg—Try | 601-602CG—TA | ht new
11 S541 2 54Ser — Ile 161G—T | ht |unknown new
12 R59C 2 59Arg — Cys 175C—T | ht | unknown new
T82M 23 | 82Thr — Met 245C—T | ht ~ Caucasian Adult GM1
13 R201C 6 | 201Arg— Cys 601C—T | ht |Jap Adult GM1 ~ Japanese Juv. GM]1
T420K 13 | 420Thr—Lys 125C—A | ht new

NS :Number of Patient Sample, Hm : homozygous, ht: heterozygous
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AN — R & L T ¥ The Human Gene Mutation
Database (HGMD) (http://www.hgmd. cf.ac.
uk/ac/search.html) 2 EVHFEEL, ThH6D
T— I N=ZARBEORLOEEE L2 BEI
LT, BRAEE, FHEE, E¥ELELE0Y
B4 .

RINICRALT

BIETFRITOME L LTI RNA & DNA 5
ERWLNTE . HETIL, DNA 2§ 5
CERERE R oTWA, —ERIICIEREILE
f§9 Z &AL\, FBE, ERE, WEREDL
LODNARDEET LI ENTRTH L, KiF
Mo%AIE, EDTA *HEEZE L LTHWAZ
L%, 4CTELRZRIRT OB RIREDFT
BETHY, 1 ~SmBEORMLTHEE T TR
DNA g bh 5.

(RIBH SRR

BEFRATERICBVWTE, T b/ 4
EETFEHATHIZEICE Y A MmEiEst] CUERE
&, EEmEE, BREEXE FHIBZE3A
20 H, FER164 12 A 28 H &k, FH17
f£6 B 29 B—EYIE) PEDLNTBY, £
FRCOHRHEEESODER LB TUTILEND 5.
Lo L, BESHEEN LY SEBEROBRE L
THENIIEEFBHZ2IT) 2Lt oT
XTWh., ZOBEIE, [BEFEHREICHE
TEAANTA V] (FRISER EITEF
BE 10%4) 2o, ToREENIY V&Y
v, EEICEAA VT A=A avEs b,
BEOEL R EICEEL, EETENzED
Tw (.

EinFEhORERRICEALT

FORLAENHIELHEEZONDLER
RBEEEICBVTE, RESHTELVAVTOI
v — Uy VIREOE R T T LL, HRE
O EAEZBWVIRRICH S, TNHITHLT,
ABARERRBFEFESDOF— L= (http:
/lwww.jsimd.org/) £ O [&HEHDOEMTE],
FRFEHARETHRESN TS [k b Germline
BEF - RBEREEL VT4 VTN ]
(http : //www.kuhp.kyoto-u. ac. jp/ idennet/ DB/
index3.html) 7 &2 E 2% A, & HIZ Gene
Tests (http://www.genetests.org/) D% A + %
FATLI LI T R A% EDRERRD
BHEBLZLDTAETHD. LirL, EEF
BWE, RETONEL LTEED LR
BoTETBY, ZOREFZM VAT LAZYL
T AP, SHBOBELZRETH L.

SEOBREINICDOWLT

bhbhid, MEWAVEV AT LAz Hniz
BB =AW TWwAD, DNARA 787 LA
Bt (DNA v 7HiAl) O#EFITIEBEZ AT 5
bODH B, wIEFE S N7z Genome Tiling
Amray? % EEFAETHZLICEY, EL DOEE
FOEEY—EIZRDITAI EDTHEEICR T
iz BREOCRERRBEEEDOETFER
¥, —EWEEICAZ ) —= v/ TE%DNA
F v TOREFITONATRENH 5.
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Abstract Krabbe disease is an autosomal recessive leu-
kodystrophy. It is pathologically characterized by
demyelination of the central and peripheral nervous
systems and the accumulation of globoid cells in brain
white matter. It is caused by a deficiency of galacto-
cerebrosidase (GALC) activity. We investigated muta-
tions of the GALC gene in 17 Japanese patients with
Krabbe disease, the largest subject number of Japanese
patients to date, and found 27 mutations. Of these
mutations, six were novel, including two nonsense
mutations, W115X and R204X, two missense mutations,
S257F and L364R, a small deletion, 393delT, and a
small insertion, 1719-1720insT. Our findings, taken with
the reported mutations in Japanese patients, confirm
several mutations common to Japanese patients, the two
most frequent being 12Del3Ins and I66M +1289V,
which account for 37% of all mutant alleles. With two
additional mutations, G270D and T652P, these account
for up to 57% of genetic mutations in Japanese patients.
Distribution of the mutations within the GALC gene
indicated some  genotype—phenotype correlation.
166M +1289M, G270D, and L618S contributed to a
mild phenotype. Screening for these mutations may
provide an effective method with which to predict the
clinical phenotype.
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Introduction

Krabbe disease (globoid cell leukodystrophy: GLD,
MIM 245200) is an autosomal recessive neurodegener-
ative disorder caused by a deficiency of galactocereb-
rosidase (GALC) (EC 3.2.1.46). It was first reported by
Krabbe (1916) under the title “A new familial, infantile
form of diffuse brain sclerosis”. Approximately 90% of
patients have the early infantile form, first manifesting
symptoms before 6 months old and experiencing rapid
disease progression over the ensuing 1 or 2 years
(Wenger et al. 2001). The remaining 10% have late-onset
Krabbe disease and are classified into one of three
classes, late-infantile type, juvenile type, or adult type,
depending on the onset period and the rate of progres-
sion of the disease. Molecular cloning of the human
GALC gene by Chen et al. (1993) (GenBank Accession
No. L23116) and Sakai et al. (1994) (GenBank Acces-
sion No. 138544, 1.38559), has led to molecular-level
analyses of Krabbe disease.

More than 60 GALC mutations, all with molecular
heterogeneity, have been reported worldwide (Wenger
et al. 1997). Whereas several papers (Tatsumi et al. 1995;
Furuya et al. 1997; Kukita et al. 1997-98; Satoh et al.
1997; Fu et al. 1999) have reported Krabbe disease
mutations in Japanese patients, clear genotype—pheno-
type correlations remain obscure, because of the small
number of subjects studied. We evaluated the GALC
gene in 17 Japanese patients, classifying mutations
according to clinical phenotype. Here, we report the
common mutations and the correlation between such
mutations and their clinical severity.

Materials and methods
Patients

We studied 17 unrelated Japanese patients with Krabbe
disease, originating from different regions of Japan.



There were no consanguineous marriages between the
patients’ parents. The subjects included three (patients
Al, A2, and A13) included in a previous study who were
shown to have only one single mutant allele. The clinical
information is summarized in Table 1. Diagnoses were
determined in our laboratory as reduced GALC activity
in either fibroblasts or leukocytes, and by other char-
acteristic clinical and laboratory findings. According to
the age at onset, patients were classified into one of four
clinical phenotype groups: infantile onset, aged up to
6 months, nine patients; late-infantile onset, 7 months to
2 years, two patients; juvenile onset, 3-8 years, four
patients; and adult onset, over 9 years, two patients.

Amplification of genomic DNA

After informed consent, genomic DNA was prepared, by
standard methods, from patients’ peripheral blood leu-
kocytes and/or cultured skin fibroblasts and used for the
subsequent studies. PCR reactions were conducted in 25-
pL reaction volumes containing approximately 100 ng
genomic DNA, IXPCR reaction buffer (50 mmol L™!
KCI, 10 mmol L™" Tris-HCI), 1.5 mmol L™! MgCl,,
0.2 mmol L™" dNTP, 0.2 pmol L™! of each primer, and
1.25 U Tag DNA polymerase (Promega, Madison,
USA). The thermal profile consisted of initial denatur-
ation at 95°C for 5 min, followed by 35 cycles at 95°C for
I min, 51°C for I min, and 72°C for 2 min, with a final
extension at 72°C for 7 min. Each PCR mixture (5 uL)
was run on agarose gel to ensure that only the specific
product was amplified. Seventeen pairs of primer se-
quences for amplication of exons and exon-intron
boundaries of GALC gene are listed Table 2.

Screening for 12Del3Ins and 166M -+ 1289V
by restriction enzyme digestion

For screening of 12Del3Ins (635-646del/insCTC result-
mg in 212-216 del(NLWES)/ins(TP)), a previously re-
ported and relatively common mutation (Tatsumi et al.
1995; Fu et al. 1999), genomic DNA samples were
amplified with the primer pair of exon 7 and the product
was digested with Hinfl (Fig. 1a). 166M +1289V, first
reported by Furuya et al. (1997), is a unique mutation
identified in the Japanese population. Only when two
single-nucleotide substitutions (I66M, 1289V) resided on
the same allele was their combination (I66M +1289V)
proved to be a pathogenic mutation (Furuya et al. 1997).
To detect 166M (198A > G), genomic DNA samples were
amplified using a sense primer of exon 2 (Table 2) and a
mismatch-antisense primer (5-TCATTACCTTAAA-
GAGATAATCCGA-3). The product was digested with
EcoRV (Fig. 1b). To detect 1289V (865A > G), genomic
DNA samples were amplified with a sense primer of exon
9 (Table 2) and a mismatch-antisense primer (5-ACT-
AGCCACTAAATTCCAGTCGA-3") and product was
digested with Sall (Fig. 1c). All the digested fragments
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were subjected to electrophoresis in 3% NuSieve 3:1
agarose gel (BioWhittaker Molecular Applications,
Rockland, ME, USA). The PCR amplification of three
fragments was performed under the same conditions
described above. When both 166M and 1289V were het-
€rozygous in a patient, mutation analysis of the patient’s
parents with screening for 166M and 1289V was neces-
sary to clarify whether 166M and 1289V resided on the
same allele. For all observed digestion patterns different
from the normal control, the corresponding fragments
were re-amplified for direct sequencing analysis.

Screening for the 30 kb large deletion mutation

To screen for the 30 kb deletion mutation, a previously
reported and common mutation in Caucasians, genomic
DNA samples were amplified using three primers in
accordance with the method described by Luzi et al. (1995).

Denaturing high performance liquid chromatography
(DHPLC)

For patients A1-A11, all of the 17 exons and exon—intron
boundaries were amplified by polymerase chain reaction
(PCR) as described above. DHPLC analysis was per-
formed with the Wave DNA fragment analysis system
equipped with a DNASep Column (Transgenomic
Omaha, NE, USA). Before mutation analysis the PCR
products for each exon were denatured at 94°C for 5 min,
followed by gradual re-annealing at 94-25°C over 45 min
to enable formation of heteroduplexes. All samples were
run at three different oven temperatures, listed in Table 2.
PCR-amplified products with a heteroduplex profile were
re-amplified and used for direct sequencing analysis.

Reverse-transcription PCR and direct sequencing

For patients with no mutations or only one mutation by
common mutation screening or DHPLC, GALC muta-
tion analysis was performed by sequencing cDNA. Total
RNA was extracted from cultured skin fibroblasts or
lymphocytes and first-strand ¢cDNA synthesis was per-
formed with MMLYV reverse transcriptase (Gibco BRL)
according to the manufacturer’s recommendations. The
coding region was amplified by PCR in two overlapping
fragments from first-strand cDNA, as described else-
where (Fu et al. 1999). PCR products were directly se-
quenced using the BigDye Terminator V1.1 cycle-
sequencing kit (Applied Biosystems, Warrington, UK)
and the Applied Biosystems 3730 DNA analyzer.

Screening for S257F and L364R in healthy individuals

To screen for two novel missense mutations (S257F,
L364R), PCR amplification of genomic DNA from 100





