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Abstract

Mbyotonic dystrophy (dystrophia myotonica, DM)
is one of the most common human muscular
dystrophies, occurring with a Jrequency of about one
in 8,000. Clinical features in DM include myotonia,
cataracts, insulin abnormality, dementia, and frontal
baldness. DM is an autosomal dominant condition
and is classified into two types, DMI1 and DM2, each
caused by a different gene mutation. The gene
responsible for DM1 is DM protein kinase (DMPK).
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Surprisingly, the DMPK mutation in DMI patients is not in the coding region
but is an increased number of CTG triplet repeats in the 3'-untranslated region
of the gene. The CTG repeat number in DM patients is hundreds to thousands,
whereas normal controls have only five to 30 CTG repeats. The gene responsible
for DM2 is ZNF9. Similar to the DMPK mutation in DMI, the ZNF9 mutation
causing DM? is an expanded CCTG quadruplet repeat in the intron of the gene,
with thousands of repeats reported in DM2 patients. Neither DM1 nor DM2 has
any mutation in the coding region of the transcribed mRNA, and normal proteins
are translated in DM patients. The molecular basis of DM1 and DM2 appears to
lie in the RNA transcription stage, and the same mechanism could cause DM
symptoms in both DMI1 and DM?2 patients. The transcribed CUG or CCUG
repeat RNA forms a hairpin structure, an abnormal secondary structure
observed only in DM patients. A specific RNA-binding protein recognizes and
binds to the expanded number of repeats, trapping the RNA in this abnormal
hairpin form and disturbing normal RNA-binding protein functions such as
splicing and/or editing of other genes. As a result, splicing abnormalities could
occur in many genes, leading to the variety of symptoms seen in DM patients.

Introduction

Myotonic dystrophy (dystrophia myotonica, DM) is a major muscular
dystrophy, occurring with a frequency of one in 8,000 to 10,000. Its main
symptom is myotonia (a tension in distal skeletal muscles) and muscle
weakness. Multisystemic symptoms, such as cataracts, insulin abnormality,
dementia, and frontal baldness, have also been described in DM patients [1]. In
1992, reverse genetics and positional cloning studies revealed a gene
responsible for DM and its mutation in DM patients. An expanded number of
CTG triplet repeats was observed on chromosome 19q13.3 in DM patients.
These patients had hundreds to thousands of CTG repeats, whereas normal
controls had only five to 30 repeats [2-4] (Fig. 1). It was reported that the
greater the number of CTG repeats, the more severe the symptoms and the
earlier the age of DM onset (called anticipation) [2, 5]. DM is categorized as a
triplet repeat disease, as are Huntington’s disease and Fragile X syndrome.
However, unlike the other triplet repeat diseases, the unique feature in DM is
that the gene mutation in the responsible gene is located in the 3’-untranslated
region (3’-UTR) of the mRNA, in spite that DM is inherited in an autosomal
dominant manner. Generally, autosomal dominant hereditary diseases are
caused by gene mutations in coding regions, which produce amino acid
conversions leading to translated proteins with altered activities. DM
apparently does not follow this general rule.

In 2001, a different gene mutation was identified in a group of DM
patients who did not exhibit the CTG repeat expansion. Instead, these patients
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had an expanded CCTG quadruplet repeat region in the intron of a gene named
ZNF9, located on chromosome 3q21 [6] (Fig. 1). In these DM patients, 5000
quadruplet repeats were found, whereas normal controls had up to 100 repeats.
Since the discovery of a second non-coding repeat expansion, the major form
of DM attributable to the CTG repeat expansion has been designated DM type
1 (DM1), and the type caused by the CCTG repeat expansion has been named
DM type 2 (DM2). Both DM1 and DM2 have gene mutations in a non-coding
region, indicating that no abnormal proteins are translated.

Here, we describe the results of recent studies on DM, which suggest a
new point of view on the molecular mechanisms of some genetic diseases;
alterations in the RNA sequence itself may be a key factor in some exceptional
genetic diseases.

Human myotonic dystrophy protein kinase (DMPK)

I

Human ZNF9

CCTG repeat expansion

Figure 1. Diagram showing the gene structures of DMPK and ZNF9, the genes
responsible for DM. The boxes represent exons. Open boxes are coding regions, and
gray boxes are non-coding regions. The lines represent introns. The CTG triplet repeat
is located in the 3’-UTR of DMPK, and the CCTG quadruplet repeat is located in the
intron of ZNF9.

Gene responsible for myotonic dystrophy type 1

The gene responsible for DM1 encodes a serine/threonine protein kinase
called dystrophia myotonica protein kinase (DMPK) [5, 7]. DMPK protein is
distributed in skeletal muscle, cardiac muscle, brain, and stomach in humans
[7-11]. The full-length human DMPK protein has a leucine-rich domain at the
N-terminus, a serine/threonine kinase domain in the middle, and a hydrophobic
region at the C-terminus. Six major spliced forms of human DMPK have been
reported [12] (Fig. 2), and these are classified into two main subgroups, the
DMPK-A and -B group and the DMPK-C and -D group. All of the isoforms
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have the same kinase domain; the primary differences lie in the C-terminus.
Both groups have hydrophobic C-termini, but they share no homology. The
DMPK-A and -B group has higher hydrophobic amino acid content than the
DMPK-C and -D group. Although the relationship between the expression
of DMPK isoforms and the symptoms of DM is unclear, the C-terminus of
each DMPK isoform might have an important physiological function, as the
C-terminus of DMPK is reported to regulate its localization [13]. DMPK-A
and -C are reported to be localized in mitochondria and endoplasmic reticulum
[14], whereas an immunoelectron microscopy study revealed that DMPK-C or
D is found mainly in the terminal cisternae of the sarcoplasmic reticulum [15].

DMPK is a member of the serine/threonine protein kinase family, and
several homologs/orthologs have been reported from the mouse, rat,
Caenorhabditis elegans, and Drosophila melanogaster. These genes are
thought to constitute a myotonic dystrophy family of protein kinases (MDFPK)
[16, 17]. Several MDFPK members have been shown to interact with small
GTPases. The over-expression of DMPK protein in cultured cells, fission
yeast, and budding yeast has indicated that DMPK functions as a regulator of
cytoskeletal reorganization and/or cell division [18-20]. The physiological
substrates for DMPK are not clear, although it can phosphorylate
dihydropyridine receptor [21], myosin phosphatase I [13, 22], phospholemman
[23], and phospholamban [24] in vitro. We have also confirmed that
recombinant DMPXK exhibits autophosphorylation [19].

T T i
A HN{E kinase domam]A v fCooH
VSGGG
Tevetne| T i
B H,N{'Sgi|kinase domain| | Bdsin /iy 1COOH
C H,N4{'gel kinase domain| |
VSGGG
D H,NA el kinase domain| |

E  HN{gee|kinase domain| FCOOH
A

VSGGG
F H, NS kinase domain| FCOOH

Figure 2. The six major splicing isoforms of human and murine DMPK. The
isoforms are distinguished by an insertion of five amino acids (VSGGG) and
differences in their hydrophobic C-terminal regions.
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Gene responsible for myotonic dystrophy type 2

The gene responsible for DM2 encodes a zinc-finger protein named ZNF9
[25], also called cellular nucleic acid-binding protein (CNBP). ZNF9 has seven
tandem zinc fingers and is thought to bind to chromosomal DNA and to function
as a transcription factor. The ZNF9 amino acid sequence is highly conserved
among Xenopus laevis, chickens, mice, and humans. ZNF9 is reported to be
involved in the early development of the forebrain formation in mice [26].

Gene-manipulated model mice for DMPK and ZNF9

DMPK knockout and transgenic mice have been established and used to
study not only the physiological function of DMPK but also the dose effect of
DMPK on the DM phenotype. Given that the gene mutation (CTG repeat
expansion) expressed in DMPK mRNA is not located in the coding region but
in the 3’-untranslated region, the CTG repeat expansion might exert a cis effect
on the expression level of DMPK, and the altered DMPK expression level
might cause DM1 symptoms through a haplo-insufficiency mechanism. Two
research groups independently reported the establishment of DMPK knockout
mice, both showing a myopathy [27, 28]. DMPK deficiency resulted in sodium
current abnormalities in skeletal muscle [29] and cardiac muscle [30]. DMPK
knockout mice showed a decrease in the decremental potentiation, with a
duration of 30 to 180 min, that accompanies long-term synaptic potentiation
[31]. Cultured skeletal muscle cells from DMPK knockout mice showed
smaller and slower calcium responses [32]. There are contradictory reports of
decreased [33] and increased [34] calcium uptake by the sarcoplasmic
reticulum in DMPK knockout mice, but both studies showed abnormal calcium
cycling in DMPK-deficient cells.

The DMPK transgenic mice, expressing human DMPK with 20 CTG
repeats, are reported to represent only myotonic myopathy [28], hypertrophic
cardiomyopathy, and hypotension traits [35]. As a result, these knockout and
transgenic mice showed only mild phenotypes and lacked other clear
phenotypes characteristic of DM patients, such as myotonia and cataracts.
Considering that knockout mice do not express DMPK but DM patients have a
certain amount of DMPK protein, the phenotypic changes in the mice were
much less than expected. Although it is still possible that abnormal DMPK
expression may cause some of the DM phenotype, lower or higher DMPK
expression levels do not appear to be able to explain the entire DM phenotype.

ZNF9 knockout mice show developmental abnormalities, especially in
forebrain induction and specification [26]. Currently, there is little evidence that
these phenotypical changes contribute to DM symptoms. Thus, both DMPK and
ZNF9 gene-targeting experiments have indicated that the genes responsible for
DM are not responsible for, or have only little effect on, DM symptoms.
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Models for the over-expression of CUG repeat RNA

A mouse model that over-expresses the CTG repeat has been reported. The
transgenic mouse expressing the untranslated CUG repeat driven by the human
skeletal actin promoter exhibited myotonia and myopathy, which are typical
symptoms in DM patients [36]. Transgenic mice carrying the human genomic
sequence for the DMPK region (~45 kb) with a long CTG repeat region
showed histological muscle abnormalities and myotonia [37].

Primary human DM muscle cells show delayed differentiation [38], and
the over-expression of the 3’-UTR of DMPK inhibited myoblast differentiation
in cultured mouse C2C12 cells [39]. Moreover, the over-expression of DMPK
cDNA with a long CTG repeat region the in 3’-UTR also inhibited myogenic
differentiation in cultured C2C12 cells compared to the over-expression of
DMPK c¢DNA with a normal repeat [40, 41]. The inhibition of differentiation
required not only the CTG repeat but also the other part of the DMPK 3’-UTR
[41], and the MyoD pathway was involved in the inhibition [42]. It was also
reported that C2C12 cells transfected with human DMPK c¢DNA with a long
CTG repeat in the 3°-UTR show higher sensitivity to oxidative stress [43, 44].

These results in a mouse model and in cultured cells strongly suggest that
the long CUG repeat RNA, which is transcribed from the long CTG repeat in
the chromosome, has an important physiological function, despite the fact that
its location in the 3’-UTR means that it is not translated into amino acids.

RNA-binding proteins contributing to DM

pathogenesis

In the late 1990s, a new proposal for DM pathogenesis was that the long
CTG repeat in DM patients had a function at the RNA transcription stage. The
CUG repeat of the RNA transcript can form a hairpin structure. If this
abnormal structure were to have a physiological function in cells, it might
disturb the regulation of cellular gene expression, perhaps in response to
certain signals (RNA gain-of-function). The presence of a protein that binds to
the CUG repeat RNA would make this hypothesis feasible.

In 1996, a protein that binds to eight repeats of the CUG triplet was
reported. This protein, named CUGBP1, was the first molecule shown to bind
CUG repeat RNA [45], making it a candidate protein for the molecular
pathway of DM pathogenesis. Mice over-expressing CUGBPI1 exhibited
developmental delay of skeletal muscle [46]. CUGBPI1 transgenic mice were
established and shown to have histological changes of skeletal muscle and
abnormalities of splicing for several genes [47].

However, an electron microscopic study revealed that the binding of
CUGBPI1 to the CUG repeat was not proportional to the CUG repeat length
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[48], which did not correlate with the observation that longer repeat lengths
were associated with more severe symptoms in DM patients. Moreover,
CUGBP1 preferentially bound the UG dinucleotide repeat and showed only
weak binding to the CUG repeat [49]. Creating further uncertainty about the
role of CUGBP1 are two inconsistent reports: one indicating that CUGBP1
accumulates in the nucleus in DM patients [5S0] and another showing that
CUGBP!1 localizes similarly in fibroblasts of both normal and DM patients
[48]. Although evidence exists that CUGBPI and its homolog family proteins
(CUGBP1-like and ETR-3-like factors, CELF) have an important role in DM,
it is ambiguous whether CUGBP! and CELF family proteins are the prime
factors in DM pathogenesis.

A second candidate protein that binds CUG repeat RNA has been reported.
This molecule, called muscleblind-like 1 (MBNL1), was first shown to bind
CUG repeat RNA in an UV cross-linking experiment [51]. MBNLI is an
ortholog of Drosophila muscleblind, which belongs to a family of zinc-finger
proteins and is required for eye development [52]. The binding of MBNLI is
dependent upon the repeat length [51], which is consistent with the repeat-
length dependence of the severity of DM symptoms. Moreover, MBNL1 was
reported to bind not only to CUG repeat RNA but also to CCUG repeat RNA
[53]. Thus, MBNL1 is a more likely candidate than CUGBP1 for directly
binding CUG/CCUG repeat RNA. MBNL 1 knockout mice exhibited cataracts
as well as electrophysiological and histological abnormalities in skeletal
muscle, which are commonly observed in DM patients [54]. These indicate
that MBNL1 might play an important role in DM pathogenesis.

The co-expression of the expanded CUG repeat and MBNL1 protein
creates foci in the nucleus [55, 56], but the foci do not include CUGBP1,
further supporting a key role for MBNL1 in DM pathogenesis. The formation
of these foci suggests that MBNL1 might be trapped by the CUG repeat RNA,
consequently exhausting the supply of functional MBNLI1 protein. However, it
has also been suggested that the co-localization of MBNLI and the CUG
repeat RNA in nuclear foci is separable from the molecular pathogenesis of
DM [57]. Even if MBNLI1 were the molecule responsible for DM symptoms,
the mechanism of its action would remain to be elucidated.

Splicing abnormalities in a DM mouse model and in

DM cells

Although the relationship between the expanded CUG/CCUG repeat and
RNA-binding proteins such as CUGBP1 and MBNLI1 needs further
investigation, many studies have reported that the splicing of several genes is
disturbed in a DM mouse model and in DM cells. The splicing pattern of
cardiac troponin T (cTNT) was altered in DM patients, a finding confirmed by






