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Both Antiprion Activity and Brain Endothelial
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Katsumi Doh-ura,'* Kazuhiko Tamura,’ Yoshiharu Karube,® Mikihiko Naito,*
Takashi Tsuruo,’ and Yasufumi Kataoka?

Received July 26, 2006, accepted September 27, 2006

SUMMARY

1. As an extension of our previous study of quinacrine and its derivatives. chelating
chemicals were screened to obtain more effective, better brain-permeable antiprion com-
pounds using either prion-infected neuroblastoma cells or brain capillary endothelial cells.

2. Eleven chemicals were found to have antiprion activity. Most of them shared a
common structure consisting of benzene or naphthalene at either end of an azo bond.
Structure-activity data suggest that chelating activity is not necessary but might contribute
to the antiprion action.

3. Chrysoidine, a representative compound found here, was about 27 times more ef-
fective in the antiprion activity and five times more efficiently permeable through the brain
capillary endothelial cells than quinacrine was.

4. These chemicals might be useful as compounds for development of therapeutics for
prion diseases.

KEY WORDS: prion: chrysoidine; blood-brain barrier; aromatic azo compounds; ther-
apy; chelating agents; brain endothelial cells; prion-infected neuroblastoma cells.

INTRODUCTION

Transmissible spongiform encephalopathies or prion diseases are fatal neurode-
generative disorders that include Creutzfeldt-Jakob disease and Gerstmann—
Stréussler-Scheinker syndrome in humans, and scrapie, bovine spongiform
encephalopathy, and chronic wasting disease in animals. These disorders are
characterized by accumulation in the brain of an abnormal isoform of prion protein
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(PrP), which is putatively a main component of pathogens or the pathogen itself,
and which is rich in beta-sheet structure and resistant to digestion with proteinase K
(Prusiner, 1991). Recent outbreaks of variant Creutzfeldt-Jakob disease and iatro-
genic Creutzfeldt-Jakob disease through use of cadaveric growth hormone or dural
grafts in younger people have necessitated the development of suitable therapies.

We previously found quinacrine and its derivatives to have potent antiprion
activity in prion-infected cells (Doh-Ura ef al., 2000; Murakami-Kubo er al., 2(04).
The common structure of these chemicals, a quinoline ring with a side chain contain-
ing a nitrogen atom located at a particular distance from another nitrogen atom in
the ring indicates that the chemicals have chelating activity, but the involvement of
chelating metals in their antiprion activity has never been confirmed. Quinacrine has
been used recently for clinical trials of patients with prion diseases in several coun-
tries. Orally administered quinacrine is reportedly effective in transiently improving
cognitive functions of patients (Nakajima et al., 2004), but it frequently causes such
adverse effects as liver dysfunction. For that reason, either improving its penetra-
tion into the brain (the target organ of prion diseases) or reducing its uptake into
the liver is suggested for producing more beneficial results (Dohgu et al., 2004).

Here, to obtain more effective antiprion compounds with better brain perme-
ability than quinacrine, we screened chelating chemicals in prion-infected neuro-
blastoma cells. We investigated the brain permeability of a representative chemical
using an in-vitro model for the blood-brain barrier.

MATERIALS AND METHODS

Chemicals and Cells

Chemicals used in the study were purchased from Sigma-Aldrich Corp. (St.
Louis, MO), Tokyo Kasei Kogyo Co. Ltd. (Tokyo, Japan), and Wako Pure Chemical
Industries Ltd. (Osaka, Japan). All chemicals, except for chrysoidine, were dissolved
in 100% dimethyl sulfoxide (DMSO), although chrysoidine was dissolved in distilled
water.

Acetylated Yellow AB was obtained as follows. Yellow AB was dissolved in
dichloromethane and mixed with excess glacial acetic acid. After its complete acety-
lation was observed by thin layer chromatography, the acetylated product was puri-
fied using silica gel column chromatography (dichloromethane/ethyl acetic acid: 9/1
(v/v)). The residual solid was lyophilized and identified as acetylated Yellow AB by
both fast atom bombardment mass spectrometry and elemental analysis.

Murine neuroblastoma (NB) cells that had been persistently infected with the
scrapie prion strain RML (ScNB cells) (Race et al., 1988) were used for the assay
of antiprion activity and grown in Opti-MEM (Invitrogen Corp., CA) containing
10% fetal bovine serum. For the assay of brain endothelial permeability, immortal-
ized endothelial cells from the murine brain capillary (MBEC4 cells) (Tatsuta et al.,
1992) were used and grown in DMEM (Invitrogen Corp., CA) containing 10% fetal
bovine serum, 100 ng/mL streptomycin, and 100 units/mL penicillin.
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Antiprion Activity Assay

Antiprion activity of a chemical was assayed by measuring its 50% inhibition
dose (ICsp) for abnormal PrP formation in ScNB cells, as described previously
(Doh-Ura et al., 200t Ishikawa er al., 2004). Each chemical was added at desig-
nated concentrations when cells were passed at 10% confluency. The final concen-
tration of DMSO in the medium was maintained at less than 0.5%. The cells were
allowed to grow to confluence and were lysed with a lysis buffer (0.5% sodium de-
oxycholate, 0.5% Nonidet P-40, PBS). The lysates were digested with 10 ug/mL
proteinase K for 30 min and centrifuged at 100,000 x g for 30 min at 4°C. The pel-
lets were resuspended in the sample loading buffer and boiled. The samples were
separated using electrophoresis on a 15% Tris-glycine-SDS-polyacrylamide gel and
electroblotted. Detection of PrP was done using an antibody PrP-2B, followed by an
alkaline phosphatase-conjugated secondary antibody. Immunoreactive signals were
visualized with CDP-Star detection reagent (GE Healthcare Bio-Science, NJ) and
were analyzed densitometrically. Three independent assays were performed in each
experiment.

Cellular PrP Assay

The total level of normal cellular PrP was assayed similarly in noninfected NB
cells treated with a chemical. Briefly, the cells were treated with a chemical as de-
scribed earlier and lysed with the lysis buffer. Four volumes of the lysate were added
to one volume of the five times concentrated sample loading buffer and boiled.
Then, the samples were analyzed by immunoblotting as described earlier. The cell
surface level of normal cellular PrP was assayed by flow cytometry described pre-
viously (Kim et al., 2004). Briefly, NB cells dispersed by the treatment with ice-
cold PBS containing 0.1% collagenase (Wako Pure Chemicals, Osaka, Japan) were
washed with 0.5% fetal bovine serum in PBS (FBS/PBS) and incubated with an anti-
body SAF83 (1:500) (SPI-BIO, Massy, France) for 30 min on ice. Cells were washed
with FBS/PBS and incubated with goat F(ab’), fragment antimouse IgG(H + L)-PE
(Beckman Coulter, CA) for 30 min. After washing, cells were analyzed using an
EPICS XL-ADC flow cytometer (Beckman Coulter, CA).

Surface Plasmon Resonance Assay

Binding assay of a chemical with recombinant PrP was performed using an op-
tical biosensor (Biacore AB, Uppsala, Sweden), as described previously (Kawatake
et al., 2006). Briefly, recombinant mouse PrP (amino acids 121-231; PrP121-231)
was immobilized on a biosensor chip at a density of ca. 3,000 resonance units (RU)
using amine coupling. Test chemicals were diluted to 50 ©M with the running buffer
(3% DMSO in PBS, pH 7.4) and were injected over both the PrP flow cell and the
reference at a flow rate of 20 nL/min. The dissociation phase was monitored with
injection of the running buffer at a flow rate of 20 uL/min. The flow cell was washed
with 10 mM NaOH for 30 s between sample injections. Buffer blanks for double
referencing were injected before sample analyses.
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Brain Endothelial Permeability Assay

Permeability assay was performed as described previously (Dohgu et al., 2004).
Briefly, MBEC4 cells were cultured on the collagen-coated polycarbonate mem-
brane of a Transwell insert (Corning Coster Corp., MA). Before assay, the cells
were washed with Krebs—Ringer buffer (118 mM NaCl, 4.7 mM KCl, 1.3 mM CaCl,,
1.2 mM MgCly, 1.0 mM NaH,PO4, 25 mM NaHCOs3, 11 mM D-glucose, pH 7.4).
Then, the buffer (1.5 mL) was added outside of the insert (abluminal side), and the
buffer (0.5 mL) containing 100 uM of a chemical was loaded on the luminal side of
the insert. Samples (0.5 mL) were recovered from the abluminal chamber at 10, 20,
30, and 60 min and replaced immediately with fresh Krebs-Ringer buffer. Sodium
fluorescein (Na-F, MW 376; Sigma-Aldrich Corp., MO) was used as a paracellular
transport marker, and chrysoidine (Tokyo Kasei Kogyo Co. Ltd., Tokyo, Japan) as a
test chemical, in addition to quinacrine as a control. The chemical concentration was
measured by either determining the fluorescent intensity of Na-F (Ex(A) 485 nm;
Em(}) 530 nm) and quinacrine (Ex(1) 450 nm; Em()) 530 nm) or determining the
absorbance of chrysoidine at 450 nm. The permeability coefficient was calculated
using the slope of clearance curve for each chemical obtained during the 60-min pe-
riod according to the method described by Dehouck et al. (Dehouck et al., 1992).
Statistical analysis was performed using one-way analysis of variance followed by
Tukey-Kramer method for multiple comparisons.

RESULTS

Antiprion Screening in vitro

To evaluate functional groups of antiprion chelating chemicals, various chelat-
ing chemicals were examined for whether they inhibited abnormal PrP formation
in prion-infected ScNB cells. Thirty-five chelating chemicals were analyzed; 11 of
them were effective in inhibiting abnormal PrP formation for doses at which cell
toxicity was not observed (Tables I and II). Nine of the 11 effective chemicals had a
common structure, which consisted of aromatic rings (terminals 1 and 2 in Table iI)
at both ends of an azo bond. Although both 4-methyl-2-(2-thiazolylazo)phenol and
4-(2-pyridylazo)resorcinol were not effective, they also exhibited this structure, with
a thiazole ring and a pyridine ring in the terminal 1 portion, respectively. Their lack
of effectiveness might be attributable to cell toxicity, which occurred at lower doses
than for chemicals carrying a benzene ring in the terminal 1 portion. On the other
hand, all chemicals carrying either a benzene ring or a naphthalene ring in the ter-
minal 2 portion were effective. Therefore, the data suggest that a structure with such
an aromatic ring as benzene or naphthalene in either end of an azo bond might be
responsible for inhibiting abnormal PrP formation in ScNB cells.

Mechanism of Antiprion Action

We tested whether the effective chemicals cause any alteration of the cellular
PrP level in the treated cells because reduction in the cellular PrP level engenders
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Note. 1Csq: approximate dose giving 50% inhibition of abnormal PrP formation relative to the control.

CM: approximate maximal dose that does not affect the rate of cell growth to confluence.
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Table 1. Antiprion Activity in ScNB Cells of Chelating Azo Compounds
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Note. 1Csp: approximate dose giving 50% inhibition of abnormal PrP formation relative to the control.
CM: approximate maximal dose that does not affect the rate of cell growth to confluence. TAMSMB:
4-methyl-5-sulfomethylamino-2-(2-thiazolylazo)benzoic acid. PAPS: 2-(2-pyridylazo)-5-[N-n-propyl-N-
(3-suifopropyl)amino}phenol, disodium salt. PADAP: 2-(2-pyridylazo)-5-diethylaminophenol.



Aromatic Azo Chemicals with Antiprion Activity

reduction in abnormal PrP formation. The results revealed no reduction in the cel-
lular PrP level of the cells (Fig. 1{A} and (B)). Furthermore, either to examine
whether the chemicals directly destabilize or denature the abnormal PrP structure
or to exclude the possibility of interference with-preparation and immunodetection
of the abnormal PrP, the cell lysate either alone or mixed with the chemicals was
incubated at 37°C for 1 h prior to proteinase K digestion; it was then processed or-
dinarily to obtain the abnormal PrP. The results indicated that the chemicals did not
affect the abnormal PrP signals (Fig. 1{C})).

Because it was predicted that the chemicals might exert their antiprion action
through a certain mechanism involving chelating metals, the most effective chemi-
cal found here, chrysoidine, was preincubated before addition to the ScNB culture
medium with an equivalent dose or lower doses of various metal ions, including
copper, zing, cobalt, and aluminum ions. The results revealed no change in the inhi-
bition activity of the chemical (Fig. 2). Furthermore, to examine whether chelating
activity 1s necessary for antiprion action, we modified Yellow AB in such a manner
that its amino base was acetylated to remove its chelating activity. The acetylated
Yellow AB was tested in ScNB cells, and it was one-eighth as effective in inhibiting
abnormal PrP formation as Yellow AB (Fig. 3(A}). Finally, as a chemical bear-
ing the effective structure but lacking chelating activity, the chemical azobenzene,
which 1s most similar in the structure to the chemical chrysoidine, was tested. It was
about 30 times less effective than chrysoidine (Fig. 3{13}). These findings suggest
that chelating activity is not essential for the antiprion action but might influence it.

Interaction with Recombinant PrP

We previously reported that more potent antiprion agents have higher affin-
ity to recombinant PrP121-231 in surface plasmon resonance (SPR) analysis
(Kawatake et al., 2006). Therefore, we examined whether this is also demon-
strated in the effective chelating chemicals found here. Six of the chemicals
(each at 50 uM) were tested. The SPR sensorgrams of the chemicals except 4-
(2-pyridylazo)resorcinol showed similarly weak signal responses of less than 100
RU as quinacrine did (Fig. 4). However, neither 4-(2-thiazolylazo)resorcinol nor
Yellow AB reached the equilibrium state at the association phase; neither 4-(2-
thiazolylazo)resorcinol nor 2-phenylazo-4-methylphenol returned to the baseline at
the dissociation phase. In contrast, 4-(2-pyridylazo)resorcinol showed the strongest
response of more than 200 RU and neither reached the equilibrium state at the
association phase nor returned to the baseline at the dissociation phase. The bind-
ing response value from the sensorgram (equilibrium or maximum response value
divided by molecular weight), which is an index for estimating the interaction of a
chemical with the molecules sited on a biosensor chip (Frostell-Karlsson et al., 2000),
showed no apparent relationship with the ICsq value of antiprion activity (data not
shown), suggesting that the chemicals found here might exert their antiprion action
in a manner that differs from those of previously reported antiprion chemicals such
as antimalarias and amyloid binding dyes.
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Fig.3. Antiprion activity in ScNB cells of acetylated Yellow AB (A) and azobenzene (B) Immunoblot
data of the abnormal PrP are shown. Bars on the /eft indicate molecular size markers at 37 and 25 kDa.
1Cs¢ is approximate dose giving 50% inhibition of abnormal PrP formation. CM is approximate maximal
dose that does not affect the rate of cell growth.

Brain Endothelial Permeability

The brain is the main organ that is affected in prion diseases. Therefore, ther-
apeutic compounds must penetrate into the brain. To examine the permeability of
a chemical through the blood-brain barrier, we used a simple analytical model con-
sisting of brain capillary endothelial MBEC4 cells. As a representative of the effec-
tive chemicals found in the study, chrysoidine was examined in this model and com-
pared with a paracellular marker, Na-F, as well as a control, quinacrine, which has
been used for clinical trials of patients with prion diseases. The results showed that
the respective permeability coefficients of Na-F, quinacrine, and chrysoidine were
217 x 1073,0.96 x 1073, and 4.63 x 1073 cm/min (Fig. 5). Therefore, chrysoidine
penetrated the brain capillary endothelial cells about five times more efficiently than
quinacrine.

DISCUSSION

Here, we revealed that chelating chemicals, especially aromatic azo com-
pounds, have antiprion activity. Mechanisms of their antiprion action apparently
include neither alteration of cellular PrP level nor direct modification of abnormal
PrP. Taken together with previous findings related to the interaction of PrP with
metals (review in Brown, 2004), the data obtained through the present study suggest
that the chelating activity might influence the antiprion action but is not essential for
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A L1 = 4-(2-Pyridylazo)resorcinol
L2 = 2-Phenylazo-4-methylphenol
L3 = 4-(2-Thiazolylazo)resorcinol
L4 = Yellow AB
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Fig. 4. SPR sensorgrams of chelating compounds (A) and quinacrine (B) interacting with PrP121-
231 Each chemical at 50 uM was analyzed using a ca. 3.000 RU PrP-bound biosensor chip. Each phase
of association and dissociation was monitored for 60 s in (A) or 125 s in (B).
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Fig. 5. Permeability coefficients of Na-F, quinacrine, and
chrysoidine through MBEC4 monolayer. Each chemical at
100 uM was analyzed. The values are mean + SEM (n = 3-4
inserts). **p < 0.01; significant difference between each group.

it. This inference is consistent with our previous results from quinacrine derivatives
carrying chelating activities (Murakami-Kubo et al., 2004).

Chrysoidine, a representative chemical found in this study, is far superior to
quinacrine in both the antiprion activity and the brain endothelial permeability.
The respective antiprion activities of chrysoidine and quinacrine in ScNB cells were
15 nM and 400 nM in ICs, indicating that chrysoidine is about 27 times more effec-
tive than quinacrine. Furthermore, chrysoidine penetrated brain capillary endothe-
lial cells about five times more efficiently than quinacrine. In addition, chrysoidine
1s much less toxic than quinacrine because a maximal dose at which the ScNB cell
growth to confluence is still tolerant was more than 100 ©M in chrysoidine or 2 uM
in quinacrine (Table II). These findings suggest that chrysoidine might be more ben-
eficial in vivo than quinacrine, but the in vivo efficacy of chrysoidine remains to be
evaluated.

Results from the SPR analysis obtained here were not consistent with those
of our previous study (Kawatake et al., 2006), where the SPR binding response
correlates with the inhibition activity of abnormal PrP formation in ScNB cells.
Chrysoidine, the most effective chemical in the study, has a similar structure
to either half of a symmetrical compound, Congo red, whose antiprion activity
(ICsp = 14 nM) is as prominent as that of chrysoidine (ICsy = 15 nM) (Table iI) but
whose permeability into the brain is reportedly very poor because of low lipophilic-
ity and high charge in its acidic groups (Klunk et al., 2((2). Interaction with recombi-
nant PrP121-231 differs greatly between chrysoidine and Congo red. Congo red has
very high affinity (Kp = 1.6 uM) and strong binding response (1.7 RU/Da at 10 uM
using a ca. 3,000 RU PrP-bound biosensor chip) to the PrP121-231 (Kawatake
et al., 2006), whereas chrysoidine shows a sensorgram pattern of low affinity
compounds and has very low binding response (0.1 RU/Da at 50 uM using a similar
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biosensor chip). These facts suggest that chrysoidine exerts its antiprion action in
a manner that differs from that of Congo red, but this inference demands further
evaluation.

The brain endothelial permeability assay using MBEC4 cells revealed that the
permeability coefficient of quinacrine was much lower than that of Na-F. The re-
sults are consistent with those of our previous experiments (Dohgu et al., 20(4).
Quinacrine transport through the blood-brain barrier is mediated by both the efflux
system (P-glycoproteins) and the influx system (organic cation transporter-like ma-
chinery). Therefore, quinacrine entry into the brain is controlled by three factors:
P-glycoprotein-mediated active efflux at the apical side of the plasma membrane;
highly concentrative uptake system; large storage capacity in the cytoplasm of the
brain endothelial cells. On the contrary, Na-F is transported through paracellular
routes (tight junctions) at the blood-brain barrier, and neither active efflux nor con-
centrative uptake system is involved in the Na-F permeability. These differences
might explain the reason why quinacrine is less efficiently permeabilized than Na-F.

Chrysoidine is used in various fields as a yellowish fluorescent dye. This chem-
ical was suggested to relate with bladder cancer in humans (Cartwright et al., 1983;
Sole and Sorahan, 1985), but it is still controversial because the data of a later con-
ducted case-control study denied its relation to the cancer (Sorahan and Sole, 1990).
There are no data on the genetic and related effects of the chemical in humans, but
it is mutagenic to bacteria and toxic to rat hepatocytes in vitro (Sandhu and Chip-
man, 1990). In the mice orally administered, it produced liver carcinoma, leukemia,
and reticulum cell sarcomas (Anonymous, 1975). These findings suggest that clinical
use of chrysoidine or related chemicals might be inadequate.

In conclusion, we screened chelating chemicals and found that chrysoidine was
much more effective in both antiprion activity and brain endothelial permeability
than quinacrine, and it was much less toxic in NB cells. The mechanism of antiprion
action of this compound did not apparently include alteration of cellular PrP level,
direct modification of abnormal PrP, or chelation of metals. Its interaction with
PrP121-231 differed greatly from that of Congo red, despite their structural simi-
larity. These findings will contribute to the development of therapeutic compounds
for prion diseases.
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