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A balance between apoptotic and anti-apoptotic signals determine survival and death of
lymphocytes . Two independent pathways operate in the process of apoptosis [99, 100]. The
first is the death receptor-induced apoptotic death pathway including Fas, while the second is
the mitochondrial death pathway. The latter is mediated by the release of cytochrome ¢ from
the mitochondria following cellular stress, such as anti-cancer drugs and UV irradiation, The
Bel-2 family is composed of three subfamilies, -such as Bcl-2, Bax and BH3 [101, 102].
Among these, the Bcl-2 subfamily includes Bcl-2, Bel-xL and Bel-w, which have anti-
apoptotic activity, enhance the survival of lymphocytes by inhibition of eytochrome ¢ release
from the mitochondria [103]. :

In order to clarify the mechanisms .of the long-standing perpetuation of a chronic
inflammatory state in the spinal cords of patients with HAM/TSP, we examined the resistance
to apoptosis of the peripheral blood CD4" T cells induced by the anti-cancer drug, etoposide.
This compound is known to induce mitochondria-dependent apoptosis through the release of
cytochrome ¢ [104]. In addition, we analyzed the expression of anti-apoptotic proteins, Bel-xL
proteins, on the peripheral blood .__CD4)r cells of HAM/TSP patients, by using Western blot
[105].

Ina replesentatlve case (figure 21a), the percentage of hypodiploid DNA" cells in the
peripheral blood CD4" cells cultured with etoposide was lower in the HAM/TSP patient than
the control patxent We determined the percentage of hypod1p101d DNA" cells in each culture
with or without etoposide. A% hypodiploid DNA+ cells, representmg the effect of etopos1de
was determined as follows: A% hypodiploid DNA" cells = the percenta ge ¢ of hypod1p101d DNA"
cells in each culture with etoposide - the percentage of hypod1p101d DNA" cells in each culture
without etoposide. As shown in figure 21b, comparison of the SUSCCptlblll'Ly to apoptosis
mduced by et0p051de between HAM/T SP and control patients showed that A% hypodiploid

"DNA" cells in the penphelal blood CD4" T cells was ‘significantly smaller in patients with
HAM/TSP (7.2 + 2.5%) than in control patients mcludmg one anti-HTLV-I-seropositive
carrier (29.9 = 5.9%), indicating that the peripheral blood CD4" T cells of HAM/T SP patients
are resistant to etoposide-induced apoptosis.
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Figure 21. Apoptosis of peripheral blood CD4” T cells induced by etoposide. a) A representative flow cytometry

analysis of hypodiploid DNA" cells in peripheral blood cp4’ T cells, treated with 10 pM of etoposide [Eto (+)]
or without etoposide [Eto (-)], of a representative HAM/TSP patient and control. A: Eto (-) in HAM/TSP
patient; B: Eto (+) in HAM/TSP patient; C: Eto (-) in control; D: Eto (+) in control. Percentage numbers .

indicate the+pex'centage of hypodiploid DNA" cells. b) Comparisqn of A% hypodiploid DNA" cells in pe}?phex-al
blood CD4 T cells treated with 10 pM/mL of etoposide between 9 HAM/TSP patients and 11 controls. A%
hypodiploid DNA cells is significantly lower in HAM/TSP patients than in the controls, indicating that
peripheral blood CD4” T cells of HAM/TSP patients are resistant to etoposide-induced apoptosis. A%
hypodiploid DNA cells = the percentage of hypodiploid DNA" cells in each culture with etoposide - the

percentage of hypodiploid DNA+ cells in each culture without etoposide. Closed circle: an anti-HTLV-1-
seropositive carrier. Mann-Whitney’s U-test was used for statistical analysis. Quotation from Ref. 105.

As shown in Western blot analysis (figure 22a), expression of Bel-xL protein in the
peripheral blood CD4™ T cells was higher in HAM/TSP patients than in the controls.
Furthermore, the ratio of Bcl-xL protein to B actin (ER) in HAM/TSP patients was
signiﬁcahtly higher than in the controls (figure 22b). These results imply that the expression of
Bcl-xL protein, which is an anti-apoptotic protein, is up-regulated in the peripheral blood cp4”
T cells of HAM/TSP patients. Using Western blot analysis, we also examined the expression of
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Bcl-2 protein and X chromosome-linked inhibitor of apoptosis protein (XIAP), which are other
anti-apoptotic Bcl-2-related proteins, and an inhibitor of caspases (caspase-3, -7, and -9) [106],
respectively. There were no significant differences in the expression of both anti-apoptotic
proteins in the peripheral blood CD4" T cells between HAM/TSP patients and controls (data
not shown).
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F]gure 22. Western blot analysis of Bel-xL protein expr ession on peripheral blood cp4’ T cells. a) A
representative Western blot analysis of Bel-xL protein expression in peripheral blood cp4’ T cells ind
HAM/TSP and 4 control patients. Expression level of Bel-xL protein in per ipheral blood cp4’ T cells, indicated
as ER, was higher in HAM/TSP patxents than in the controls. b) Comparison of ER of BelxL protein
expression on peripheral blood CD4" T cells between 9 HAM/TSP patients and 10 controls. The expression
ratio (ER) in HAM/TSP patients was significantly higher than that in the controls. ER was determined as
follows: ER = densitometric counts in each Bel-xL protein / densitometric counts in each ﬁ-actin Closed circle:
an anti-lITLV-l-seropositive carrier. Mann-Whitney’s U-test was used for statistical analysis. Quotanon from
Ref. 105.
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In this study, we demonstrated that the peripheral blood CD4™ T cells of HAM/TSP
patients are resistant to apoptosis induced by etoposide, which induces mitochondria-dependent
apoptosis [104], mediated by up-regulation of Bcl-xL expression. These findings strongly

suggest that the peripheral blood CD4" T cells of HAM/TSP patients can evade local apoptotic
machinery in the spinal cords to induce long-standing perpetuation of a chronic inflammatory
state. Although we showed that there were no significant differences in the expression of both

Bel-2 and XIAP in the peripheral blood CD4" T cells between HAM/TSP patients and controls,
it was reported that constitutive expression of Bcl-xL, but not Bcl-2, through NF-xB was
associated with resistance to apoptosis after deprivation of IL-2 in IL-2-dependent T-cell line
transfected with HTLV-1 tax [107]. Although HTLV-I tax is a powerful activator of NF-xB
[108], activation of NF-xB by tax protein in HTLV-I-infected cells can render the cells
resistant to apoptosis by inhibiting the caspase cascade [109]. Therefore, the resistance to
apoptosis induced by etoposuie concomitant with up-regulation of Bcl-xL expression in the

peripheral blood cp4” T lymphocytes of HAM/TSP patients might be related to NF-«B
activation based on high HTLV-I proviral load in patients with HAM/TSP, although we did not
actually analyze the degree of NF-xB activation in the peripheral blood CD47L T cells in this
study. In addition, it is unclear whether the resistance to apoptosis induced by etoposide
mediated by the up-regulated expression of Bel-xL in the peripheral blood CD4" T cells of
HAM/TSP patients are based on only HTLV-I-infected cells or not. Indeed, NF-«xB could also
be activated by inflammatory cytokines, such as TNF-o.and lymphotoxin [110], the
expressions of which are up-regulated in the peripheral blood T cells of HAM/TSP patients.

Therefore, the up-regulated state of the expression of these mﬂalmnatmy cytokines might
induce NF-xB activation even in non-HTLV-I-infected T cells of HAM/TSP patients. Thus, in
the peripheral blood cp4’ T lymphocytes of HAM/TSP patients, activation of NF-xB might be
amplified reciprocally in HTLV-I-infected and non-HTLV-I-infected cells. Although the Fas-
mediated pathway is another apoptotic death pathway [99], there are several reports that
HTLV-IL-infected T cells are also resistant to Fas-mediated apoptosis [111, 112]. Considered
together with the results of the present study, it is reasonable to suggest that HTLV-I-infected
cells in the peripheral blood CD4" T cells of HAM/TSP patients are strongly resistant to both
Fas and stress-induced pathways of apoptotic cell death. Therefore, the resistance to apoptosis
of HTLV-I-infected cells seems to strongly contribute to the long-standing perpetuation of a
chronic inflammatory state induced by bystander mechanisms of the interactions between
HTLV-I-infected CD4" T cells and HTLV-I specific CD8" cytotoxic T cells in the spmal cord
lesions of HAM/TSP patients.

Conclusion

In this review article, we demonstrated that HTLV-I-infected CD4" T cells of the
peripheral blood of HAM/TSP patients have the potential to trigger the pathological process in
the spinal cords based on the increased transmigrating activity to the tissues which possess the
characteristics of activated Thl on the background of systemic Thl activation. Therefore, it is

* conceivable that the increase of HTLV-I-infected Th1 cells in the peripheral blood is strongly
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involved in the first step of the immunopathogenesis of HAM/TSP. In addition, our data
strongly suggest that the resistance to apoptotic signals of the peripheral blood CD4™ T cells,
including HTLV-I-infected cells of HAM/TSP patients, contributes to the maintenance of long-
standing chronic inflammation in the spinal cords of HAM/TSP patients.

However, how activation of Thl is induced in the peripheral blood HTLV-I-infected cells
of HAM/TSP patients? How high HTLV-I proviral load is induced in the peripheral blood of
HAM/TSP patients? Although we proposed that activation of the p38 MAPK signaling
pathway - functions as one of the mechanisms to induce both abnormalities in HAM/TSP
patients, the exact mechanisms of how these abnormalities are induced in the peripheral blood
of HAM/TSP patients remain unresolved. Since the discovery of HAM/TSP, over 20 years
have passed. During that period, numerous findings have been reported in the research field of
HAM/TSP [4, 113, 114]. Unfortunately, these findings have not translated into an optimal
therapeutic strategy against HAM/TSP. A therapeutic strategy that manages to decrease or
delete HTLV-I-infected cells seems to be critical. Therefore, further investigations are needed
to clarify the exact mechanisms by which HTLV-I-infected Thl cells are increased in the
peripheral blood of HAM/TSP patients.
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