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Abstract: Spontaneous recurrence of methamphetamine- or amphetamine-induced paranoid hallucinatory psychosis (i.e.,
flashbacks) occasionally occurs in response to non-specific mild stress in drug-free patients with a history of metham-
phetamine- or amphetamine-induced psychosis. Stress sensitization associated with noradrenergic hyperactivity and in-
creased dopamine release may be related to this flashbacks. Stressful frightening experiences as well as fear-related para-
noid-hallucinatory states during methamphetamine use may be related to these stress sensitization. Robust noradrenergic
hyperactivity with increased dopamine release may predicts subsequent flashback episodes. Schizophrenia-like symptoms
(e.g., passivity phenomena, Gedankenlautwerden, and thought disorder such as circumstantiality and egorrhea symptoms)
appear to develop related to dopaminergic hyperactivity. One of the dopamine receptor-encoding genes DRD2, TaglA
AV/A1 type, with which reduced density of the D2 receptor is associated, reduces to the risk of development of flash-
backs.

Stress sensitization has been proposed as a key step in the progression from vulnerability to an overt paranoid-
hallucinatory states, so that schizophrenia and flashbacks due to previous methamphetamine psychosis shares common
underlying mechanisms of stress sensitization.

Compared to flashbacks due to previous methamphetamine psychosis, psychedelic drug flashbacks are the recurrence of a
perception learned while an individual is experiencing high anxiety levels, and thus recur in anxiety-related situations.
Anxiety or fear during drug use is an important factor in the development of flashbacks due to previous methamphetamine
psychosis and also psychedelic drug flashbacks.

Dopaminergic and glutamatergic neural circuits including the striatum, nucleus accumbens and prefrontal cortex play an
important role in the development of psychostimulant-induced long-lasting behavioral sensitization. Immediate early
genes expression in the particular brain regions affected by the psychostimulants is involved in this process. Furthermore,
recent advances in molecular analysis could shed light on the fundamental mechanism involved, by identifying specific
participating molecules such as delta FosB, NAC1, G-protein bl subunit and methamphetamine-responsive transcript 1b.

Keywords: Flashbacks, methamphetamine, stress sensitization, plasticity, gene expression, behavioral sensitization.

1. INTRODUCTION

Amphetamine (AMP) or methamphetamine (MAP) is
abused primarily to enhance mental power and mood. In
contrast to the multiple use of substances in other countries,
MAP in Japan is taken repeatedly by intravenous injection
without any other substance (no hallucinogens, cannabis,
cocaine, opiates or alcohol). AMP or MAP sometimes in-
duces parancid-hallucinatory psychosis, closely resembling
paranoid schizophrenia, in non-schizophrenic subjects [1,2].

*Address correspondence to this author at the Kansai University of Interna-
tional Studies, Hyogo 673-0521, Japan; Tel: +81 (794) 84-3546; Fax: +81
(2794) 85-1102; E-mail: yui-k@kuins.acjp
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Early studies reported that 7 % of the population had
used AMP in their lives in the United States of America [3],
and that one-sixth of injecting AMP users experienced psy-
chotic states [4]. Most MAP users in Japan re-inject before
the effects of the previous MAP injection were off. Such
exclusive and repetitive use of MAP may easily induce psy-
chotic states in as many as 76-92% of users, leading to en-
genders enduring vulnerability to paranoid-hallucinatory
states [4]. A clinical study reports that a male patient devel-
oped flashbacks about 2 years after the disappearance of
MAP psychosis [5]. Sensitization to MAP, ‘which develops
during abuse, is involved in susceptibility to ohset and re-
lapse of psychotic states [4]. In this regard, catecholamine
metabolites such as homovanillic acid (HVA) or 3-methoxy-
4-hydroxyphenylglycol (MHPG) are not related to psychiat-
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ric symptoms, and other factors such as sensitization to AMP
or MAP may be more important [6]. Importantly, patients
with a history of MAP psychosis occasionally undergo spon-
taneous recurrences of their MAP psychosis in response to
stress without further MAP use after a period of normalcy,
during which the pharmacological effects of MAP had worn
off [1, 2, 5, 7, 8]. Indeed, a previous study reported that 3 of
235 subjects experienced spontaneous recurrence of their
previous MAP psychosis in response to psychological stress,
several months after resolution of MAP psychosis [7]. Spon-
taneous recurrences of the drug’s effects are known as
“flashbacks” by psychedelic drug users and researchers [9-
11]. In this review, flashbacks due to previous MAP psycho-
sis are defined according to the DSM-IV criteria for hallu-
cinogen-persisting perception disorder and a general defini-
tion of psychedelic drug flashbacks [12] as a spontaneous
recurrence of almost all aspects of MAP-induced paranoid-
hallucinatory states following a period of normalcy during
which the pharmacological effects of MAP had worn off.
Psychedelic drug flashbacks include transient recurrences of
visual effects, altered body sensations and a specific disturb-
ing emotion, which originally occur after the immediate ef-
fects of hallucinogens had worn off [9-13]. However, the
most typical form is recurrent intrusions of the frightening
images into awareness for extended periods [9-13]. Flash-
backs due to previous MAP psychosis mainly involve para-
noid-hallucinatory states almost identical to the previous
MAP psychosis as long as 2 years after disappearance of
MAP psychosis [14-18]. Thus, flashbacks due to previous
MAP psychosis appear to be related to persisting neurobi-
ological alterations. Although the characteristics, symptoms
and dynamics of psychedelic drug flashbacks, and several
explanatory hypotheses have been studied [9-13], there is a
few investigation of the neurobiological bases of both psy-
chedelic drug flashbacks and flashbacks due to previous
MAP psychosis. Recently, it has been reported that the stress
sensitization associated with noradrenergic hyperactivity
with dopanimergic changes, which may develop during
MAP abuse, may be important in the development of flash-
backs [14-18]. These findings provide useful information on
the neurobiological bases of psychedelic drug flashbacks.

Schizophrenia tends to recur in response to stress such as
non-specific conflict in human relations. AMP or MAP psy-
chosis can mimic the active symptoms of schizophrenia dur-
ing the acute or chronic intoxication phase in non-

schizophrenic subjects [19]. Flashbacks due to previous-

AMP or MAP psychosis, which may occur through long-
term sensitization to the psychotogenic effects of MAP, may
therefore share some pathophysiology with schizophrenia
[19,20].

This review is made up of three parts. The first part ad-
dresses the nature, determinants, and significance of stress
sensitization associated with catecholaminergic changes in
the development of flashbacks due to previous MAP psyche-
sis, based on the author’s data (by K.Y.). The second part
reviews the differences in characteristics, symptoms and
etiology between psychedelic drug flashbacks and flashbacks
due to previous MAP psychosis (by K.Y.). The last part fo-
cuses on molecular mechanisms of MAP-induced behavioral
sensitization, based on recent findings by authors and others
(Y K. and T.N).

Yui et al.

2. STRESS SENSITIZATION IN SPONTANEOUS
RECURRENCE OF METHAMPHETAMINE PSYCH-
OSIS

2.1. Stress Reactivity Associated with Noradrenergic Hy-
peractivity and Increased Dopamine Release

AMP induces enduring sensitization to stress via changes
in dopaminergic systems. This stress sensitization may ex-
plain why psychosis recurs only in subjects with a history of
AMP psychosis following exposure to stress [21]. Previous
exposure to stressful stimuli induces noradrenergic hyperre-
activity to subsequent mild stress [22]. Stress-induced
noradrenergic hyperactivity may be a precipitating factor in
stress-related psychiatric disorders [23]. It is therefore possi-
ble that sensitization to stress associated with noradrenergic
hyperactivity and dopaminergic changes are critical to the
development of flashbacks due to previous AMP or MAP
psychosis. The processes by which flashbacks were trig-
gered, and related peripheral monoamine neurotransmitter
function in the development of flashbacks have been studied
in female subjects with flashbacks (i.e., flashbackers) [14,
15].

These subjects were 78 physically healthy females with-
out any other psychiatric disorder in the absence of MAP
use, including 44 with a history of MAP psychosis, and 34
normal controls (23 MAP users and 11 non-users, none of
whom had experienced MAP psychosis or flashbacks). All
subjects were recruited from inmates at a women’s prison.
Twenty-six of the 44 subjects with a history of MAP psycho-
sis experienced flashbacks during their 15-20 months of in-
carceration; the other 18 did not (i.e., non-flashbackers). The
18 non-flashbackers were selected as having broadly similar
times of resolution of MAP psychosis to the times for the 26
flashbackers (within 730 days of blood sampling; flashback-
ers:  mean®SD=238+209.4 days; non-flashbackers:
249.7£199.1 days). All subjects had been tested as negative
for other illicit drugs by the police. All subjects, except for
the 11 non-user controls, had averaged 1 to 10 intravenous
injections of MAP (30-60 mg per injection) per day during
periods of abuse. Development of flashbacks due to previous
MAP psychosis has been questioned by some researchers,
because no toxicological studies to rule out unreported drug
use by the subjects was conducted [24]. To further rule out
candestine use of MAP, we screened for the presence of
MAP in subjects’ venous plasma when the flashbacks oc-
curred; no MAP was ever found [14].

The 26 flashbackers exhibited reactivated MAP psycho-
sis without reexperiencing the stressful events or the symp-
toms of post-traumatic stress disorder (PTSD) or acute stress
disorder, corresponding to the DSM-IV criteria. The inci-
dence of psychotic symptoms during flashbacks was not sig-
nificantly different from that of the previous MAP psychosis.
On this basis, spontaneous psychosis due to previous MAP
psychosis is taken as proven. During flashbacks, the subjects
continued to experience paranoid delusions, in which they
developed transient auditory (96.2%) and visual hallucina-

_tions (34.7%). Auditory hallucinations lasted for 3 to 5 min-

utes and occurred three to five times per day. Mean Brief
Psychiatric Rating Scale (BPRS) subscores for suspicious-
ness and hallucinatory behavior during their prominent para-
noid-hallucinatory flashbacks were respectively 3.6 and 3.4.
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Paranoid delusions abated after 2-282 days. Thus, the total
duration of these flashbacks varied from 2 to 282 days
(mean+SD=65.8=65.0 days). The flashbackers did not
appear agitated, as specified by the BPRS anxiety subscores
of 2 or less, and continued their light prison duties during
flashbacks. Stress is usually defined as a physical or psycho-
logical factor that poses a threat to the well-being of the sub-
jects, producing a defensive response [25]. All of the 26
flashbackers had been exposed to threatening events and
fear-related psychotic symptoms during previous MAP use.
The threatening events corresponded to severe or extreme
types of psychosocial stressors (Table 1). Fear-related psy-
chotic symptoms (perception of threat) included auditory
hallucinations threatening the subject with death, frightening
visual hallucinations, delusions of being killed by persons
concerned, or delusions of being pursued by a gangster or
the police (Table 1). Almost all subjects had been over-
whelmingly threatened, taking refuge under a desk or in a
closet by these fear-related symptoms. The dominant trigger-
ing factor (91.5%) was a mild fear of other people (conflicts
or confrontations with inmates, 42.4%; fear of emitting body
odor, 6.8%; fear of prison setting, involving fear of the
prison staff, 18.6%; fear of husband, 6.6% and fear of other
inmates’ words and actions, 11.9%). Other factors were the
obligation to perform prison labor (8.5%) and sleep distur-
bance due to tension (8.5%). These factors represent omni-
present psychosocial stressors in the prison.

During flashbacks, plasma norepinephrine (NE) levels
were markedly increased. Moreover, a small increase in
plasma levels of 3-methoxytyramine (3MT), which is indica-
tive of dopamine (DA) [26], was related to the occurrence of
flashbacks [17] (Table 2). These findings suggest that re-
peated MAP use with stressful threatening experiences in-
duces increased sensitivity to stress associated with
noradrenergic hyperactivity and increased DA release to
subsequent mild psychosocial stressors. Since stressful stim-
uli induce noradrenergic hyperreactivity to subsequent mild
stress [22, 23, 27] and AMP induces enduring sensitization
to stress [21], stressful threatening experiences together with
MAP use may induce increased sensitivity to subsequent
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exposure to similar but less severe situations, so that height-
ened NE release would be readily elicited in response to a
mild fear of other people. It is documented that 3-MT s
formed peripherally and transported into the brain, implying
an important correlation between plasma and brain 3-MT
levels [28]. The elevated 3-MT levels during flashbacks may
therefore reflect increased dopaminergic activity. Stress Sen-
sitization, acting through noradrenergic systems, may lead to
pathological retrieval of traumatic memories [29]. Reproduc-
ing noradrenergic hyperactivity can elicit traumatic memo-
ries following exposure to residual traumatic memories [30].
AMP-induced sensitization (o stress in dopaminergic sys-
tems may be related to the enduring hypersensitivity to the
psychotogenic effects of stress in spontaneous recurrences of
AMP psychosis [21]. These observations together suggest
that a mild fear of other people as a triggering factor elicit
memories of MAP psychosis, related to threatening experi-
ences through increased sensitivity to stress associated with a
predominance of noradrenergic over dopaminergic hyperac-
tivity. As a result, the flashbacks may have been triggered
{17]. The findings may advance our understanding of the
neurobiological basis of stress sensitization in flashback
phenomena, in recurrent invasive psychotic symptoms, and
alse in stress-related psychiatric disorders.

2.2. The Nature, Determinants, and Significance of Types
of Stress in the Development of Flashbacks

This capter addresses the nature, determinants and sig-
nificance of three types of stressful frightening experiences.
The 26 flashbackers were classified into three subgroups
according to a history of stressful events or MAP-induced
fear-related psychotic symptoms (i.e., stressful events plus
fear-related paranoid-hallucinatory states, stressful events,
and fear-related paranoid-hallucinatory states). The numbers
of stressful events and fear-related symptoms in each of the 3
subgroups of the flashbackers were significantly higher than
for the 18 non-flashbackers (Table 1).

During flashbacks, the 11 flashbackers with a history of
stressful events plus fear-related symptoms had markedly
increased NE levels. Both the 7 flashbackers with a history

Table 1.  Stressful Experiences During Methamphetamine Use
Flashbackers Subgroups of flashbackers” Non-flashbackers
Events plus symptoms Events Symptoms
=26 n=11 n=7 n=38 n=18
Stressful events 18(69.2Y  11(100.0) 7(100.0)¢ 0(0.0) 1(5.6)
Axis IV scores 3.6%1.8 4.7£0.7" 4.7£0.5¢ 1.3£0.4 1.2+0.9
Fear-related symptoms 19¢73.1Y 11 (100.0) 0(0.0) 8 (100.0)° 1(5.6)
Frightening auditory hallucinations 13 (50.0)" 7 (63.6) 0(0.0) 6 (75.0)" 0(0.0)
Frightening visual hallucinations 6 (23.1y 3(27.3) 0(0.0) 3 (37.5) 0(0.0)
Delusions of being killed 5(19.3) 3(27.3) 0(0.0) 2250y 0(0.0)
Delusions of being pursued 11(42.3) 6 (54.5) 0(0.0) 5(62.5)° 1(5.6)

“Events plus symptoms: the 11 flashbackers who had been exposed to stressful events plus fear-related paranoid-hallucinatory states; events: the seven flashbackers who hade been
exposed to stressful events alone; symptoms: the eight flashbackers had been exposed to fear-reiated paranoid-hallucinatory states alone. *Percentage do not total 2100 because some
subjects had more than one symptoms. ‘P<0.05, ¢ P<0.01 compared with the non-flashbackers (the X test).
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Table2. Plasma Monoamine Metabolite Levels of Norepinephrine (NE), Epinephrine (E), 3-Methoxytyramine (3-MT), and Dopa-
mine (DA)
Subgroups N Age (years) NE E 3-MT DA

Flashbackers during flashbacks 26 27.5%5.2 0.58+0.5554 0.38+0.52 1.36+2.05¢ 0.08+0.15
Flashbaclers with a history of stressful 11 283474 0.660.46" 0.360.60 1.93x2.21/ 0.15%0.19
events plus fear-related psychotic symptoms

Flasbackers with a history of stressful events 7 27.9£1.7 0.570.86" 0.30+0.53 1.80£2.53¢ 0.010.01
Flasbackers with a history of fear-related symptoms 8 26.0£5.0 0.47£0.38°¢ 0.45+0.49 0.26+0.74 0.06+0.10
Flashbackers with a single episode 10 28.8+6.6 0.49x0.627¢ 0.45+0.33 1.41£2.13 0.04+0.07
Flashbackers with subsequent episode 8 26.1£3.2 0.89+0.214%4 0.51+0.62 1.62:0.26% 0.07£0.13
Flashbackers during remission 26 277455 0.31£0.32 0.35+0.48 0.61£1.23 0.2220.55
Flashbaclers with a history of stressful 11 285467 0.29+0.23 0.47+0.65 0.72£1.61 0.20£0.61
events plus fear-related psychotic symptoms

Flasbackers with a history of stressful events 7 28.2£1.6 0.41£0.44 0.21£0.30 0.69+0.98 0.160.28
Flasbackers with a history of fear-related symptoms 8 26.5+5.0 0.24+0.35 0.34+0.41 0.40+0.91 0.09+0.15
Flashbackers with a single episode 10 29.1%7.0 0.24+0.25 0.24+0.41 063+0.19 0.1240.16
Flashbackers with subsequent episodes 8 26.1£3.2 0.27£0.21 0.63+0.64 0.70£1.02¢ 0.13£0.19
Non-flashbackers 18 283485 0.34+0.34 0.50%1.00 1.1242.13 0.1040.17
User controls 23 28.7£5.0 0.12+0.22 0.63+1.60 0.28+0.74 0.09+0.17
Non-user controls 11 34.7£11.7 0.10+0.13 0.34+0.42 0.85+1.42 0.18+0.27

“The square-root transformation was applied to all monoaminergic values. Values are means +SD. All monoamine metabolite levels are expressed as pmol/mL. *P<0.01 compared
with the flashbackers during remission. °P<0.05, “P<0.01 compared with the non-flashbackers. “P<0.05,/P<0.01 compared with the user controls. ¥P<0.05, "P<0.01 compared with

the non-user controls (post hoc tests).

of stressful events alone, and the 8 flashbackers with a his-
tory of fear-related symptoms alone, had increased higher
NE levels during flashbacks. However, their NE levels were
lower than in the 11 flashbackers with a history of stressful
events plus fear-related symptoms. Plasma 3-MT levels dur-
ing flashbacks in the two subgroups with a history of stress-
ful events (irrespective of whether they had experienced
fear-related symptoms) were elevated (Table 2). These find-
ings suggest that stressful threatening events may further
induce sensitization involving DA release, indicated by
slightly increased 3-MT levels, in response to mild stressors.

Fear-related symptoms met the general definition of
stress [25] as described above. It has been reported that
highly emotional experiences (viewing an emotionally arous-
ing story) activate the & -adrenergic system in the regulation
of memory storage [31]. Thus, fear-related symptoms may
have a great impact on noradrenergic systems, inducing ele-
vated NE levels in flashbackers having a history of fear-
related symptoms alone. Collectively, fear-related psychotic
symptoms during MAP use may be able to induce noradren-
ergic hyperreactivity to mild stress, leading to flashbacks.

2.3. Susceptibility to Episode Recurrence in Flashbacks
Due to Previous MAP Psychosis and Related Factors

About 50% of subjects with flashbacks had subsequent
flashbacks with shortening of remission. More psychosocial
stressors are liable to be involved in the first episode of a
major affective disorder than in subsequent episodes, imply-

ing an increasing susceptibility to recurrence [32]. A previ-
ous study to assess stress and symptom levels found a close
similarity in the frequency or type of stress experienced by
subjects who remained well, and those who relapsed, in bi-
polar disorder [33]. Yui er al. [17,18] examined whether
stress reactivity associated with noradrenergic hyperactivity
and dopaminergic changes in an initial episode and in any
subsequent episode differ in the first flashback. They also
studied which factors do and do not contribute to susceptibil-
ity to episode recurrence.

In that study, 18 of the 26 flashbackers were selected
whose plasma monoamine metabolite levels were assayed
during the first flashback episode, and again within 30 days
of its passing. Of these, 11 experienced a single flashback
episode, and the other nine also experienced subsequent epi-
sodes (two flashbacks per subject). During flashbacks, the 8
flashbackers with subsequent episodes had markedly in-
creased NE levels and slightly increased 3-MT levels during
flashbacks, whereas the 10 flashbackers with a single epi-
sode displayed less increased NE levels than the flashbackers
with subsequent episodes, and also slightly increased 3-MT
levels (Table 2). The 8 flashbackers with subsequent epi-
sodes had a significantly longer duration of imprisonment
and significantly earlier age of onset of MAP psychosis than
the 10 flashbackers with a single episode. Thus, robust
noradrenergic hyperactivity with slightly increased DA re-
lease in response to mild stress may predict subsequent
flashbacks. Cumulative stress effects [34] or ruminations
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associated with aversive events [35] have substantial impact
on the reservoir of adaptive energy that affects biological
adaptation [34], and may induce further NE changes [35].
Therefore, long-term exposure to distressing situations (im-
prisonment) in the § flashbackers with subsequent episodes
may reflect their robust noradrenergic hyperactivity. Evi-
dence suggests that the earlier the age of onset of affective
disorders, the higher the rate of episode recurrence [36]. Pa-
tients with early onset depression tend to experience recur-
rent depression [37]. Consequently, there may be a relation
between early onset MAP psychosis and susceptibility to
subsequent flashbacks. Overall, long-term exposure to dis-
tressing situations and early onset of MAP psychosis may be
related to susceptibility to subsequent flashbacks vig robust
noradrenergic hyperreactivity.

2.4. Development of Schizophrenic Symptoms in Relation
to Dopaminergic Hyperactivity

As described above, the 26 flashbackers continued to
experience paranoid delusions, during which they developed
transient auditory and visual hallucinations. To determine the
role of DA changes in the development of schizophrenia-like
symptoms, nine of the 26 flashbackers were selected who
had robust increased plasma 3-MT levels during flashbacks,
compared to those in the 23 MAP user and 11 non-user con-
trols. In addition, the 7 flashbackers were selected based on
the fact that they had lower levels of NE than the user and
non-user controls. These 9 flashbackers with higher 3-MT
levels more frequently experienced schizophrenia-like symp-
toms such as passivity phenomena, Gedankenlaut-werden,
and thought disorder such as circumstantiality and egorrhoea
symptoms. The numbers of these symptoms were signifi-
cantly greater than in the 7 flashbackers with lower NE lev-
els. Thus, dopaminergic dominance in relation to noradren-
ergic activity may be related to schizophrenia-like symp-
toms.

2.5. Involvement of Schizophrenia-Related Mechanisms
in Flashbacks: The Role of Stress Sensitization

Approximately 40% of schizophrenic patients show in-
creased psychotic symptoms after administration of CNS
stimulant agents such as AMP [38]. In addition, controlled
human studies involving drug-free volunteers have demon-
strated that a psychotic state can be elicited by administra-
tion of small frequent oral doses of AMP [39]. Some sub-
jects with schizophrenia exhibit emergence or worsening of
their positive symptoms (e.g., paranoid-hallucinatory states),
with increased DA release, following acute exposure to
AMP at lower doses that induce no psychotic symptoms in
healthy subjects [38]. Stress reduction strategies have a sig-
nificant effect in on reducing relapse rates in schizophrenic
patients [40]. Onset of schizophrenia is frequently precipi-
tated by a stressful event, and psychological stress is well
known to precipitate or exacerbate psychotic symptoms [41].
Most schizophrenic patients have enduring hypersensitivity
to aversive stimuli, which may be linked to relapses [42] in
response to psychological stressors [43]. Moreover, schizo-
phrenia might be associated with chronic recurrence of in-
termittent sensitized states of DA systems [44]. Several lines
of evidence suggest that chronic AMP effects and schizo-
phrenia overlap in the neurobiology of idiopathic and drug-
induced psychoses, specifically by augmenting dopaminergic
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neurotransmission within the central nervous system [45].
Clinical and preclinical data together implicate disturbances
in stress-sensitive systems in the etiology of schizophrenia
{38, 44]. In this respect, neurochemical sensitization of cen-
tral DA systems [46], or endogenous sensitization [44] has
been proposed as a key step in the progression from vulner-
ability to an overt symptomatology. Progressive neuro-
chemical sensitization, which may be due possibly to aver-
sive stimuli during early brain development, occurs with
increased DA release when the capacity to compensate for
perturbation in neural activity is diminished in situations of
non-specific stress. This process may underlie the onset and
relapse of illness [46]. Likewise, stress sensitization possibly
induced by exposure to stressful experiences during previous
MAP use, may be responsible for the onset of the flashbacks
due to previous MAP psychosis, and further recurrences
[17,18].

Although the mesolimbic DA system is implicated in
neurochemical sensitization, DA hyperactivity may play
only a limited role in generating positive symptoms. This is
because DA mediated stimulation of D2 receptors explains
only 30% of the variance in the positive symptom changes in
response to AMP challenge, and patients in remission show
no evidence of increased DA activity [44, 47]. A discrete
neurochemical deficit could therefore account for recurrent
positive psychotic episodes [44, 47]. In this regard, schizo-
phrenic patients who showed enhancement not only in DA
release and but also in NE activity during neuroleptic treat-
ment are likely to relapse soon after neuroleptic withdrawal.
This suggests that increased noradrenergic hyperactivity as
well as increased DA release is related to relapse prediction
[48]. In this respect, spontaneous recurrences of MAP psy-
chosis may overlap with schizophrenia-in susceptibility to
paranoid-hallucinatory states. In the studies of Yui ef al. [16,
17], stress sensitization associated with noradrenergic hyper-
activity and increased DA release may be important in the
development of flashbacks. The fact that robust noradrener-
gic hyperactivity may be related to susceptibility to further
recurrences of flashbacks may parallels a previous report that
increased NE levels may predict psychotic relapse in schizo-
phrenia [48, 49]. These considerations suggest that- stress
sensitization associated with noradrenergic hyperactivity and
increased DA release in response to mild stressors corre-
sponds to the neurochemical or endogenous sensitization
proposed by Lieberman et al. [46] and by Laruelle [44] as
the pathophysiology of schizophrenia. Flashbacks and
schizophrenia may therefore share common underlying
mechanisms of susceptibility to paranoid-hallucinatory
states, such as stress sensitization, noradrenergic hyperactiv-
ity and enhanced DA release.

There are several other possible discriminators between
MAP psychosis and schizophrenia: speed of onset, the
dream-like quality of experiences, tendency toward visual
hallucinations, brisk emotional reaction {(usually in. the direc-
tion of anxiety), the brevity of psychotic episodes, frequent
aggravation and the absence of thought disorder (i.e., frag-
mented and bizarre associations and disorganized speech)
[20]. Although there are a number of similarities between
MAP psychosis and schizophrenia, the two psychotic disor-
ders in fact have only susceptibility to paranoid-
hallucinatory states (MAP-induced abnormal behavior in
experimental animals) in common. Therefore, spontaneous
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recurrences due to previous MAP psychosis could act as an
appropriate model of susceptibility in regard to paranoid-
hallucinatory states.

Long-term use of antidepressant drugs may, in some
cases, induce switching and cycle acceleration in bipolar
disorder, tolerance to the effects of antidepressants during
long-term treatment, onset of resistance upon rechallenge
with the same antidepressant drug, all worsening the long-
term outcome and withdrawal symptoms. These phenomena
in susceptibile subjects can be explained by the oppositional
model of tolerance. Such processes may sometimes operate
unopposed and increase vulnerability to relapse. The hypo-
thalamic-pituitary-adrenal (HPA) axis can moderate both
sensitization and tolerance [50]. Moreover, it has been postu-
lated that both sensitization to stress and episode sensitiza-
tion occur in mood disorders [32]. As described above,
schizophrenia might be associated with chronic recurrence of
intermittent sensitized states of DA systems [44]. Progres-
sive neurochemical sensitization is proposed as the underly-
ing mechanism of the onset and relapse of schizophrenia
[46]. Collectively, oppositional tolerance may be included in
the pathophysiology of schizophrenia.

To conclude this section, flashbacks and schizophrenia
share common underlying mechanisms of susceptibility to
paranoid-hallucinatory states, such as stress sensitization.
Moreover, stress sensitization is a common neurobiological
mechanism in episode recurrence of both illnesses.

2.6, Molecular Mechanisms of Susceptibility to MAP
Psychosis and Related Flashbacks

Susceptibility to MAP psychosis is related to genetic
factors of the individual. Several lines of evidence suggest
that MAP psychosis is related to the function of dopamine
transporter protein (DAT) [S1, 52]. DAT is the site of pre-
synaptic reuptake of DA, an event that terminates its synap-
tic activity. It is reported that DAT genotype is associated
with cocaine-induced paranoia (allele frequency for allele 9
= .16 for those without paranoid experiences) [53]. Recently,
Ujike ef al. [52] investigated the association of MAP de-
pendence/psychosis and the hDATI gene (SLC6A3) encod-
ing the DAT, which is the primary site of MAP activity in
the brain. They examined four exonic polymorphisms of the
hDAIl gene. Subjects with MAP psychosis, whose psycho-
sis lasted for 1 month or more after cessation of MAP use,
had a significant excess of nine- or fewer repeat alles of the a
variable number of tandem repeats (VNTR) in 3’utranslated
region (3°UTR) of the hDAT] gene, suggesting that the
presence of nine or few repeat alles of hDATTI is a strong
risk factor for worse prognosis of MAP psychosis [52].
Moreover, the complexes of « -synuclein and DAT facilitate
membrane clustering of the DAT, thereby accelerating DA
uptake in vitro [51]. In this respect, the « -synuclein gene
may be associated with MAP psychosis and dependence in
female subjects [51]. Moreover, neuroprotective effects of
glutathione or its related compounds have been reported on
MAP-induced neurotoxicity [54]. Gene encoding glutathione
S-transferases (GSTs) have been considered as candidates
for MAP psychosis [54]. Indeed, a functional polymorphism
(Liel105Val) on exon 5 of the glutathione S-Transferase P1
(GSTP1) gene could be a risk factor of the development to
MAP-induced psychosis [55]. Ujike er al [56] further re-

Yui et al.

ported that one of dopamine receptor-encoding genes DRD2
of TaglA Al/Al type, with which reduced density of D2
receptor is associated, may reduce the risk of flashbacks.

3. COMPARISON IN CHARACTERISTICS, SYMP-
TOMS AND ETIOLOGY BETWEEN PSYCHEDELIC
DRUG FLASHBACKS AND FLASHBACKS DUE TO
PREVIOUS METHAMPHETAMINE PSYCHOSIS

3.1. Characteristics, Symptoms and Etiology of Psyche-
delic Drug Flashbacks

Hallucinogenic drugs include cannabis (marijuana, hash-
ish and tetrahydrocannabinol [THC]), lysergic acid diethy-
lamide (LSD), mescaline and psilocybin [57]. LSD is the
most powerful, and marijuana the least powerful. The acute
effects of these drugs includes an increased sensitivity to all
variety of stimuli {(e.g., prolonged visual abnormalities), hal-
lucinations, a waxing and waning of the intensity of colors,
prolonged afterimages, illusions, changes in depth percep-
tion, disturbances of body images, and alterations of cogni-
tion and judgment. Recurring drugs effects after the drug has
left the body (“psychedelic drug flashbacks™) date back for
decades [58]. Indeed, prolonged sensitization to the delicate
phenomena of perception have been reported for a long time
[59].

Three types of flashback have been reported [60]: (1)
“perceptual flashbacks”, meaning transient recurrences of
visual effects similar to the LSD experiences, ranging from
flashes of light through shimmering or undulating field of
vision (which psychedelic drug abusers sometimes view as
“free trips”), to well-formed visual hallucination; (2) “so-
matic flashbacks”, transient recurrent states of altered body
sensations; (3) “emotional flashbacks”, an intense recurrence
of a specific disturbing emotion undergone during a psyche-
delic experience. Recent studies found that spontaneous re-
currence of some of the symptoms which appear during the
LSD intoxication divided fall into two types [58, 61]. The
first type is psychedelic drug flashbacks as described above.
The second type is hallucinogen persisting perception disor-
der (flashbacks) (HPPD), as recognized in DSM-III-R
(1986); these include geometric hallucinations, false percep-
tions, flashes of color and other perceptional symptoms, but
do not include psychotic paranoid hallucinatory states [62].
In general, HPPD is long-term, spontaneous, intermittent or
continuous, and involves pervasive re-experiencing of one or
more perceptual symptoms, causing significant distress or
impairment in social, occupational or other areas of function-
ing {62, DSM-III-R]. Almost all previous studies were per-
formed in the 1970s, before operational criteria for HPPD
were published in DSM-III-R. It is therefore difficult to in-
terpret whether subjects in these studies meet the criteria for
DSM-III-R or DSM-IV-TR criteria for HPPD. The above
mentioned type (1) symptoms may meet DSM-III-R and
DSM-IV criteria A of HPPD. There is a slight prevalence of
HPPD; for example, 9 of 110 LSD users (8%) exhibited spe-
cific visual phenomena, as described in DSM-III-R [63].

According to a previous study, among the military popu-
lation; the fraction of responders who reported flashbacks
arising from the use of LSD was 22.9%, whereas that of
marijuana was 1.3% [64]. Other studies reported that, among
non-nilitary volunteers, LSD and marijuana were abused by
97% and 3% of the subjects respectively, and 57 (66%) ex-
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perienced mainly perceptual flashbacks [12]. The delay be-
tween drug intake and flashback varied from a few days or a
week to over 2 years [12]. Subjects continued to experience
flashbacks for a long time, over 1-2 years for 8§2% of the
subjects [12]. Previous clinical studies reported that 52% of
207 soldiers who reported the heavy use of LSD and/or mari-
juana experienced the perceptual flashbacks [65], and that 66
% [66] or 22.9% [67] were reported to have LSD flashbacks.
When asked to rate their flashbacks (mainly LSD flashbacks)
in positive or negative terms, a surprising number (70% of
the 87 volunteers) perceived them as non-threatening [12].
The differing incidence of flashbacks between marijuana use
and LSD flashbacks is significant (p<0.01) [64, 67].

Psychedelic drug flashbacks have been reported to occur
during times of psychological stress [68], relaxation or eve-
ryday activities, during intoxication by alcohol, barbiturates,
antihistamines, fever and flashing light [60]. Dominant fac-
tors triggering flashbacks were an anxiety-provoking situa-
tion for 20%, and pleasurable thoughts and situations for
21% of the 87 subjects [11]. A dark environment is been
reported to be one of the most common triggers of visual
phenomenology of flashbacks (e.g., genomic pseudohalluci-
nations, perception of peripheral fields and flashes of color)
[69].

‘Psychedelic drug flashbacks have been suggested to have
multiple etiologies [60]. These are five main theories are: in
the first, fear or anxiety is related to the development of psy-
chedelic drug flashbacks: a) the recurrent images seem to be
a return of traumatic perceptions, i.e., images of the drug
experience that were overwhelmingly frightening at the time
they were hallucinated [9]; b) precipitated anxiety or inter-
feres with function may be important in spontaneous recur-
rence of marijuana effects such as unusual visual or somatic
sensations [70]; ¢) a perception may be learned while an in-
dividual is experiencing high anxiety levels, and then recur
in an anxiety provoking situation (learned theory) [60]; d)
prolonged LSD flashbacks may persist, maintained by psy-
chodynamic processes (i.e., conversion reactions) due to fear
or anxiety during the drug experience [71]; ) if the experi-
ence is of a frightening nature, the memory of the event may
be unusually intense, so that portions of the psychedelic drug
experience may be easily remembered (the intensified mem-
ory theory) [60, 72]. In the second theory, once awareness of
intense visual, perceptual, or body sensations has been noted,
a subsequent recurrence of the same sensation may be in-
duced when the individual attaches a negative or fearful con-
notation to the belief that a flashback is occurring (the sensi-
tization theory) [60]. In the third theory, flashbacks may be
related to the toxic effects of psychedelics on visual, audi-
tory, and tactile systems, causing transient neurophysiologi-
cal changes that cause recurrence of hallucinations (physio-
logical theory) [68, 69, 73]. In the fourth theory, the psyche-
delic drug itself may cause a periodic release of these effects
under stress (biochemical theory) [73]. In the fifth theory,
LSD-related HPPD is associated with sympathetic arousal
because clonidine, which decreases adrenergic activity, alle-
viates the symptoms [61]. Another report reclassified these
theories into three principal explanations: 1) the perceptual
phenomena represent a heightened awareness of normal vis-
ual phenomena; 2) some flashbacks represent merely in

Current Psychiatry Reviews, 2006, Vol 2, No. 3 387

stances of normal memory accompanied by emotional dis-
tress; 3) flashbacks are manifestations of learned, imagina-
tive role-playing, hysterical phenomena [58]. Regarding the
etiology of HPPD, HPPD is a disinhibition of visual process-
ing related to a loss of serotonin receptors on inhibitory in-
terneurons [62].

This diversity of theoretical speculation suggests that
flashbacks are a complex phenomenon involving an inter-
play of physiological, personality, psychological, and social
factors [11]. The flashbacks are probably primarily psycho-
logical rather than chemical in nature, and may be related to
traumatic events within the LSD intoxication itself [68]. In-
deed, a widely held view is that LSD flashbacks represent a
novel way of reacting to stress learned while in the LSD
state [68].

3.2. Comparison Between Psychedelic Drug Flashbacks
and Flashbacks Due to Previous MAP Psychosis

Psychedelic drug flashbacks or HPPD include transient
recurrences of visual effects, altered body sensations or a
specific disturbing emotion [60]. These symptoms constitute
the recurrence of some part of the psychedelic drug effect
[74] and do not present disruption to the flow of normal con-
sciousness, suggesting that they do not meet general cate-
gory of dissociative phenomena [72]. An earlier study re-
ported that the most symptomatic form of LSD flashbacks
was repeated intrusions of frightening images [9]. The most
psychedelic drug flashbacks do not include vivid, frightening
auditory and visual hallucinations; the persisting paranoid
delusions which usually occur in flashbacks due to previous
MAP psychosis.

Psychédelic drug flashbacks may sometimes be related to
traumatic events within the LSD intoxication itself [68], and
are triggered by psychological stress {68], anxiety [12] or a
dark environment [69]. Psychedelic drug flashbacks may
therefore be related to frightening images experienced during
the drug abuse. The etiological theories described above in-
dicate that fear or anxiety may be related to the occurrence of
psychedelic drug flashbacks. However, stressful frightening
experiences described in flashbacks due to previous MAP
psychosis were never reported in relation to the development
of psychedelic drug flashbacks.

Psychedelic drug flashbacks may be the recurrence of a
perception which was learned while an individual was expe-
riencing heightened anxiety [60], and may therefore recur in
anxiety-related situations. In contrast, in the development of
flashbacks due to previous MAP psychosis, a mild fear of
other people acting as a triggering factor, may have elicited
memories of MAP psychosis related to threatening stressful
experiences through increased sensitivity to stress associated
with a predominance of noradrenergic over dopaminergic
hyperactivity. Flashbacks due to previous MAP psychosis
may be spontaneous psychosis via increased sensitivity to
stress associated with catecholaminergic changes induced by
stressful frightening experiences. Most studies on psyche-
delic drug flashbacks were performed in the 1970s, let us
add that fear or anxiety during drug use is important not only
in the development of flashbacks due to previous MAP psy-
chosis, but also psychedelic drug flashbacks.
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4, MOLECULAR BASES OF METHAMPHETAMINE-
INDUCED BEHAVIORAL SENSITIZATION

Single or repeated exposure to psychostimulants such as
amphetamines (amphetamine and methamphetamine) or co-
caine results in augmented behavioral response to subse-
quent re-exposure to the drugs after their withdrawal. This
béhavioral sensitization seems to be part of the neurobiologi-
cal basis involved in relapse in some cases of schizophrenia
as well as amphetamine psychosis. Various lines of evidence
indicate that psychostimulant-induced behavioral sensitiza-
tion is a kind of neuroplasticity requiring changes in gene
expression. Inhibition of de novo protein synthesis blocks
establishment of the sensitization, the sensitization-inducing
psychostimulants evoke expression of immediate early genes
encoding transcription factors in brain regions involved in
establishment of the sensitization; sensitization-specific
modifications of gene expression must be identified. We
review recent advances in this field below.

4.1. Neuroplasticity-Related Molecules

Long-term potentiation (LTP) is a basic model of long-
lasting physiological neuronal plasticity including learning
and memory. Gene expression followed by de novo synthe-
sis of proteins is required for establishment of its late phase
(L-LTP) [75]. Behavioral sensitization lasts so long that it is
possible to detect the augmented behavioral response in ro-
dents over weeks or months after its induction by pre-
exposure to stimulants [76, 77]. These observations suggest
that stimulant-induced behavioral sensitization also involves
gene expression. Indeed, inhibition of gene expression by
administration of protein synthesis inhibitors following
stimulant treatment blocks sensitization, also in the case of
the L-LTP [78, 79]. Dopaminergic projection from the ven-
tral tegmental area (VTA) to the nucleus accumbens (NAc)
is important in initiating and establishing behavioral sensiti-
zation [76, 77]. Sorg and Ulibarri showed that injection of
the protein synthesis inhibitor anisomycine into the VTA,
prior to each daily pretreatment with cocaine resulted in
blockade of behavioral sensitization. In contrast, administra-
tion of anisomycine into NAc, the target site of VTA dopa-
mine neurons, did not block sensitization, indicating that
changes in gene expression following repeated stimulant
treatment in specific brain regions are critical in establishing
the behavioral sensitization {79].

The nerve growth factor (NGF) family of neurotrophins
are known to activate the Ras/mitogen-activated protein
kinase (Ras/MAPK) signal transduction cascade, and accu-
mulating evidence indicates that they have an important role
in activity-dependent neuroplasticity [80, 81]. Pierce et al.
showed that inhibition of MAPK signaling by local injection
of the MAPK kinase (MEK) inhibitor PD98059 into the
VTA 20 min prior to daily repeated treatment with cocaine
resulted in blockade of behavioral sensitization after 14-days
withdrawal [82]. Along with the sensitization-inducing prop-
erty of neurotrophin-3 (NT-3) injected into the VTA [81],
MAPK signaling seems to be important in the initiation of
stimulant-induced sensitization.

For establishment of long-lasting behavioral sensitiza-
tion, the glutamatergic projections into the VTA-NAc dopa-
mine system and its associated structure of caudate-putamen
(CPu) also have a critical role, and their major originating
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sites are the prefrontal cortex (PFC) and the amygdala
(AMY) [83-85]. It has recently been found that tissue-
plasminogen activator (tPA) is an important molecular factor
in the establishment of activity-dependent neuronal plasticity
[86-88]. Acute restraint stress induced tPA in the central and
medial AMY of mice and the induction of tPA in AMY con-
tribute to an increase in anxiety-like behavior [86]. The tPA
has a critical role in the expression of L-LTP, through con-
version of the precursor pro-BDNF to mature BDNF, which
is a vital protein for the expression of L-LTP [87]. Nishi-
kawa’s research group [89] detected stimulant-induced ex-
pression of tPA mRNA in a restricted population of medial
PFC neurons by in situ hybridization analysis, and confirmed
that they projected into the medial striatum by using a retro-
gradely labeling fluorescent dye. Although the precise role
of psychostimulant-induced tPA in medial PFC remains to
be investigated, this protease might mediate long-lasting
alternation of synaptic activity in the cortico-striatal path
associated with stimulant-induced behavioral sensitization.

Collectively, these observations suggest that stimulant-
induced changes in plasticity-related neural function in spe-
cific circuits are involved in the establishment of psy-
chostimulant-induced long-lasting behavioral sensiti-zation.

4.2. Transcription Factors

Immediate early gene expression, such as c-fos or zif268,
is generally a marker of activity changes in neural circuits
followed by induction of specific genes. Sensitization-
inducing stimulants are known to evoke c-fos gene expres-
sion in specific brain regions including VTA, NAc, CPu,
PFC, and AMY [90]. Low doses of antipsychotics used for
treatment of schizophrenia (4 mg/kg clozapine and 0.1
mg/kg haloperidol) attenuate amphetamine-induced c-fos
expression in PFC and block the induction of behavioral
sensitization [91], suggesting that changes in gene expres-
sion following antipsychotic-sensitive c-fos are important in
initiating of stimulant-induced sensitization.

In the case of a short withdrawal period (less than 24h),
repeated administration of with stimulants attenuates the
evoking ability of immediate early genes, indicating that a
homeostatic mechanism in this tolerance phenomenon to
stimulants [92-94]. However, longer withdrawal periods ex-
ceeding 3 days results in enhancement of the immediate
early gene expression-evoking property of the stimulants in
animals pretreated with subchronic stimulants prior to their
withdrawal [95-99]. Ostrander ef al. [100] showed that envi-
ronmental factors affect not only behavioral augmentation
but also enhanced changes in c-fos mRNA expression elic-
ited by amphetamine challenge after ten to twelve days of
drug withdrawal. The relatively slow and progressive
changes in the regulation of gene expression following sub-
chronic treatment with stimulants, therefore, contribute to
establishing of behavioral sensitization.

The c-fos gene encodes a transcription factor of AP-1
complex, and its stimulant-evoked expression in specific
brain regions, including VTA, NAc, CPu, PFC, and AMY,
might elicit subsequent changes in expression of various
genes sustaining tolerance or sensitization. Hope ef al. [101]
identified unusually stable variant of a component of AP-1
complex encoded by fosB gene, delta FosB, after subchronic
cocaine treatment [101]. Repeated treatment with cocaine
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resulted in accumulation of AP-1 complex, including a stable
isoform of the delta FosB molecule in the cortex and stria-
tum {101, 102]. The abnormal accumulation of the transcrip-
tion factor during subchronic drug treatment induces the fol-
lowing changes in gene expression during the withdrawal
period from the drug. Indeed, one of the down-stream target
genes, cycline-dependent kinase 5 (cdk5), was identified as
being induced after subchronic cocaine treatment [103].
Cdk5 is known to mediate phosphorylation of DARPP-32
and DARPP-32, which is important in protein kinase A
(PKA)-signaling from dopamine D1 receptor [104]. In-
creased phosphorylation of DARPP-32 by CdkS attenuated
signaling via the D1 receptor and PKA. This suggests that
induction of cdk5 expression by subchronic cocaine treat-
ment via increased delta FosB mediates a homeostatic nega-
tive feedback response so as to minimize the behavioral im-
pact of subsequent stimulant administration. In support of
this hypothesis, administration of Cdk5 inhibitor led to en-
hanced the behavioral effects of repeated cocaine injection
[103].

NAC-1 is a unique brain POZ (poxvirus and zinc fin-
ger)/BTB (Broad-complex, Tramtrack, and Bric-a-brac) pro-
tein of transcription factor that is upregulated in the NAc
three weeks after chronic cocaine seif-administration [105].
This induction of NAC-1 also seems to be part of the ho-
meostatic response to repeated cocaine injection, because
knock down of NAC-1 by microinjection of antisense oli-
gonucleotide into NAc enhances the motor stimulant re-
sponse to an acute cocaine injection [106], and virus-
mediated over-expression of NAC-1 clearly prevents the
development of cocaine-induced behavioral sensitization
[107]. The genomic sequence of murine NAC-1 gene in-
cludes a functional AP-1 binding site with enhancer activity,
suggesting that changes in AP-1 activity in NAc after dis-
continuation of subchronic exposure to psycho-stimulants
leads to the induction of NAC-1 expression [108]. Identifica-
tion of the downstream target of NAC-1 could provide clues
to the prevention of ths sensitization-related psychiatric dys-
functions discussed in this article.

4.3. G-Protein Signaling

In contrast to homeostatic responses to repeated psy-
chostimulant injection, one of the acutely induced genes,
GNBI1 encoding G-protein beta subunit (Gbetal), seems to
mediate the initiation of behavioral sensitization. In rats or
mice, a single injection of stimulants induced GNB1 expres-
sion in the NAc or striatum 2-4 hr after administration,
whereas no change was detected following subchronic treat-
ment [109, 110]. Antisense oligonucleotide-mediated knock-
down of GNB1 results in blockade of cocaine-induced be-
havioral sensitization [108]. Consequently, changes in G-
protein signaling from G-protein coupled receptors
(GPCRs), such as dopamine receptors or other unknown
GPCRs, might be involved in the initiation of sensitization.

4.4. LHPA Axis

The limbic-hypothalamo-pituitary-adrenal (LHPA) axis
plays an important role in stress response, and its activity
seems to be closely related to the establishment of psy-
chostimulant-induced behavioral sensitization. The Fischer
344 (F344) rat exhibits greater LHPA axis responses than the
Lewis (LEW) rat. Inter-strain difference in physiological
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properties of the LHPA axis also show in greater sensitiza-
tion in F344 than LEW [111-113]. Steckler and Holsboer
[114] showed that transgenic (TG) mice expressing a neuro-
filament-promotor-driven antisense RNA complementary to
a fragment of glucocorticoid receptor (GR) ¢cDNA did not
develop amphetamine-induced behavioral sensitization, but
rather behavioral tolerance. Since the expression of GR in
the TG mice was reduced to approximately 50% of that in
control mice, greater stress response should result in greater
sensitization [114].

Recently, glucocorticoid-induced receptor (GIR, GPR83)
was studied in the rat brain. It was originally identified as an
orphan GPCR induced by glucocorticoid and cyclic AMP in
murine T-lymphocytes [115]. In situ hybridization data indi-
cate that GIR mRNA is expressed mainly in neurons, with
intense staining localized to the nucleus of the lateral olfac-
tory tract, hippocampus, neocortex, and limbic cortical re-
gions [116]. Interestingly, GIR mRNA expression was
upregulated 1.7-fold compared with saline-treated controls in
PFC after 7-day withdrawal from 5 consecutive daily am-
phetamine injections [116]. Identification of the natural
ligand for this putative member of the peptide receptor fam-
ily could provide new clues to the relation between LHPA
axis response and psychostimulant-induced behavioral sensi-
tization.

4.5. Developmental Regulation and Mrtl

Independent ontogenic studies in rats clearly show the
existence of a critical period for induction of long-lasting
behavioral sensitization to psychostimulants; pretreatment of
rats before postnatal week 3 with amphetamines does not
result in long-lasting behavioral sensitization [117, 108].
Nishikawa [119, 120] has hypothesized from the late-
developing property of stimulant-induced sensitization that
stimulant-responsive molecular and/or neuronal systems
leading to the establishment of long-lasting behavioral sensi-
tization are mature or available only after the critical period.

Based on the Nishikawa’s hypothesis, his research group
[120] recently performed arbitrarily primed PCR-based
comparison of the partial transcriptome from rat cortices
between neonatal (postnatal days &, PD8) and young adult
(PD50) rats that had received methamphetamine or saline
They identified a novel molecule named methamphetamine-
responsive transcript 1 (mrtl), in the rat brain [120] that
shows increased cortical expression in the adult period, but
not the infant period. The complete sequence of mrtl cDNA
revealed that at least two types of mrtl mRNA, mrtla and
mrtlb, encoded isoforms of proteins, Mrtla and Mrtlb. Ex-
pression of mrtlb, but not mrtla, in rat cortices was upregu-
lated immediately after a single systemic injection of meth-
amphetamine in the adult rat meocortex. The responsiveness
of cortical mrtlb expression to acute methamphetamine was
specifically detected after the critical period around postnatal
week, for the induction of long-lasting behavioral sensitiza-
tion to amphetamines, implicating this molecule 'in the in-
duction of sensitization [120]. Moreover, basal expression of
mrtl in the cortex increased after 2-week withdrawal from 5
consecutive daily injection of methamphetamine, and addi-
tional induction of mrtl by methamphetamine or cocaine
challenge was not detected [121]. These data suggest that
mrtl is also important in the establishment and/or mainte-

— 109 —



390 Current Psychiatry Reviews, 2006, Vol 2, No. 3

nance of long-lasting behavioral sensitization after discon-
tinuation of psychostimulants.

The protein encoded by mrtl (Mrtl) is a novel member
of the sorting nexin family, with PDZ (Postsynaptic density
95/Discs large/Zona occludens-1), PX (phox) and RA (Ras
association) domains. Proteins containing the PX module
play important roles in intracellular signaling through its
phosphoinositide-binding property, and the PX domain also
binds to Src homology 3 (SH3) domains [122]. Also, Mrtl is
mostly a RasGTP effector, because of its RA module which
is found in RasGTP effectors [123]. Phosphoinositide 3-
kinase (PI3-kinase) signaling is activated by cal-
cium/calmodulin-dependent protein kinase II (CaMKII) fol-
lowing Ca2+ influx and the Ras/MAPK signaling is known
as an information superhighway between the cell surface and
the nucleus, leading to the activation of specific transcription
factors as its final targets [82, 83]. These signaling cascades
are believed to contribute to the establishment of both activ-
ity-dependent physiological neuroplasticity and drug-
induced long-lasting changes in neuronal function [124,
125]. It follows that Mrt1 should be important in establishing
psychostimulant-induced long-lasting behavioral sensitiza-
tion as a unique signaling molecule whereby cross talk takes
place between PI3-kinase and Ras/MAPK paths.

It is also well known that the PDZ domain recognizes its
specific PDZ ligand (PL), and that the PL is located at the C-
terminal of the interacting target molecule [126]; PDZ-PL
interactions play important roles in organizing various pro-
teins in the same signal transducing cascade at synaptic sites
[127] Recently, Joubert et al. showed that one of the Mrtl-
associated molecules was 5-hydroxytriptamine type 4 recep-
tor (5-HTy) [128]. Since the central 5-HT, modulates dopa-
mine transmission [130], changes in any interaction between
the dopaminergic and serotonergic neuronal systems via
Mrtl may contribute to initiation, establishment or mainte-
nance of psychostimulant-induced behavioral sensitization.

4.6. Possible Changes in the Dendritic Cytoskeleton

Establishment of long-lasting neuroplasticity is now
known to be associated with morphological changes in den-
dritic spines {130]. Morphological abnormalities of dendritic
spines are observed in the brain in various psychiatric disor-
ders, including mental retardation, drug or alcohol addiction
and schizophrenia [131, 132]. Repeated exposure to am-
phetamine or cocaine increases in the density of dendritic
spines and the number of dendritic branches in the PFC and
NAc [133, 134]. Administration of Cdk5 inhibitor, which
enhances the behavioral effects of repeated cocaine expo-
sure, suppresses such morphological changes, which might
therefore be of consequence in homeostatic negative feed-
back regulation [135]. More studies from the molecular
viewpoints are added to settle the relation between dendritic
morphological changes and psychostimulant-induced behav-
ioral senstization.

Activity-dependent regulation of both recruitment and
depolymerization/polymerization of actin molecules are
critical molecular events in sustaining activity-dependent
changes in dendritic spine morphology. The Rho family
small GTPases and their interacting molecules are the main
keys mediating the regulation of these actin cytoskeleton
dynamics in spines [136]. However, the effects of single or
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repeated exposure to psychostimulants on activities of these
molecules remain to be investigated. Various lines of evi-
dence, described above, suggest that exposure to psy-
chostimulants evokes changes in gene expression in specific
neural circuits, followed by long-lasting functional changes
associated with behavioral sensitization and tolerance. Un-
derstanding of the molecular cascade will be doubtlessly
important in the treatment of relapse or recurrence of psy-
chotic states in patients suffering from drug addiction and/or
schizophrenia.
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