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might finally achieve recovery of dynamic larynge-
al function (recovery of vocal fold movement). We
have not investigated the therapeutic effect of the
combination of GDNF and BDNF gene transfer on
MNCYV and recovery of vocal fold movement. How-
ever, this issue is interesting, and we will investigate
it in future studies. .

To minimize the deleterious effects of early tran-
ma and promote and guide axonal regrowth, the
delivery of neurotrophic factors has emerged as a
promising strategy to manipulate axonal regrowth
in the early phase. This study demonstrated the en-
hancement of neurofunctional recovery after remote
injection of adenovirus vector coding for the GDNF
gene into crushed RLNs over the course of a few
weeks. The vocal folds are extremely delicate struc-
tures, and imperceptible injuries can result in exces-
sive vocal complications. Extended injury results in
atrophy of the laryngeal muscles, motoneuron loss
in the nucleus ambiguus, and decreases in both mo-
tor axon density and nerve—end plate contact. Ear-
ly recovery from axonal degeneration is important

for preservation and recovery of laryngeal function.
Again, the present methods achieved good preserva-
tion and facilitated recovery of laryngeal function.

Laryngeal paralysis most often occurs clinically
as a result of vagal nerve or RLN injury after surgi-
cal ablation of a tumor involving the head and neck
region. If the nerve is injured during surgery, direct
injection of the vector into the nerve might prevent
paralysis. Alternatively, when paralysis becomes
apparent on extubation, the vector can be injected
into the nerve after reintubation and opening of the
wound.

The adenovirus vector was used in this study. For
clinical applications, controversy remains regard-
ing the potential risks of virus-mediated gene ther-
apy,28-30 particularly when applied to nonlethal be-
nign diseases such as laryngeal paralysis. To over-
come this problem, the safety of the vector must be
demonstrated before clinical application. Prelimi-
nary experiments of highly safe viral3! and nonviral
gene transfer systems are also currently under way.
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Abstract

Abstract

Objectives/Hypothesis: We have previously shown that gene therapy using Insulin-like growth
factor (IGF)-1. glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic
factor (BDNF). or a combination of these trophic factors, is a treatment option for recurrent
laryngeal nerve (RLN) palsy. However. there remain some difficulties preventing this option from
becoming a common clinical therapy for RLN injury. Thus. we need to develop novel treatinent
option that overcomes the problems of gene therapy.
R(-)-1~(benzo[b]thiophen-5-yl)-2-[2-NN-diethylamino]ethoxylethanol hydrochloride (T-588). a
synthetic compound. is known to have neuroprotective effects on neural cells. In the present study,
the possibility of new drug treatments using T-588 for recurrent laryngeal nerve (RLN) injury was
assessed using rat models.

Study Design: Animal study.

‘Methods: Animals were administered T-588 for 4 weeks. The neuroprotective effects of T-588

administration after vagal nerve avulsion and neurofunctional recovery after recurrent laryngeal
nerve crush were studied by motoneuron cell counting, evaluation of choline acetyltransferase
immunoreactivity, the electrophysiological examination and the re-mobilization of the vocal fold.
Results: T-588 administration successfully prevented motoneuron loss and ameliorated the choline

acetyltransferase immmnoreactivity in the ipsilateral nucleus ambiguus after vagal nerve avulsion.



Significant improvement of motor nerve conduction velocity (MNCV) of the RLN and vocal fold

movement were observed in the treatment group when compared to controls.

Conclusion: These results indicate that oral administration of T-588 may be a promising therapeutic

option in treating peripheral nerve injury.
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1. Infroduction

Laryngeal paralysis most often occurs as a result of vagal nerve injury or recurrent laryngeal nerve
injury after surgical ablation of a tumor involving the head and neck region. Injury to the recurrent
laryngeal nerve occurs in 1-2% of all thyroid surgeries. Other surgical procedures utilizing a cervical
approach carry a similar incidence of laryngeal paralysis. Patients with unilateral laryngeal paralysis
typically present with disabling symptoms related to aspiration, dysphagia and loss of voice
(dysphonia). Except for laryngeal reinnervation procedures, surgical options for the management of
patients with unilateral laryngeal paralysis (vocal fold injection. thyroplasty and arytenoid adduction)
only achieve vocal fold medialization due to static changes in the vocal fold tissue or laryngeal
framework, and such deficits can never be neurologically restored.! Laryngeal reinnervation
procedures have had little impact on the return of dynamic laryngeal function and are still not widely
accepted as a treatment option. The failure of reinnervation after recurrent laryngeal nerve injury may
be attributed to multiple factors. including decreases in motor fiber density, atrophy of laryngeal
muscle, loss of motoneurons in the nuclens ambiguus, and inappropriate or misdirected innervation
by antagonistic motoneurons.”* Gene therapy is a potential treatment option for recurrent laryngeal
nerve (RLN) palsy. The potential of gene therapy using insulin-like growth factor (IGF)-I 3 glial
cell line-derived neurotrophic factor (GDNF) 67 and brain-derived neurotrophic factor (BDNF), or a

combination of these trophic factors ¥ has been reported previously. Although we have demonstrated



that gene therapy is very useful for RLN palsy, there are several difficulties preventing it from
becoming a common clinical therapy. including ethical problems. technical difficulties and toxicity of
viral vectors. Low molecular weight compounds that are safe and convenient to administer are thus
desirable alternatives for clinical applications.

Steroids are one of the common agents currently used for the treatment of peripheral nerve palsy,
including RLN palsy and idiopathic facial palsy. as a result of their anti-inflammatory and
anti-edematous effects. However, these agents produce little benefit in recurrent laryngeal nerve
palsy.9 Donepezil. Galantamine, Memantine and
R(-)-1-(benzo[b]thiophen-5-y1)-2-[2-N.N-diethylamino)ethoxy]ethanol hydrochloride (T-588) are
recently developed neuroprotective agents against Alzheimer’s disease.'® Among these, we focused
on T-588, a novel neuroprotective compound. that delays progression of neuromuscular dysfunction
in wobbler mouse motoneuron disease.” It has also been demonstrated that oral administration of
T-588 improves the survival of injured motoneurons and supports their neuronal function after facial
nerve avulsion.’? In this study, the potential of oral administration of T-588 for RLN injury was
assessed using rat models. The neuroprotective effects of T-588 after vagal nerve avulsion and RIN

crush were also studied.

2. Materials and Methods

[S-]



2.1. Animals and surgical procedures

Forty-two Sprague-Dawley male rats (12-weeks-old, 340-360 g) were used in this study. Animals
were anesthetized with ketamine (100 mg/kg, i.p.) and xylazine (10 mg/ke, i.p.) during all surgical
procedures. The vagal nerve avulsion model was utilized to assess the neuroprotective effects of
T-588 in the nucleus ambiguous after severe vagal/RLN surgery. Under a dissecting microscope, the
left vagal nerve was exposed at the jugular foramen. Using microhemostat forceps, the proximal
vagal nerve was avulsed and removed from the distal vagal nerve by gentle traction and skin was
suture closed’

The nerve crush model was utilized to assess the potential of T-588 to promote neurofunctional
recovery of RLN after detrition injury. Following a midline vertical cervical incision, the left RLN
was exposed and dissected circumferentially just inferior to the left lobe of the thyroid gland. At 10
mm proximal from the inferior of the thyroid gland, the nerve was crushed with a forceps for exactly
60 seconds. To confirm left vocal fold paralysis, direct laryngoscopy was performed. Subsequently,
strap muscles and overlying fascia were replaced, and the skin was suture closed. Animals were cared
for and used in accordance with protocols approved by the Animal Care and Use Committee of Keio

University School of Medicine (Tokyo, Japan).

2.2. T-588 administration



T-588 was supplied by Toyama Chemical Co. Ltd. (Tokyo, Japan). After avulsion or crush of the
left vagal nerve, rats were freely administered water containing 0.05% T-588 for 4 weeks. The total
daily amount of T-588 consumed by the rats thorough freely available 0.05% solution was set to be

equivalent to the daily dose for humans.™ "

2.3. Histological analysis

For motoneuron cell counting, rats were anesthetized with a lethal doze of ketamine and were
transcardially perfused with PBS followed by 4% paraformaldehyde in 0.1 M phosphate buffer at 4
weeks after vagal nerve avulsion. Brain stem tissue was barvested and immersion fixed in the same
fixative for 2 h. Subsequently. samples were embedded in paraffin, and serial transverse sections
were cut at 7 pun, Every fifth section (28-pm interval) was collected, deparaffinized and stained with
Tolnidine Blue. and ambiguus motoneurons having nuclei containing distinct nucleoli on both sides
of the nucleus ambiguus were counted in 20 sections. We did not apply any correction factors for data
analysis, as the ambiguus neurons have a maximum diameter of 21.8+4.96 ym 14 and these neurons
were counted only once in every fifth section, at a 28-pm interval. Data are expressed as means + S.D.
from eleven animals and statistical significance was assessed between the treatment group and
control group by Mann-Whitney U test.

For immunostaining of Choline acetyltransferase (ChAT), animals were perfused at 4 weeks after



treatment. Subsequently, samples were embedded in paraffin, serial transverse sections were cut at 7
pm, and sections were pretreated with 0.3% H,O, in PBS, rinsed in 0.1% Triton X-100 in PBS
(T-PBS) and preincubated in 3% normal goat serum in T-PBS. Next, sections were incubated
overnight at 4°C with mouse monoclonal antibody against ChAT (Chemicon. mouse anti-ChAT,
Temecula. CA. USA) at a dilution of 1:100, followed by incubation with HRP-labeled anti-mouse
polymer (Dako Cytomation, Carpinteria, CA, USA). Treated sections were visualized by
3.3-diaminobenzidine tetrahydrochloride (DAB)-H:0; solution and counterstained with

Hematoxylin.

2.4. Neurofunctional analysis

Motor nerve conduction velocity (MNCV) was calculated to assess the neurological functional
recovery of RLN after crush injury. Animals were anesthetized and the left recurrent laryngeal nerve
was exposed inferior to the left lobe of the thyroid gland. as described above. The strap muscles were
sectioned to expose the larynx, and laryngeal fissures were made. The left thyroarytenoid (TA)
muscle was pierced through the fissure with a needle concentric electrode for recording. To stimulate
the left RILN, two bipolar hook electrodes were placed to hook the dissected left RLN. One was
placed inferior to the left lobe of the thyroid as a distal stimulator and the other was placed 16 mm

proximal to the distal electrode as a proximal stimulator. The nerve was maximally stimulated and

ot



compound muscle action potential in TA muscle was recorded using a Power Lab computer-assisted
electromyography machine (AD Instruments. Colorado Springs, CO, USA). Maximal stimulation
was achieved by increasing the current output until no further changes in amplitude of the compound
action potential occurred. A 0.01-millisecond current impulse was delivered. Maximum MNCV was
calculated based on derived latency and distance between the two stimulating points (16 mm).

At the time of laryngeal fissure creation, recovery of vocal fold movement was also assessed.
Recovery was only considered present when equal vocal fold movement on the denervated side was
observed when compared to the vocal fold on the contralateral non-denervated side. Limited recovery

was considered to be the absence of recovery.

2.5. Statistical analysis
Data are expressed as means + S.D. Statistical comparison of motoneuron loss and MNCV were
performed by Mann-Whitney U test. Recovery of vocal fold movement was statistically compared by

y*-test for independence. The level of significance was set at p<0.05.

3. Results
3.1. Neuroprotective effects of T-588 administration

The left vagal nerves of adult rats were avulsed and removed at the level of the jugular foramen.



Animals were freely administrated water containing 0.05% T-588 solution after surgery. Four weeks
after surgery. the number of surviving motoneurons in the nucleus ambiguus was counted using Nissl
staining in order to evaluate the neuroprotective effects of T-588 (T-588, n=6: control. n=5). There
was marked atrophy and loss of motoneurons in the nucleus ambiguus of the lesion side (Fig.1). The
number of motoneurons decreased and reached 57.9+4.8% when compared with the contralateral side
in the control group. Oral administration of T-588 successfully prevented the motoneuron loss. i.e..
the number of residual motoneurons in the ipsilateral nucleus ambiguus (69.0+3.5%) was
significantly higher in the treatment group when compared to controls (P=0.0062). (Fig. 2). ChAT
immunoreactivity is known to rapidly decrease in the motoneurons after nerve injury.]5 19 Although
marked decreases in immunoreactivity in the nucleus ambiguous was observed in the control group.
improved ChAT immunoreactivity was observed in the treatment group at 4 weeks after vagal nerve

avulsion (Fig. 3).

3.2. Neurofunctional recovery after T-588 administration

Effects of T-588 administration on neurofunctional recovery were examined at 4 weeks after RLN
crush. Shorter latency, together with shorter time lag of latency was observed in the treatment group
when compared to controls (Fig. 4). Mean (+S.D.) MNCV in the treatinent group (32.07 £ 16 m/s)

was significantly higher than in the control group (20.47 + 5.02 m/s, P=0.015) (Fig. 5).



3.3. Recovery of vocal fold movement
The number of rats displaying obvious recovery of ipsilateral vocal fold movement was 9/12 in the
treatment group and 2/9 in the control group. Statistically befter recovery was observed in the

treatment group when compared to controls (P=0.016) (Table. 1).

4. Discussion

T-588. a synthetic derivative of acetylcholinezo., has been developed as a candidate neuroprotective
agent against neurodegenerative diseases, Clinical trials using T-588 to treat dementia associated
with Alzheimer's disease are currently undexway.10 T-588 is efficiency transported into the central
nervous system (CN: S)11 . and it has been reported to delay the progression of Alzheimer’s disease in
wobbler mouse’! and to exert neuroprotective effects against ischemia/reperfusion-induced brain
damage in vivo®. Oral administration of T-588 improves the survival of injured motoneurons and
supports their neuronal function after facial nerve avulsion.!! In vitro, this compound enhances
neurite outgrowth and ChAT activity in primary explant cultures of the ventral spinal cord” and
activates the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) pathway
in cultured rat newborn astrocytes. inhibiting astrocyte apoptosis induced by Ca®"stress.”? These data

suggest that T-588 exerts neuroprotective effects in damaged motoneurons.



In this study, the vagal nerve avulsion model was utilized to assess the neuroprotective effects of
T-588. Marked motoneuron loss was observed in the ipsilateral nucleus ambiguus after surgery, as
reported previously.7’ ¥ Similar findings have been reported in the facial nucleus after facial nerve
avulsion and in the ventral hom after spinal root avulsion.'® ' Treatment with T-588 significantly
prevented the ioss of vagal motoneurons when compared to controls. The presence of ChAT is
associated with the viability of motoneurons and ChAT immunoreactivity is known to decrease
rapidly at 1 week after facial nerve or spinal nerve avulsion. Thereafter, CRAT immunoreactivity
gradually decreases for Tweeks.>? It has been reported that oral administration of T-588 after facial
nerve avulsion improved ChAT immunoreactivity in aduit rats.”? In the present study. the decrease in
ChAT immunoreactivity was attenuated by the T-588 treatment in the nucleus ambiguus. These
findings are indicative of the neuroprotective effects of T-588 on vagal nerve motoneurons after
severe vagal nerve injury.

Detrition injury to vagal/recurrent laryngeal nerves can be.caused by surgery utilizing a cervical or
mediastinal approach. Nerve crush consistently induces Sunderland second-degree injury
(axonotmesis), yielding Wallerian degeneration of the nerve distal to the injury site.24% Bridge et al.
demonstrated that the functional and histological responses to crush are identical in the various
methods to deliver crush injury to the rat sciatic nerve.?* % MNCV for the injured nerve is a

commonly used physiological measure to evaluate functional recovery of peripheral nerves after



L2436
injury.

The present study assessed neurofunctional recovery at 4 weeks after crush injury to RLN.
Treatment with T-588 resulted in significant improvement in MNCV and vocal fold movement when
compared to control animals. It has been reported that it takes 8 weeks fér physiological and
histological recovery of peripheral nerves after crush injurj,'.z“'26 Reducing the RLN functional

recovery period with T-588 administration may ameliorate speech/swallowing problems more

quickly and prevent atrophy of the internal laryngeal muscles.

5. Conclusion
We demonstrated that oral administration of T-588 prevents motor neuron loss in the nucleus
ambiguus and supports neurofunctional recovery after vagal/recurrent laryngeal nerve injury. Oral

administration of T-588 is thus a promising therapeutic approach for various peripheral injuries.
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