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neurons showed a decreased spine number and segmental
dendritic beading after temporary hypoxia/hypoglycemia fol-
lowed by recovery,'*'2 and a LMS study using horseradish
protein injection showed beading of dendrites in the CA-1 of
the hippocampus after temporary ischemia.!* Also an EM
study on the CA-1 showed degeneration and shrinkage of
dendrite around 3 to 4 days after temporary ischemia.!s-17 In
the present study, we found that the neurites degenerated
around 4 days and that their thickness increased, in associa-
tion with the recovery to normal of the number and percent
volume of spines, at 12 weeks after the insult.

From 1 to 12 weeks after the ischemic insult, we found that
the synaptic number increased gradually in association with
an increase in the volume of axon terminals showing sprout-
ing. The present study also showed an increase in the number
of the MSBs from 8 to 12 weeks after the ischemic insult,
which increase was associated with one in the number and
volume of axon terminals and spines. The MSBs represent 2
independent dendritic spines contacting the same axon termi-
nal.?? One spine branched to make synapses at >2 portions of
1 axon terminal is considered to facilitate neurotransmis-
sion.!® In another study, there was an increase in the number
of MSBs in CA-1, paralleling the marked increase in the
number of synaptic vesicles after temporary ischemia’ and
after temporary hypoxia‘hypoglycemia in hippocampal slices.!¢

From 4 days to 12 weeks after the ischemic insult, some
axons attached to the dying neurons showed an abnormal
distension of their terminals, which contained degenerated
mitochondria, laminated dense bodies, and irregularly located
neurofilaments and microtubules (degenerated axon).8® They
were frequently observed around accumulations of the
electron-dense granular fragments of the dead neurons.

Some axon terminals encrusted with the electron-dense
granular fragments of the dead neurons became connected to
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(lower) of neurites in the neuropil after the
ischemic insult. 2Compared with control;
"compared with 4 days; *P<0.001, tP<0.05.

the spines and neurites of the surviving neurons. These axon
terminals, previously attached to the dying and/or dead
neurons, seemed to become newly connected to the spines
and to the thickened dendrites of the surviving neurons
associated with synaptogenesis in the neuropil.2* However, it
could also be that some of these axon terminals were
originally contacting more than one dendrites or spines.

Clinically, most stroke survivors show recovery from
behavioral dysfunctions. The short-term recovery may be
attributable to the resolution of brain edema. A more gradual
recovery, promoted by exercise for rehabilitation, may be
attributed to the anatomical and functional recovery of the
penumbra. Stroemer?* reported behavioral recovery after
neocortical infarction in rats, which recovery was associated
with neuronal sprouting followed by synapto-genesis, as
demonstrated by immunohistochemical staining for GAP-43,
a growth-associated protein expressed on axonal growth
cones, and for synaptophysin. Functional remodeling of the
cerebral cortex remote from the infarction was detected by
intracortical microstimulation mapping of the hand of the
squirrel monkey.25:26

Activation of the complement system was shown to pro-
mote neuronal survival and tissue remodeling.?” Postischemic
treatment with brain-derived neurotrophic factor and physi-
cally exercised animals had better functional motor recovery,
attributable to induction of widespread neuronal remodeling,
as demonstrated by MAP1B and synaptophysin expression.!?
Clinical introduction of novel agents and functional methods
to promote synaptogenesis and neuronal networks in the
iscehmic penumbra, is highly anticipated.

Summary
In the penumbra around a focal infarction of the cerebral
cortex, synapses, synaptic vesicles, axon terminals, spines
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degenerated, with a reduction in their number and size, until
4 days and then recovered from 1 to 12 weeks after the
ischemic insult.
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Summary

We investigated, at both light and ultrastructural levels, the fate of
swollen astrocytes and remodeling of neurites connected to dissemi-
nated, dying neurons in the ischemic neocortical penumbra. Speci-
mens from left cerebral cortex were cut coronally at the infundibu-
lum and observed by light and electron microscopy. We measured
synapses and spines, and the thickness of neuritic trunks in the neu-
ropil on electron microscopy photos. We also determined percent
volume of axon terminals and spines by Weibel’s point-counting
method. Astrocytic swelling gradually subsided from day 4 after the
ischemic insult, with increases in cytoplasmic glial fibrils and GFAP-
positive astrocytes. Disseminated dying electron-dense neurons were
fragmented by invading astrocytic cell processes and accumulated as
granular pieces. The number of synapses and spines and total percent
volume of axon terminals and spines decreased with an increasing
sparsity of synaptic vesicles until day 4. One to 12 weeks after the is-
chemic insult, these values increased to or exceeded control values,
and sprouting and increased synaptic vesicles were seen. Axons that
had been attached to the dying neurons appeared to have shifted
their connections to the spines and the neurites of the surviving neu-
rons, increasing their thickness. Astrocytic restitution and neuronal
remodeling processes started at 4 days continuing until 12 weeks
after ischemic insult.

Keywords: Maturation phenomenon; cerebral ischemia; neuronal
remodeling.

Introduction

Cerebral infarction develops rapidly after a major
ischemic insult. Earlier, we developed a model to in-
duce an ischemic penumbra around a small focal in-
farction in the cerebral cortex of Mongolian gerbils
[5, 8] by giving a threshold amount of ischemic insult
to induce cerebral infarction. The histopathology of
this model revealed disseminated eosinophilic ischemic
neurons by light microscopic observation, and dissem-
inated electron-dense neurons seen ultrastructurally

(disseminated selective neuronal necrosis) increased in
number in the penumbra of the cerebral cortex after
restoration of blood flow. A focal infarction developed
later in a part of this area of disseminated selective
neuronal necrosis within 12 to 24 hours after ischemic
insult, due to massive astrocytic death. This area ex-
panded gradually, involving dead and still-living eosi-
nophilic neurons, and normal-looking neurons pro-
gressing to death 4 days after the ischemic insult [8, 9,
11]. No additional new infarction (pan necrosis) was
found later than 4 days after the ischemic insult in our
coronal as well as para-sagittal sections of the fore-
brain [3, 19].

In previous studies of the cortical penumbra [7, 9,
11], we found that the cytoplasm and cell processes of
living astrocytes in the penumbra were actively swollen
and that brain edema, determined by tissue gravime-
try, was maximum around 3 days after ischemic insult,
subsiding gradually by 7 days [4, 11]. Isolated dark
neurons with different grades of high-electron density
increased in number among the normal-looking neu-
rons from 5 to 24 hours. These dark neurons were sur-
rounded by severely swollen astrocytic cell processes.
As a general pathological sign of irreversible cellular
damage, granular chromatin condensation was appar-
ent in the nuclear matrix and along the nuclear mem-
brane of some of these dark neurons [12]. The dark
neurons increased in number rapidly until day 4, and
new ones continued to appear 12 weeks after the ische-
mic insult. These observations correspond to the mat-
uration phenomenon of ischemic injuries [3, 6, 19],
which is the same as the delayed neuronal death de-
scribed for CAl neurons [3, 15, 19].
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In the present study, we investigated the fate of
swollen edematous astrocytes and dead neurons at the
ultrastructural level, as well as remodeling of axons
connected to the dead neurons in the ischemic penum-
bra.

Materials and methods

Stroke-positive Mongolian gerbils were selected according to their
stroke index score [18] during left carotid clipping for 10 minutes, fol-
lowed by another 10 minutes of clipping with a 5-hour interval be-
tween the 2 occlusions. The gerbils were sacrificed at 5, 12, and 24
hours, at 4 days, and at 3, 5, 8, 12, and 24 weeks following the last
ischemic insult by intracardiac perfusion with cacodylate-buffered
glutaraldehyde fixative (3 animals in each group) for electron micros-
copy and with 10% phosphate-buffered formaldehyde fixative for
light microscopy (5 animals in each group).

Ultrathin sections including the second through fifth cortical
layers were obtained from the neocortex at the mid-point between
the interhemispheric and rhinal fissures on the left coronal face sec-
tioned at the infundibular level, in which only the penumbra ap-
peared. The sections were double-stained with uranyl acetate and
lead solution, and observed with a Hitachi electron microscope
(H9000). Separate paraffin sections were stained with hematoxylin-
eosin, periodic acid fuchsin Schiff, or by Bodian silver impregnation
or immuno-histochemistry for glial fibrillary acidic protein (GFAP).

Placing 1 cm x 1 cm lattices on the 5,000 x 2.67 enlarged EM
photographs, we measured the number of synapses and spines in
the neuropil in a 100-square cm (56 sq.p, by real size), and deter-
mined the percent volume of the axon terminals and spines using
the point-counting method [22] by counting intersections of the lat-
tice dropped on the axon terminals and/or spines. We also measured
peuritic thickness as the maximal diameter perpendicular to their
neurofilaments and/or microtubules on the same EM pictures.

Results

Astrocytic swelling gradually subsided starting on
day 4 after ischemic insult, then an increase was ob-
served in the number of cytoplasmic glial fibrils in as-
trocytes seen ultrastructurally and in GFAP-positive
cells seen by light microscopy. Astrocytes in mitosis
or with 2 nuclei were occasionally seen.

The disseminated dying electron-dense neurons had
been fragmented into granular pieces by invading as-
trocytic cell processes (Fig. 1A). These accumulations
of fragmented dark neurons were observed as eosino-
philic ghost cells by light microscopy. The electron-
dense granular pieces were dispersed around the
extracellular spaces and phagocytized by microglia,
astrocytes, and neurons. There was no evidence of
macrophages in the penumbra.

The number of synapses and spines, and the percent
volume of the axon terminals and spines (Table 1)
decreased with an increase in a sparsity of synaptic
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vesicles until day 4 (Fig. 2A). From 1 to 12 weeks
after ischemic insult, however, they recovered to or ex

ceeded the control values and were found surrounding
the thickened neurites of the surviving neurons (Fig.
2B).

From 4 days to 8 weeks after the ischemic insult,
most axon terminals that had been attached to dy-
ing neurons were found around the fragmented
dead dark neurons. Some of them were separated
from the dead neurons, being attached by a crust
of granular electron-dense fragments (Fig. 1A). From
24 hours to 8 weeks after ischemic insult, some axons
attached to dying neurons showed globular or
spindle-shaped distension of their terminals, as seen
by Bodian silver impregnation (Fig. 1B). Electron
microscopic observation of these distensions showed
amplified axon terminals containing degenerated
mitochondria, lamellated dense bodies, and irregularly
located neurofilaments and microtubules. They wer
frequently observed around accumulations of frag-
mented electron-dense granular pieces of dead neu-
rons.

From 1 to 12 weeks, some axon terminals associated
with crusts of electron-dense granular pieces became
newly connected to the spines and neurites of the sur-
viving neurons.

Neuronal death continued in the penumbra during
these periods (maturation phenomenon). From 8 to
24 weeks after the ischemic insult, these structures
and the accumulation of eosinophilic ghost cells re-
mained confined to the third cortical layer, especially
in some portions of the lateral part of the left coronal
face sectioned at the infundibular level. Cortical thick-
ness and cortical neuronal density were reduced evenly
in the face during these periods.

Discussion

Astrocytes swell in the acute phase after an ischemic
insult, showing increases in the number of glycogen
granules and mitochondrial size and number, indicat-
ing an active reaction of astrocytes to prevent ischemic
neuronal injury [7, 11]. Four days after ischemic insult,
astrocytic swelling subsides and glial fibrils, stained by
GFAP antibodies, increase in number. These GFAP-
positive reactive astrocytes are increased in number
by mitotic division, especially those surrounding the
focal infarction (pan necrosis), which evolves and de-
velops from 12 hours to 4 days after the insult. Ne-
crotic tissue is then scavenged by macrophages and
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Fig. 1. (A) Electron microscopy of cerebral cortex 4-days after restoration of blood flow. The disseminated dying electron-dense neuron has
been fragmented into granular pieces by invading astrocytic cell processes. Some axon terminals that were attached to the dying neurons are
found around the fragmented dead dark neurons (arrowheads). Bottom bar 0.1 micron. (B) Light microscopy of cerebral cortex 24 hours after
restoration of blood flow. Some thick axons attached to dying neurons showed globular or spindle-shaped distension of their terminals sur-
rounding the dead neurons (arrows). Bodian silver impregnation. Bottom bar 2 micron

Table 1. Data showing astrocytic restitution and neuronal remodeling processes up to 12 weeks after ischemic injury.

Average value Time after last ischemic insult

Control 5 hours 4 days 1 week 5 weeks 8 weeks 12 weeks

% vol. of axon terminal 1775 + 1,32 14.69 + 579t 548 + 1.71% 14.89 + 1.69t 19.55 £2.62f 21.62+£2241 2890 £3.55%
% vol. of spine 480 £ 112 3.09+0.89% 1.19+020% 170 +£025% 225+045% 291+042% 416+ 1041
No. of synapses/S6squ  17.21 £1.09 2324 +4.52% 12.65 £ 167* 1380£192t 14712326 1668+ 1.55¢  19.48 + 3.10t
No.of spines/S6sqp 1189 £2.50 1120+£233f 426 +040% 7.14+078* 669 +0.63* 7.10+0.68% 10934 3.04t
Thickness of neuritis () ~ 0.61 £0.02 — 059 +002  060+002 - 0.67 + 0.02%  0.93 + 0.03*

Average + standard error, p < 0.05: * compared with control; t compared with 4 days.

becomes liquefied [3, 8, 19]. The infarcted focus is sur- umbra. These are the restitutional processes of astro-
rounded by gliosis induced by reactive astrocytes. cytes in the ischemic tissue [8].

GFAP-positive reactive astrocytes increase moder- It has been thought that dead neurons and ischemi-
ately in number, but do not induce gliosis in the pen-  cally injured tissue are scavenged by macrophage inva-
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Fig. 2. (A) Electron microscopy of cerebral cortex 4 days after restoration of blood flow. The number of synapses and spines, and the volume
of axon terminals and spines decreased with increase in sparsity of synaptic vesicles (arrows). Neurites (N) are degenerative. Electron-dense
granular pieces are dispersed in the extracellular spaces of the neuropil (arrowheads). Bottom bar 0.1 micron. (B) Electron microscopy of cere-
bral cortex 12 weeks after restoration of blood flow. The number of synapses and spines, and volume of axon terminals and spines recovered,
with increase in number of synaptic vesicles (arrows). Neurites (V) are thickened, surrounded and/or synapsed by axon terminals. Bottom bar

0.1 micron

sion into the injured tissue from the blood stream.
However, in the present study, dead neurons were
found disseminated among surviving neurons in the
cortical penumbra. The axons and dendritic processes
of the dying neurons were still connected to axon
terminals and neurites of surviving neurons. Solitary
dying neurons, which were connected by neuritic net-
works, were not phagocytized by a single macrophage.
In contrast to infarction, i.e., massive necrosis, macro-
phages did not enter the neuropil of the penumbra
where the network of the neuropil was still tight. In
this situation, it is reasonable to assume that shrunken
dead neurons become fragmented into granular debris
(eosinophilic ghost cells seen by the light microscopy)
and are removed by astrocytes, neurons, and perivas-

cularly located microglia [10, 14, 16]. However, the
tattered central cytosol of shrunken neurons remained
for more than 5 weeks. No inflammatory cells or mac-
rophages appeared in the ischemic penumbra wander-
ing in the neuropils [10, 16].

We found a marked decrease in the number of syn-
apses and volume of the axon terminals in the entire
neuropil of the ischemic penumbra from 5 hours to 4
days after start of recirculation, along with marked
shrinkage of axon terminals, which contained a de-
creased number of synaptic vesicles. These changes
seemed to be due to calcium-dependent neuronal hy-
perexcitation [21] and were reduced by N-methyl-
D-aspartate receptor antagonists in a morphologi-
cal study recording excitatory postsynaptic potential
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from hippocampal slice cultures subjected to brief
anoxia-hypoglycemia [13].

The number of synapses increased gradually from 1
to 12 weeks after the ischemic insult, associated with
an increase in the volume of axon terminals showing
sprouting [20] and paralleling a marked increase in
the number of synaptic vesicles. The number and vol-
ume of spines also increased in parallel. Axons that
had been attached to the dying neurons were consid-
ered to have shifted their connections to the spines
and the neurites of the surviving neurons, increasing
their thickness associated with synaptogenesis in the
neuropil [1, 2, 17]. The neuronal remodeling process
progressed in the ischemic penumbra from its early
stage to 12 weeks after the start of recirculation.
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Abstract We have previously reported the production of
a recombinant a-galactosidase with engineered N-linked
sugar chains facilitating uptake and transport to lyso-
somes in a Saccharomyces cerevisiae mutant. In this
study, we improved the purification procedure, allowing
us to obtain a large amount of highly purified enzyme
protein with mannose-6-phosphate residues at the non-
reducing ends of sugar chains. The products were
incorporated into cultured fibroblasts derived from a
patient with Fabry disease via mannose-6-phosphate
receptors. The ceramide trihexoside (CTH) accumulated
in lysosomes was cleaved dose-dependently, and the
disappearance of deposited CTH was maintained for at
least 7 days after administration. We next examined the
effect of the recombinant a-galactosidase on Fabry mice.
Repeated intravascular administration of the enzyme led
to successful degradation of CTH accumulated in the
liver, kidneys, heart, and spleen. However, cleavage of

the accumulated CTH in the dorsal root ganglia was
insufficient. As the culture of yeast cells is easy and
economical, and does not require fetal calf serum, the
recombinant «-galactosidase produced in yeast cells is
highly promising as an enzyme source for enzyme
replacement therapy in Fabry disease.

Keywords Fabry disease - a-Galactosidase - Ceramide
trihexoside - Yeast - Enzyme replacement therapy -
Fabry mouse

Introduction

Lysosomal o-galactosidase (EC 3.2.1.22) is a critical
enzyme for the cleavage of glycolipids with terminal o-D-
galactosyl residues, primarily ceramide trihexoside
(CTH; also called globotriaosylceramide, GL-3, and
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Gb3) in lysosomes. Lysosomal a-galactosidase is a gly-
coprotein, and is synthesized in rough-surfaced endo-
plasmic reticulum followed by the addition of N-linked
high-mannose-type oligosaccharides. The enzyme is then
transferred to the Golgi apparatus, where further modi-
fication, including addition of mannose-6-phosphate
(M6P) residues and binding to M6P receptor, occurs.
Subsequently, the enzyme is transported to endosomes
via M6P receptors. The enzyme then moves to lysosomes,
where it exerts its function. In some -type of cells,
including cultured fibroblasts, a-galactosidase can be
incorporated into the cells from the extracellular milieu
via M6P receptors on the plasma membrane and trans-
ported to lysosomes (Kornfeld and Sly 2001).

A deficiency of a-galactosidase results in widespread
cellular deposition of CTH, thereby causing Fabry dis-
ease (MIM 301500) (Desnick et al. 2001). Fabry disease
is an X-linked genetic disease exhibiting a wide clinical
spectrum. Male patients with classic Fabry disease
usually have no o-galactosidase activity and, in child-
hood or adolescence, there is pain in the peripheral
extremities, angiokeratoma, hypohidosis and corneal
opacity, followed by renal, cardiac and cerebrovascular
involvement with increasing age (Desnick et al. 2003).
The incidence of classic Fabry disease has been esti-
mated to be 1 in 40,000 male newborns (Desnick et al.
2001). Patients with variant form Fabry disease have
residual «-galactosidase activity and milder clinical
manifestations with late onset (Sakuraba et al. 1990;
Nakao et al. 1995). Females heterozygous for Fabry
disease can be affected to a moderate or severe degree
due to random X-chromosomal inactivation (Sakuraba
et al. 1986; Fukushima et al. 1995; Itoh et al. 1993, 1996;
Lyon 1962). However, a recent survey has revealed that
many Fabry females can be affected similarly to Fabry
males and thus should be considered as patients rather
than carriers of the disease (Mehta et al. 2004). Fabry
disease has been under-recognized, and the number of
Fabry patients requiring treatment is thought to be
much larger than previously assumed.

Recently, two different recombinant «-galactosidases
were developed for enzyme replacement therapy for
Fabry disease: agalsidase alfa (Replagal; Transkaryotic
Therapies, Cambridge, MA) generated in human cul-
tured fibroblasts (Schiffmann et al. 2000), and agalsidase
beta (Fabrazyme; Genzyme Therapeutics, Cambridge,
MA) produced in Chinese hamster ovary (CHO) cells
(Eng et al. 2001a, b). The former has been approved in
Europe, and the latter in Europe, the United States, and
Japan, and many Fabry disease patients have been
successfully treated with these drugs. However, these
recombinant enzymes are produced in cultured mam-
malian cells and thus their production is very expensive.
Furthermore, careful monitoring for infection by
pathogens is essential because fetal calf serum is usually
required for the culture of mammalian cells.

We have constructed a yeast cell line producing a
recombinant human a-galactosidase with N-linked high-
mannose-type sugar chains (yeast recombinant human

a-galactosidase, yr-haGal),” as described previously
(Chiba et al. 2002). Effective incorporation of the en-
zyme into affected organs is very important for enzyme
replacement therapy, and in Fabry disease successful
targeting of a-galactosidase is strongly dependent on the
presence of M6P residues on the sugar chains of
the enzyme preparations. In this study, we improved the
procedures for purification of a-galactosidase from
the culture medium of yeast cells to obtain a large
amount of highly purified enzyme protein with M6P
residues that facilitate incorporation of the enzyme into
affected organs, and analyzed the effect of the purified
enzyme on cleavage of CTH accumulated in cultured
Fabry fibroblasts and organs of Fabry mice.

Materials and methods

Purification of yr-haGal secreted into the culture med-
ium of yeast cells

Here we used a yeast strain, HPY21G, constructed by
introducing the human wo-galactosidase ¢cDNA into a
Saccharomyces cerevisiae strain, HPY?21, as described
previously (Chiba et al. 2002). A large-scale culture
(100 1) was performed to examine the effect of
yr-haGal on Fabry mice. We had previously used Blue-
Sepharose and ConA-Sepharose columns to purify
yr-haGal (Chiba et al. 2002). However, these columns are
very expensive and had only weak binding ability be-
cause of the characteristics of the affinity chromatogra-
phy so we improved the purification procedure. All
column materials used in the experiments reported here
were purchased from Amersham Biosciences Japan
(Tokyo, Japan). The culture medium of the HPY21G
strain was collected and concentrated, and ammonium
sulfate was added slowly to the supernatant to a final
concentration of 55%. The precipitate was recovered by
centrifugation, re-dissolved in 25 mM 2-(N-morpholi-
no)ethanesulfonic acid (MES) buffer, pH 6.0, and then
dialyzed against the same buffer. A sample was then
applied to a HiLoad Q 16/10 Sepharose HP column
equilibrated with the same buffer. After washing the
column, a-galactosidase was eluted with a 0-1 M NaCl
gradient in the same buffer. Fractions containing enzyme
activity were pooled, and then a one-tenth volume of 3 M
ammonium sulfate was added. A sample was then ap-
plied to a HiLoad 26/10 Phenyl HP column equilibrated
with 25 mM MES buffer, pH 6.0, containing 0.3 M
ammonium sulfate. After washing the column, a-galac-
tosidase was eluted with a 0.3-0 M ammonium sulfate
gradient in the same buffer. Fractions containing enzyme
activity were dialyzed against 20 mM Tris-HC]1 buffer,
pH 7.5, containing 150 mM NaCl, and then were con-
centrated with an Amicon Ultra-4 (13,000 MWCO;
Millipore, Bedford, MA). A sample was then applied to a
HiLoad 16/60 Superdex 200pg column. Fractions con-
taining enzyme activity then were pooled and subjected
to a-mannosidase treatment to expose M6P residues at



the non-reducing ends of the sugar chains. Treatment of
the recombinant «-galactosidase with the culture
supernatant of SO-5, a new bacterium producing an
a-mannosidase, was performed as described previously
(Chiba et al. 2002). After the a-mannosidase treatment,
the a-galactosidase protein was re-purified on HiLoad Q
and Hil.oad 16/60 Superdex 200pg columns under the
conditions described above.

Biochemical analyses of the enzymatic properties
of yr-haGal

The purity and molecular mass of yr-haGal produced in
yeast cells were determined by sodium dodecyl sulphate
polyacrylamide gel electrophoresis (SDS-PAGE) as de-
scribed previously (Chiba et al. 2002). Reversed-phase
high-performance liquid chromatography (HPLC)
analysis of the purified yr-haGal was performed on a
Cosmosyl 5C4-AR-300 (4.6x150 mm) column (Nacalai
Tesque, Kyoto, Japan). The protein was eluted with a
linear trifluoroacetic acid/acetonitrile gradient at a flow
rate of 1 ml/min with ultraviolet detection at 215 nm.
 Deglycosylation of yr-haGal with N-glycanase F (Ta-
' kara Bio, Shiga, Japan) was performed according to the
method recommended by the manufacturer, and N-ter-
minal amino acid sequence analysis and matrix-assisted
laser desorption ionization time-of-flight mass spec-
trometry (MALDI-TOF-MS) analysis were performed
by Shimazu Corporation (Kyoto, Japan).
a-Galactosidase activity was measured fluorometri-
cally with 4-methylumbelliferyl-a-galactopyranoside
(Calbiochem, San Diego, CA) as a substrate in the
presence of N-acetylgalactosamine (Sigma, St. Louis,
MO), a specific inhibitor of a-N-acetylgalactosaminidase
(Mayes et al. 1981). The protein concentration was
determined with a DC assay kit (Bio-Rad, Richmond,
CA), using bovine serum albumin (BSA) as a standard.
Sugar chain analysis of yr-haGal was performed
according to the method reported previously (Takashiba
et al. 2004). Briefly, the enzyme was hydrolyzed with
2 M trifluoroacetic acid and L-rhamnose, as an internal
standard, at 100°C for 2 h, and monosaccharides de-
rived from the sugar chains were then quantitated by
means of capillary electrophoresis using a P/ACE MDQ
equipped with a laser-induced fluorescence detector
(Beckman Coulter, Fullerton, CA); authentic monosac-
charides were used as standards for quantitation.

Examination of the effect of yr-haGal on cultured
human Fabry fibroblasts

Cultured fibroblasts from a patient with Fabry disease
and a normal control subject were established and
maintained in our laboratory. The cells were cultured in
Ham’s F-10 medium containing 10% fetal calf serum
and antibiotics at 37°C in an incubator containing 5%
CO,. The study involving the cultured human fibroblasts
was approved by the Ethical Committee of our institute.
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To examine uptake of yr-haGal by Fabry fibroblasts,
yr-haGal produced in yeast cells was added to the cul-
ture medium of Fabry fibroblasts to give concentrations
of 0, 0.25, 0.5, 1.0, 3.0 and 6.0 ug/ml. For examination
of the inhibitory effect of M6P on the cellular uptake of
yr-haGal, Fabry fibroblasts were cultured in medium
containing 5 mM M6P and 1.0pg/ml yr-haGal. After
18 h culture, the cells were harvested mechanically, wa-
shed three times with phosphate-buffered saline (PBS),
pH 7.4, and then collected as a pellet by centrifugation.
An appropriate amount of water was then added to the
pellet and the cells were sonicated; the resulting
homogenate was used for «-galactosidase assay and
protein determination.

To examine degradation of accumulated CTH by the
incorporated recombinant a-galactosidase, Fabry fibro-
blasts were cultured with culture medium containing the
recombinant a-galactosidase at concentrations of 0, 0.5,
1.0, 2.0 and 3.0pg/ml for 3 days. Alternatively, Fabry
fibroblasts were cultured in medium containing 3.0pug/ml
recombinant a-galactosidase for 0, 1, 3, 5, and 7 days.
Cells grown on a Lab-Tek chamber slide (Nunc,
Naperville, IL) were fixed with 2% paraformaldehyde in
PBS, pH 7.4, for 10 min, followed by blocking with 5%
BSA in PBS for 1 h. The cells were then incubated with a
mouse monoclonal anti-CTH antibody (culture super-
natant; IgG isotype) (Kotani et al. 1994) and rabbit
polyclonal anti-a-galactosidase antibodies (1:100 di-
luted; IgG isotype) (Ishii et al. 1994) for 1 h. After
washing, they were reacted for 1 h with a fluorescent
isothiocyanate-conjugated goat anti-mouse IgG F(ab’),
(diluted 1:200; Jackson Immuno Research, West Grove,
PA) and a rhodamine-conjugated goat anti-rabbit IgG
F(ab’), (diluted 1:400; Jackson Immuno Research). To
determine the localization of the accumulated CTH,
double staining with the anti-CTH antibody and a
mouse monoclonal antibody to lysosome-associated
membrane protein-1 (LAMP-1; Southern Biotechnol-
ogy, Birmingham, AL), a marker for lysosome, was also
performed according to a modified method described
elsewhere (Kotani et al. 2004). The stained cells were
observed under a microscope (Axiovert 100M; Zeiss,
Oberkochen, Germany) equipped with a confocal laser
scanning imaging system (LSM510; Zeiss).

Examination of the effect of yr-haGal on Fabry mice

Fabry mice (x-galactosidase knock-out mice, donated by
Ashok B. Kulkarini and Toshio Oshima) and wild type
C57BL/6 mice were used in this experiment according to
the rules drawn up by the Animal Care Committee of
our institute.

To examine the pharmacokinetics and biodistribution
of the recombinant o-galactosidase, a single dose,
3.0 mg/kg body weight, of recombinant a-galactosidase
was injected into the tail veins of Fabry mice. As a con-
trol, a single dose, 2.0 mg/kg body weight of agalsidase
beta (purchased from Genzyme Japan, Tokyo, Japan)
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was injected into litter-matched Fabry mice so that the
injected enzyme activity was almost the same (6.0-
6.4 mmol h™! kg™! body weight). Each group consisted
of two mice. Blood samples were collected at 0, 1, 3, 5, 10,
20, 30, and 40 min after injection of the enzymes, and a
time course of changes in a-galactosidase activity in
plasma was determined. The mice were sacrificed at 1 h
after administration of the enzymes, and their livers,
kidneys, hearts, and spleens were then removed. Tissue
samples were then homogenized in citrate-phosphate
buffer, pH 4.6, and centrifuged. The resulting superna-
tants were assayed for a-galactosidase activity.

To examine cleavage of the CTH accumulated in or-
gans, two groups of litter-matched Fabry mice, each
comsisting of three mice, were repeatedly injected with the
recombinant «-galactosidase, 3.0 mg/kg body weight,
and agalsidase beta, 2.0 mg/kg body weight, separately
every week for four doses, and then sacrificed 6 days after
the last injection. Their livers, kidneys, hearts, spleens,
and dorsal root ganglia were then removed, and used as
samples for biochemical and/or morphological analyses.

For immunohistochemical analysis, the mouse tissues
were stored at —80°C before use, and then frozen sec-
tions of 10pm thickness were fixed with 4% parafor-
maldehyde in PBS for 5 min at room temperature. The
specimens were incubated with PBS containing 5% (w/v)
BSA for 30 min at room temperature to block non-
specific binding. Subsequently, the samples were treated
with a mouse monoclonal anti-CTH antibody (culture
supernatant; IgG isotype) for 1 h at room temperature,
and then treated with fluorescent isothiocyanate conju-
gated goat anti-mouse IgG F(ab’), (diluted 1:200;
Jackson Immuno Research). The stained tissues were
examined under a confocal laser scanning microscope as
described above.

For determination of CTH levels, tissues, including
liver, kidney, heart, and spleen, were analyzed by means
of thin-layer chromatography, followed by densitometry
according to the method described previously (Takah-
ashi et al. 2002).

For morphological examination, kidney tissues were
cut into small pieces, and then fixed in cold 2.5% glu-
taraldehyde and 2% paraformaldehyde in 0.1 M phos-
phate buffer, pH 7.4. The specimens were rinsed in PBS,
and then postfixed with 2% osmium tetraoxide in 0.2 M
sucrose in -PBS for 1h and dehydrated with graded

concentrations of ethanol; 50% through absolute, and
glycidyl n-butyl ether. Dehydrated specimens were then
embedded in Epon 812 resin. Sections of 0.1pm thick-
ness were prepared and stained with 2% uranyl acetate
in 50% ethanol for 5 min, restained with Reynolds lead
citrate for 3 min, and finally examined under an electron
microscope (Hitachi H-7100; Hitachi, Tokyo, Japan).

Examination of the anti-a-galactosidase immune
reaction

To determine whether or not Fabry mice injected with
the enzymes produced antibodies against the enzymes,
solid-phase enzyme-linked immunosorbent assay (ELI-
SA) was performed. Serum samples were obtained from
Fabry mice repeatedly injected with yr-haGal (3.0 mg/kg
body weight), and agalsidase beta (2.0 mg/kg body
weight) separately every week for four doses. Briefly, a
96-well flat bottom microplate for ELISA (Immulon 2
HB; Thermo Lab Systems, Flanklin, MA) was coated
with 1.0 pg/ml of the enzymes in PBS. After washing 5
times with 1% BSA in PBS, 200 pl 1% BSA in PBS was
added to each well as a blocking solution, followed by
incubation for 1 h at room temperature. After removing
the blocking solution, 100 ul of the mouse sera or rabbit
anti-a-galactosidase antibodies (Ishii et al. 1994) diluted
to various concentrations was added to each well,
followed by incubation for 1 h. The wells were then
washed, incubated in 100 pl peroxidase-conjugated
anti-mouse 1gG F(ab’), (diluted 1: 2,000; Jackson Im-
muno Research) for 45 min, washed again, and finally
incubated in 100 ul O-phenylenediamine (Sigma) gener-
ated as 0.4 mg/ml 0.05 M citrate-phosphate buffer,
pH 5.0. After incubation with the chromogenic substrate
for 10 min, the optical density of each well was measured
by means of an ELISA reader (Bio-Rad, Hercules, CA).

Results
Properties of yr-haGal
The new purification method described in this paper

allowed us to treat a large volume of culture medium and
obtain highly purified yr-haGal with 870-fold purifica-

Table 1 Monosaccharide analysis. M6P Mannose-6-phosphate, yr-haGal yeast recombinant human a-galactosidase

yr-haGal® (mol/mol protein)

Agalsidase beta® (mol/mol protein)

Agalsidase alfa® (mol/mol protein)

M6P 3.8+0.2

3.1£0.1 1.8+0.0
Galactose ND¢ 8.0x04 12210
Fucose ND 1.8+0.1 3.0+0.3
N-Acetylglucosamine 0.8%0.6 184+0.4 22.5+2.3
Mannose 53.8+2.6 257+1.8 27.6%0.5
Sialic acid ND 7.0+1.0 6.9+0.6

*Values expressed as means £SD, n=3
®Lee et al. 2003
“Not detected





