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The therapeutic efficacy of neural stem cell transplantation for central nervous system (CNS) fesions
in lysosomal storage disorders was explored using a murine model of mucopolysaccharidosis type
VIl (MPS VII). We used fetal neural stem cells derived from embryonic mouse striata and expanded
in vitro by neurosphere formation as the source of graft materials. We transplanted neurospheres
into the lateral ventricles of newborn MPS$ Vil mice and found that donor cells migrated far beyond
the site of injection within 24 h, and some of them could reach the olfactory bulb. A quantitative
measurement indicated that the GUSB activity in the brain was 12.5 to 42.3% and 5.5 to 6.3% of
normal activity at 24 h and 3 weeks after transplantation. In additien, histological analysis revealed a
widespread decrease in lysosomal storage in the recipient’s hippocampus, cortex, and ependyma. A
functional assessment with novel-object recognition tests confirmed improvements in behavioral
patterns. These results suggest that intracerebral transplantation of neural stem cells is feasible for
treatment of CNS lesions associated with lysosomal storage disorders.

Key Words: neurosphere, mucopolysaccharidosis type Vil, intracerebral transplantation

INTRODUCTION

Mucopolysaccharidosis type VIL (MPS VID, or Sly syn-
drome, is a congenital lysosomal storage disorder (LSD)
characterized by a systemic deficiency of p-glucuronidase
(GUSRKY activity |1]. This defect results in a progressive
accumulation of undegraded glycosaminoglycans and
subsequent lysosomal distension in multiple tissues,
including the central nervous system (CNS). Enzyme
replacement therapy and bone marrow transplantation
are effective for correcting visceral manifestations of the
disorder |2.3]. However, effective treatment of the CNS in
patients with LSDs remains a major challenge.

With respect to cell therapy directed to the CNS in an
MPS VIT mouse, there are reports that the intracerebral
transplantation of a genetically engineered neural pro-

Abbreviations used: CNS, central nervous system; GUSB, p-ghucuro-
nidase; MPS VIL mucopolysaccharidosis type VI

genitor [4] and retrovirally transduced syngeneic fibro-
blasts [5] corrected the lysosomal storage of the recipient’s
brain tissues. We also previously reported that adeno
virally transduced rat amniotic epithelial cells injected
into adult MPSVH mouse brains survived at the injection
point for more than 9 weeks and the subsequent supply of
enzyme resulted in pathological improvement in multiple
areas of the MPS VII mouse brains |6].

In this study, we used fetal neural stem cells derived
from embryonic mouse striata and expanded in vitro by
neurosphere formation |7,8] as the source of graft materi-
als. Neural stem cells are considered to be good candidates
for cell therapy to treat CNS dysfunction. In fact, fetal
neural tissues have been successtully used in human
Parkinson disease patients |9,10]; however, as many as
four to eight fetuses were required to obtain a sufficient
number of cells to treat a single patient. Expansion of
neural stem cells in vitro may overcome the above practical
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and ethical problems associated with fetal tissue trans-
plantation and provide a source for graft material.

Here we describe improvements in the histopathology
of the hippocampus, cortex, and ependyma and in non-
spatial hippocampus-dependent learning and memory
evaluated in a novel-object recognition test at 2 months
after transplantation. These data suggest that early trans-
plantation of neurospheres into the CNS may prevent or
delay some of the progressive mental impairment associ-
ated with this LSD.

ResuLTs AND DiscussioN

Production and Secretion Capacity of GUSB Enzymes
by Neurospheres

Theneurosphere is a floating cell cluster containing plenty
of neural stem cells and is generated from a fetal mouse
brain by neurosphere formation [7,8]. Briefly, when we
culture fetal corpus striatum containing neural stem cells
in a serum-free medium with growth factors, only neural
stem cells can survive and form floating cell clusters called
neurospheres. We initially determined the endogenous
GUSB activity of neurospheres obtained from normal
C57BL/6 mice. The GUSB activity of the neurosphere
and its culture medium proved significantly higher than
that of bone marrow cells (Figs. 1A and 1B). We also
evaluated the difference in GUSB activity before and after
differentiation. Most neurospheres differentiate into neu-
ral cells in vivo according to their microenvironments after
transplantation [8]. The GUSB activities in differentiated
cells and their culture media were almost equivalent to
those of bone marrow cells, suggesting that the GUSB
activity of the neurospheres was reduced, although it was
maintained to the extent necessary for a therapeutic effect
even after differentiation.

Intercellular Transport of the GUSB Enzyme

It is well known that most lysosomal enzymes can be
taken up into cells by M6P receptor-mediated endocy-
tosis, and that this process is efficiently blocked in the
presence of M6P [11]. When we transferred the culture
medium of neurospheres generated from C57BL/6 fetal
mouse brains to dishes of the primary culture of neurons
generated from C3H mice, 21.9% of the heat-stable
CS7BL/6 mouse-derived GUSB in the culture medium
was internalized into the neurons in the absence of M6P
(Fig. 1C). In contrast, it was significantly reduced in the
presence of 10 mM M6P (Fig. 1C). This suggests that
endocytosis by M6P receptors leads to the internalization
of the GUSB enzyme secreted from the neurospheres to
the neurons.

Lysosomal Enzyme Activities of the Neurosphere

Many LSDs display CNS symptoms. Most lysosomal
enzymes have common transport systems mediated by
the M6P receptor, and therefore the same transplantation
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FIG. 1. Neurosphere GUSB activities and secretion via cell-to-cell transport.
Lanes 1, neurospheres; 2, differentiated cells from neurospheres; 3, bone
marrow cells; 4, 3521 cells (fibroblasts that originated from an MPS VIl mouse).
The GUSB activities of the neurosphere and its culture medium proved
significantly higher than those of bone marrow cells. The GUSB activity in
differentiated cells from neurospheres and that of its culture medium were
almost equivalent to those of bone marrow cells. (A) GUSB activity in cell pellets
of the neurosphere, bone marrow, and 3521 cells. (B) GUSB activity in a culture
medium of the neurosphere, bone marrow, and 3521 cells at the time of the first
passage. (C) Cell-to-cell transport of GUSB secreted from neurospheres. The
ratio of the heat-stable GUSB activity in C3H mouse neural cells to the total heat-
stable GUSB activity in the culture medium was calculated. The means *
standard errors are provided.

strategy could be available if neurospheres can produce
and secrete significant amounts of lysosomal enzymes.
We determined the specific activities of several lysosomal
enzymes in neurospheres and compared them with those
in marrow stromal cells and human granulocytes. Similar
or higher activities of lysosomal enzymes were identified
in the neurosphere (Table 1).

Distribution of Donor Cells after Neonatal
Transplantation

We performed a syngeneic transplantation experiment
using neurospheres obtained from CAG-EGFP transgenic
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TABLE 1: Activities of lysosomal enzymes in the neurosphere and their related diseases®
Lysosomal enzyme Disease Neurosphere MscP? Granulocytes

«-t-iduronidase MPS | 39.2 57.4 56-201 (n = 6)
Iduronate sulfatase MPS It 40.5 20 12-26 (n = 5)
Heparan-N-sulfatase MPS HIIA 1.1 4.3 0.2-3(n=4)
GalNAc-6-5-sulfatase MPS VA 53 15.2 8.1-20 (n=15)
Arylsulfatase B MPS VI 55.3 15.5 9-32 (n=5)
p-Glucosidase Gaucher disease 3.0 6.5 0.2-0.6 (n = 100)
a-Galactosidase A Fabry disease 189 68.8 49.8-116.4 (n = 48)
p-Galactosidase MPS VB 501 309 37.6-230.1 (n = 100)
a-Mannosidase a-Mannosidosis 61.0 48.0 121.1-345.1 (n = 100)
p-Hexosaminidase Sandhoff disease 1024 3062 401.7-1426.0 (n = 100)
p-Hexosaminidase A Tay-Sachs disease 527 481 251.1-607.4 (n = 48)
Arylsulfatase A MLD 435 278 109.0-217.2 (n = 100)

? We quantitatively assayed for a variety of lysosomal enzymes as well as GUSB. Several kinds of lysosomal enzymes were found to be high in the neurosphere, This result suggests that the
neurosphere may be applied for the treatment of different types of congenital metabolic disorder. Data are given in nmol/mg protein/h. Enzyme activities in human granulocytes were

measured as described elsewhere {27).
b MSC, marrow stromal cell.

mice (C57BL/6 background) as donor cells and newborn
MPS VIl mice as recipients. We injected 2.5-5 x 10?
neurospheres (Fig. 2A) into the lateral ventricles of
neonatal MPS VII mice within 1 to 3 days after delivery.
A large number of donor cells were located mainly in the
periventricular area at the hippocampus level in the
brain, but a small number of GFP-positive cells were
observed at varying distances away from the periventri

FIG. 2. Distribution of the donor cells in a mouse brain
following transplantation of neurospheres. (A) Neuro-
spheres generated from GFP transgenic mice under &
{luorescence microscope. (B) A slice at the hippo-
campus level in the brain at 24 h after transplantation
under a fluorescence microscope. GFP-positive cells
were located mainly in the periventricular area. (C) A
slice at the olfactory bulb level in the brain at 24 h after
transplantation. GFP-positive cells were also detected
under a fluorescence microscope; some of them were
found 1o form a line (a chain migration). (D) A slice at
the hippocampus level in the brain under a fluores-
cence microscope at 3 weeks afler transplantation.
GFP-posilive cells were found 10 be branched and to
form a network with the recipient brain tissue. (E-H)
The brain of an MPS VIl mouse at 24 h after
transplantation of neurospheres. The recipient brain

was slained red by GUSB slaining in accordance with I
the GFP-positive area. (E~-G) Coronal sections of the 40
lelencephalon at the caudal level. (M) Olfactory bulb.

() Quantitative determination of the GUSB activity was

performed at 24 h and 3 weeks after transplantation. 0
The brains of the transplant recipients were divided 20

coronally inlo three parts and quantitatively assayed
for GUSB aclivity (n 3). The regions used for
evaluation al the designated times were defined by
anatomical landmarks in the anterior-to-posterior
plane: a, olfactory bulbs; b, caudal edge of the

U/mg proteinhr

cular area at 24 h (Fig. 2B). We identified some of the
GFP-positive cells in a linear formation at the level of the
olfactory bulb, indicating a specific manner of migration
in this area that is referred to as chain migration [12] (Fig.
2C). The overall distribution of the donor cells through-
out the brain was essentially identical in all mice
examined histologically (n = 3), with findings similar to
previous reports [4,13-15]. There was evidence of GUSB

& 24h
03w

D1

63.5
|

olfactory bulbs lo the rosiral edge of the hippo-
campus; ¢, hippocampus to the posterior colliculus.
The cerebellum was disseclted free and was not
included in the assay.

b

#
¢ normal MPS ) i 5004
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staining in accordance with the GFP-positive area,
indicating a rise in GUSB activity (Figs. 2E-211).

We previously reported that neurosphere-derived
donor neurons extend their processes into the host
tissues and form a synaptic structure [8]. The GFP-
positive cells had extended their processes and formed
synaptic structures as well 3 weeks after transplantation
(Fig. 2D). These data suggest that the donor cells
migrated from the periventricular area and some of
them reached the olfactory bulb as early as 24 h after
transplantation.

Quantitative Gusb Assay in Transplanted Mouse
Brains

We divided the brains of the transplant recipients
coronally into three parts and quantitatively assayed
them for GUSB activity at 24 h (n = 3) and 3 weeks (n =
3) after transplantation (Fig. 21). GUSB activity was 12.5
to 42.3% of normal activity at 24 h. There was 5.5 to
6.3% of normal activity at 3 weeks after transplantation.
This is an amount at which that lysosomal distensions
in the neuron and glia could also be reversed [16}. These

results imply that donor cells provided the recipient
brain with GUSB activity to the extent that lysosomal
storage in the recipient brain could be prevented for at
least 3 weeks.

Histological Analysis and Tumorigenesis Assessment
of the Treated Mice

We tested the treated MPS VII mice for reduction of
lysosomal distensions in the neurons and glia at 2 months
after transplantation (1 = 2) (Figs. 3 and 4). We performed a
histological analysis on hippocampus, cortex, and epen-
dyma using an optical microscope (hippocampus, cortex,
and ependyma) and an electron microscope (cortex). In
the hippocampus of the untreated MPS VII mice, most of
neurons contained marked cytoplasmic vacuolation (lyso-
somal storage) as well as astrocytes. In contrast, those of
the treated hippocampuses were almost eliminated espe-
cially from neurons in this area. In the cortices, we also
observed extensive neuronal and glial vacuolation, and
the treatment reduced them remarkably as well. An
electron microscope demonstrated that lysosomal storage
in some neurons was completely eliminated in this area

FIG. 3. Toluidine blue-stained, 0.5-um-thick sections
from the hippocampus, cortex, and ependyma are from
2-month-old MPS VIt mice (n = 2). Intraventricular
injection of neurospheres decreases lysosomal storage
in the hippocampus, cortex, and ependyma. Black
arrows indicate distended vacuoles in neurons; white
arrows indicate storage in glia.

9

gpendyma, control

“50n

ependyma, treated
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FIG. 4. Electron microscopic analysis of lysosomal
storage in a mouse brain following transplantation of
neurospheres. (A) Cortex of a control untreated MPS
VIl mouse at 2 months after transplantation. Abundant
white cytoplasmic vacuoles represent distended lyso-
somes. (B) Cortex of a MPS VI mouse at 2 months after
transplantation. Lysosomal storage granules in this
area were remarkably reduced in size and number,
and those in some neurons were completely elimi-
nated. (A’ and B') Magnified photographs of the
circumscribed areas in (A) and (B).

(Fig. 4. In the ependyma, the amount of storage appeared
to be significantly reduced in the treated mice. To evaluate
quantitatively the improvement of the pathology in the
treated mice, we counted neurons and glia containing
apparent vacuolation in each hippocampus and cortex of
the treated and the untreated mice (11 = 2, total 300 cells in
each area) in the HPF (x600). In both areas, we observed a
remarkable decrease in the number of neurons and glia
with apparent lysosomal storage, and this finding was
almost equal in two treated mice, indicating an improve-
ment of the pathology in the treated mouse brains (Table
2). We carefully assessed all transplanted mice for the
presence of tumorigenesis. We dissected the brains of the

TABLE 2: The percentage of cells with apparent
vacuolization in the brain of MPS VHi mice treated with
intraventricular injection of neurospheres® (n = 2)

Untreated Treated

Hippocampus 89.3% 17.3%

Neuron 909% 18.4%

Glia 92% 13.9%

Cortex 42% 15.3%

Neuron 37.7% 11.7%
Glia 55.6% 30%

* Toluidine blue sections of hippocampus and cortex were analyzed for lysosomal
distention, and we counted neurons and glia containing much vacuolation in 300 cells in
each of hippocampus and cortex in the HPF (X600).

dead mice during the course of the study and macroscopi-
cally analyzed them for tumor formation, but we could not
identify any tumor formation among them.

Mouse Hearing Acuity Assessment

Measurements of the auditory brain-stem response (ABR)
have been useful in assessing functional improvements
after treatment |17]. We tested three treated MPS VII
mice, three untreated MPS VII mice, and three C57BL/6
mice. There was no significant difference in the ABR
thresholds among the treated and the untreated MPS V1I
mice (Fig. 5A). It is well known that malalignment and
focal loss of stereocilia occur as the disease progresses,
leading to a sensorineural hearing loss [18]. As the ABR
was performed at 2 months, it may have been too early to
assess the sensorineural hearing loss.

Behavioral Assessment

We used a novel-object recognition test, a tool for
studying nonspatial hippocampus-dependent memory,
to determine whether an improvement in mental status
could be achieved by transplantation [19-21]. We carried
out this test as described {19} with several modifications
at 2 months after transplantation (7 = 3). We used normal
siblings of the treated MPS V11 mice as the control mice.
In summary, after the mice were habituated to an open
field, two yellow objects (A, B) were placed diagonally in
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FIG. 5. Assessment of the functional recovery al 2 months after trans-
plantation. (A) Auditory-evoked brain-stem responses. The decibels required
to elicit ABR at the broadband (clicks) were evaluated among three normal
mice, three trealed MPS Vil mice, and three untreated MPS VIl mice at 2
months after transplantation. There was no significant difference in the ABR
thresholds among the treated MPS VIl mice and the untreated MPS VIi mice.
(B) The novel-object recognition test. The mice were assessed for an
improvement in hippocampus-dependent nonspatial memory by a novel-
object recognition test (n = 3). The total time spent exploring objects on day 4
(=A + B) in the treated mice was significantly longer than that for the
untreated mice. (**P < 0.01). (C) The novel-object recognition test (retention
test). The percentage of time spent in exploring B as a portion of the total
object exploration time on day 4 [B/(A + B)] was compared with that of C (the
novel object) on day 5§ [C/A’ + O)]. C/(A' + C) in the C57BL/6 and the treated
mice was significantly greater than B/(A + B). This suggests that the normal
mice and the treated mice spent a significantly longer time exploring the
novel object, revealing that both groups had a significant preference for
exploring the novel object. The means = standard errors are provided.

the open field on day 4, and the mice were allowed to
explore them for 10 min. Object B was replaced with a
novel object (C) and the other object was replaced with a
replica (A’) on day S, and the mice were again allowed to
explore them for 10 min. Normal animals prefer to
explore the novel object more than the familiar object.
From the degree of preference for exploration of the new
object, it can be inferred that they retained a memory of
the familiar object. The total time spent exploring object

A or Bon day 4 (=A + B) was 27.3 + 8.4 s in the normal
mice, 23.5 + 7.4 s in the treated mice, and 5.9 + 1.6 sin
the untreated mice (Fig. 5B), indicating that the normal
and the treated mice had the same levels of motivation,
curiosity, and interest in exploring objects. Next, to
evaluate preferential exploration of the novel object, we
compared the percentage of time spent exploring object B
as a portion of the total object-exploration time on day 4
[=B/(A + B)] with that of object C (the novel object) on day
5 [=C/(A" + C)] (Fig. 5C). C/(A’ + C) in the normal and the
treated mice was significantly greater than B/(A + B)
Inormal mice, B/(A + B) = 52.9 = 3.9%, C/(A" + C) = 68.1
+ 4.4%; treated mice, B/(A+B)=51.6 £ 2.8%, C/(A +C) =
68.7 + 8.4% of the exploration time]. This indicates that
the normal mice and the treated mice spent a significantly
longer time exploring the novel object, revealing that both
groups exhibited a significant preference for exploring it.
These results indicate that the treated mice have the same
level of nonspatial hippocampus-dependent memory as
the normal mice. But we cannot completely deny the
possibility that the vision had an influence on this
improvement of a novel object test.

To date, there are reports demonstrating an improve-
ment in behavior of treated MPS VII mice assessed by a
Morris water maze test [22,23]. We used a novel-object
test because it is very easy and less of a burden on the
mice than the Water maze test. Consequently, it is
easily applicable to mice with motility disturbance, and
we thought we could maximize mouse performance
associated with visual recognition memory. The long-
term effects of this treatment have not been examined
in detail. The treated mice lived to 7 months of age at
most. Transplantation of neurospheres did not extend
the life span of MPS VIl mice. Life span may be
dependent on systemic lysosomal storage other than
the CNS.

In summary, our results demonstrated that after
transplantation of in vifro-expanded neurospheres into
the neonatal ventricle of MPS VII mice brains, the
transplant donor cells migrated along established routes
and integrated into the recipient’s brain. The treated
mice exhibited improved cognitive functions as meas-
ured by a novel-object recognition test, which was
consistent with histological evidence of reduced lysoso-
mal storage in the brain tissue.

MATERIALS AND METHODS

Animals. Syngeneic MPS VII gnps/imps) mice were obtained from a pedigree
colony of B6.C-H-2"/ByBir-gus™™/+ mice maintained at our facility [6].
Normal C3H mice were purchased from Shizuoka Laboratory Animal
Center (Shizuoka, Japan). CAG-EGFP transgenic mice were originally
generated by Endo ef al. [24.25]. Al mice were maintained and treated in
accordarice with the guidelines of the animal committee of the facility.

Isolation, primary cultures, and passaging procedures of neurospheres.
Embryos were removed from CAG-EGFP transgenic mice on day 14.5 of
pregnancy. The corpus striatum was dissected and prepared as described
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elsewhere [7]. Neurospheres were cultured in the medium described below
at 37°C with 5% CO; al a concentration of 2 ~ 10° cells/ml in the primary
culture. The culture medium was. DMEM/FI2 supplemented with the
hormone mixture used by Reynolds and Weiss [7]. Passages were
performed once per week. Neurospheres were used for the transplantation
after the second to fifth passage.

Cell-to-cell transport of GUSB secreted from neurospheres. We evaluated
in vitro the uptake ratio of the GUSB enzynie secreted from neurospheres of
C57BL/6 mice into neural cells of C3H mice by using the difference in the
heat stability of GUSB proteins between C57BL/6 mice and C3H mice. In
brief, GUSB activity of C57BL/6 mice was reduced by only 30% after a 2-h
incubation at 65*C [11]. In contrast, GUSB activity of C3H mice was
decreased markedly after this procedure. We prepared a culture medium of
neurospheres from C57BL/6 mice after 1 week incubation. We replaced the
medium of primary neurons of C3H mice with the above medium,
continued to culture in the presence or absence of M6P, and harvested 12
h later. Heat-stable GUSB activity in the homogenales of C3H mouse
neurons was measured after a 2-h incubation at 65°C.

Quantitative analysis of GUSB activity. GUSB aclivity in tissues and cell
homogenates was quantified using a fluorometric assay described
previously [26]. Neurospheres were guantitatively analyzed after the
second to fifth passage. Differentiated cells were obtained from neuro-
spheres by converting the culture medium into DMEM +10% FBS. We had
previously demonstrated that these cells differentiated into neurons,
astrocytes, and oligodendrocytes by immunological staining (data not
shown). Bone marrow was isolated from C57BL/6 mice and cultured in
DMEM +10% FBS. Attached cells were collected after the second to fifth
passage and analyzed for GUSB activity.

Histochemical detection of GUSB activity. The mice were perfused with
physiological saline and subsequently with 4% paraformaldehyde before
preparation of the brains. The brains were equilibrated in a 30% sucrose
solution (4'C, overnight), frozen in M-1 embedding matrix (Shandon,
Pittsburgh, PA, USA), and then sectioned on a cryostat. Histochemical
analysis of GUSB activity was performed on 20-um-thick frozen sections
using naphthol AS-BI i-p-glucuronide (Sigma) as a substrate [26].

Lysosomal enzyme activities of the neurosphere. Lysosomal enzyme
activities in neurospheres, the marrow stromal cells, and human
granulocytes were quantified using a fluorometric assay as described with
some modification [27].

Histopathological analysis of lysesomal storage. Histopathology in
neurons and glia was analyzed at 2 months after transplantation,
corresponding to 2 months of age (n = 2). Tissues were isolated from
the mice and immediately immersed in cold 2% glutaraldehyde in 0.1 M
cacodylate buffer, postfixed in 1% osmium tetroxide, dehydrated through
a graded series of ethanol solutions, and embedded in Spusr's Medium
(Polyscience, Warrington, PA, USA). Toluidine blue-stained, 0.5-pum-thick
sections were analyzed for evidence of lysosomal storage in hippocampus,
cortex, and ependyma. Cytoplasmic lysosomal distensions in the cortex
were also evaluated with an electron microscope.

Auditory brain-stem responses. ABR examination was performed 20 min
after anesthesia in a quiet room, as described previously [28].

Novel-object recognition tests. Novel-object recognition tests evaluate
nonspatial hippocampus-dependent learning and memory [19-21] and
were performed as described |19] with several modifications. The mice
were habituated in an open field over a 2-day preexposure (day 1 for §
min and day 3 for § min). Two vellow objects (A and B) were placed
diagonally in the open field (15 cm away from the walls) on day 4, and
the mice were allowed to explore them for 10 min. Object B was replaced
with the novel objecl (C), and the other object was replaced with a replica
(A on day 5, and the niice were again allowed 1o explore them for 10
min. Recognition of the familiar object was scored by preferential
exploration of he novel object. A + B represents total time exploring
on day 4. A’ + C represents total time exploring on day 5. B/(A + B)
represents the ratio of time exploring object B to tolal time exploring on

day 4. C/tA’ + C) represents the ratio of time exploring object C to total
time exploring on day 5.
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