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Conclusions: Our multicenter cooperative survey revealed that medical procedure was the most frequent source of infection in acute hepatitis
C. As concerns the therapy, interferon treatment should be initiated within 24 weeks after onset of symptoms.

© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

There are about 170 million people infected with the
hepatitis C virus (HCV) worldwide { 1], and the infection pro-
gresses to hepatic cirrhosis in 10-30% [1,2]. Since patients
often lack subjective symptoms even in acute hepatitis C [3],
infection is often rcalized by patients when the pathology
progresses to hepatic cirrhosis and hepatocellular carcinoma.
There are a variety of sources of infection, such as medical
procedure, intravenous drug use, and sexual behavior [4.5].
In addition, vertical transmission of HCV has been reported,
and it seemsthat maternal viral load is significant for infection
to fetus [6]. On the other hand, as a therapy for acute hepatitis
C, interferon (IFN) administration has been established to be
effective [4,5,7-13].

Although the initial prevention of hepatitis C virus (HCV)
infection is ideal, the most effective method of preventing
progression to the chronic hepatitis C is still controversial in
the acute phase. In Japan, the development of acute hepati-
tis C due to blood transfusion has markedly decreased after
introduction of the HCV antibody test for screening of blood
donors [14]. However, infection from intravenous (i.v.) drug
use and incidences due to accidental contamination of medi-
cal staff are still important problems [15,16]. Investigation for
the sources of infection in acute hepatitis C is very important
for the prevention. In this study, we investigated a national
survey on the route of infection of acute hepatitis C and the
therapeutic effectiveness according to the timing of IFN ther-
apy. This survey consists of the largest number of case reports
and may reflect the current situation of acute hepatitis C in
Japan.

2. Patients and methods
2.1. Patients

A retrospective study was performed in patients of 12
facilities nationwide who developed acute hepatitis C after
1990. The total number of patients at the facilitics was 102.
Informed written consent was obtained from each patient,
and the study protocol conformed to the ethical guidelines
of the 1975 Declaration of Helsinki. Age, gender, source of
infection, HCV serotype or genotype, HCV-RNA level, his-
tology of liver biopsy, fluctuation in alanine aminotransferase
(ALT) level, presence or absence of IFN therapy, course when
not treated with IEN, duration between onset of symptoms
and TEN therapy, type of TFN, total dose of TFN, administra-

tion method, total duration of administration, and therapeutic
results were investigated in each patient.

2.2. Diagnosis of acute hepatitis C

The diagnostic criteria of acute hepatitis C were HCV-
RNA detectable at the time of an clevated ALT level, followed
by development conversion of HCV antibody. Patients in
whom HCV antibody was already positive at the onset were
excluded.

2.3. Natural course

In patients who followed the natural course without any
treatments, the chronic hepatitis was defined as persistence of
HCV-RNA positivity for 6 months or longer, and resolution
was defined as a disappearance of serum HCV-RNA within
6 months followed by persistent negativity for 6 months or
longer.

2.4. Definition of fluctuation of ALT

In patients diagnosed with acute hepatitis C, when one
peak of the serum ALT level was observed, the fluctuation was
designated as monophasic, and when two or more peaks were
observed, the fluctuation was designated as bi- or multiphasic.

2.5. Serologic tests

Anti-HCV antibody was determined using a second-
generation or third-generation enzyme-linked immunosor-
bent assay (Ortho Diagnostics Systems, Tokyo, Japan). Hep-
atitis C virus RNA was quantified by using the bDNA signal
amplification assay (Chiron Corp.) or the Cobas Amplicor
HCV Monitor test verl.0 or 2.0 (Roche Diagnostic Sys-
tems, Tokyo, Japan). The data were represented as Meq/ml,
K copies/ml, and KIU/ml, respectively. Detection of HCV-
RNA to determine the response of IFN treatment was used by
Amplicor HCV (Roche Diagnostics K.K., Japan). Hepatitis C
virus serotype was determined using the genotyping enzyme-
linked immunosorbent assay (International Reagents Corpo-
ration, Tokyo, Japan) to be type 1 or 2 [17].

2.6. IFN therapy

For IFN, IFN-a (natural form, gene recombinant, or con-
sensus IFN), or IFN-B was used (Table 4). No concurrent
treatment with IFN and ribavirin was administered to any
patient. Among patients treated with TFN, the sustained
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virological response (SVR) was defined undetectable HCV-
RNA in serum at least 6 months after cessation of therapy.
Non-response was defined as detectable HCV-RNA for 6
months after cessation of therapy.

2.7. Statistical analysis

‘Data were expressed as the mean = standard deviation for
continuous variables and as counts for categorical variables.
The results were compared using the Chi-square test, Fisher’s
exact probability test, or Mann—Whitney U-test, depending
upon the type of data analyscd. Logistic regression was used
to analyse the factors contributing to SVR with IFN therapy. P
values <0.05 were considered significant. Statistical analyses
were performed by using Stat View software (version 5.0;
SAS Institute Inc., Cary, NC).

3. Results
3.1. Patient characteristics

The baseline characteristics of the 102 patients in this
study are shown in Table 1. The distribution of patients by
gender and age is shown in Table 2.

3.2. Natural course

The natural course of the disease was followed in 21
patients, and the course could be followed to the outcome

Table 2
Distribution of patients according to gender and age

37

Table 1
Base-line characteristics of 102 patients

38.6+ 16.2 (16-84)
46 (39.2 & 16.0)/56 (38.2 £ 16.5)

Age
Male/female (mean age)
Source of infection (%)

Medical procedure 33 (32.4)
Accidental needle stick 21 (20.6)
Sexual behavior 8(7.3)
Drug abuse 6(5.9)
Tattoo 3(2.9)
Unknown 31(30.4)
Viral load (high®/low/N.D.) 46/45/11
HCVserotype(1/2/N.D.) 54/23/25
IFN/without TFN 81/21

N.D., not determined; IFN, interferon. Details of the routes in medical pro-
cedure: surgery 14, blood wansfusion 5, endoscopy 3, intravenous injection
4, invasive procedure 3, dental therapy 3, dialysis 1.

2 Vira! load (high): more than 100 KIU/m! or 1 Meqg/ml.

in 18 patients (the prognosis was unknown in three patients)
(Table 3). The disease progressed to chronic hepatitis C in
61.1% of the patients and resolved spontaneously in 38.9%
of the patients. The age and the fluctuation pattern ofthe ALT
level were significantly different between the two groups. As
for gender, serum HCV-RNA level, and serogroup, no corre-
lation with spontaneous resolution or chronic hepatitis C was
observed. :

3.3. IFN therapy

Table 4 shows the backgrounds of the 81 patients treated
with IFN. Of 71 patients in whom the effect was clarified,

Age (years)  Number of patients

Sexual behavior (M/F)

Medical procedure (M/F)  Accidental needlestick (M/F) Drug abuse (M/F)  Tattoo (M/F) Unknown (M/F)
<19 0/1 0/0 0/0 0/1 0/0 0/1
20-29 5N 3/8 173 2/1 3/0 2/6
30-39 4/3 33 2/1 0/1 0/0 373
40-49 2/4 0/4 1/0. 0/1 0/0 2/3
50-59 4/3 0/0 0/0 0/0 0/0 2/3
60—69 4/1 0/0 0/0 0/0 0/0 2/0
70-79 0/0 0/0 0/0 0/0 0/0 11
>80 0/1 0/0 0/0 0/0 0/0 0/2
Total 19/14 6/15 4/4 2/4 3/0 12/19
M, male, F, female. ‘
Table 3
Base-line characteristics of 18 untreated patients

Resolved group (seven cases) Chironic group (11 cases) Pvalue

Age 64.44+15.2 456+ 143 0.0331*
Gender (male/female) 215 477 >0.9999
HCV RNA level (high’/low/N.D.) 2/4/1 6/4/1 0.6084
Serogroup (1/2/N.D.) 4/0/3 4/2/5 0.4667
Fluctuation of ALT level (monophasic/bi- or multiphasic/N.D.) 5/0/2 0/8/3 0.0008*

N.D., not determined; ALT, alanine aminotransferase. Fluctuation of ALT level: monophasic; one peak of the serum ALT was observed, bi- or multiphasic; two
or more peaks of the serum ALT were observed (N.D. was excluded from statistical comparisons).

2 Statistically significant.
b Viral load (high): more than 100 KIU/ml or 1 Meg/ml.
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Table 4

Base-line characteristics of 81 patients treated with interferon

Age 38.6k 16.2

Gender (male/female) 43/38

HCV RNA levet (high*/low/N.D.) 38/36/7

HCYV serogroup (I/2/N.D.) 46/21/14

Fluctuation of ALY level (monophasic/bi- or 21/53/7
multiphasic/N.D.)

Type of IFN (a/B) 63/18

Total IFN dose (MU) 4704 228.1 (52-972)
Duration of IFN administration (w) 17.6 8.9 (4.0-42.0)

Outcome (SVRY/NR/N.D.) 57/14/10

N.D., not determined; ALT, alanine aminotransferase; IFN, interferon; MU,
million units; SVR, sustained virological response; NR, non-response:
detectable HCV RNA in serum for 6 months after cessation of therapy.

4 HCV RNA level (high): more than 100 KIU/ml or | Meg/ml.

b Sustained virological response: undetectable HCV RNA in serum at least
6 months after cessation of therapy.

57 patients (80.3%) had SVR. Table 5 shows the results of

the logistic regression analysis of SVR-rclated factors. Age,

gender, serogroup, HCV-RNA level, fluctuation of ALT, dura-
tion between onset and initiation of IFN, type of IFN, total
TFN dose, and duration of IFN administration were evaluated
statistically by univariate and multivariate analysis. On mul-
tivariate analysis as well as univariate analysis, the duration
between onset of symptoms and initiation of IFN therapy was
the only factor related to SVR.

The SVR rate according to the duration before initiation
of IFN therapy was investigated (Fig. 1), and the SVR rate
was found to be significantly higher in paticnts treated before
24 weeks than in patients treated after 25 weeks. However,
immediate administration has not been associated with higher
SVR rate (08 weeks versus 9—24 weeks).

On comparison of the SVR rate by the source of infection,
the SVR rate was 100% in the patients infected by accidental
needlestick (19/19) (the prognosis was unknown in two of
21 patients infected by needlestick). This was significantly
higher than that in patients infected via other routes (1919

*P=0.0016
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Fig. 1. Sustained virological response rate according to duration between
onset of symptoms and initiation of IFN therapy. The groups treated with
IFN 0-24 weeks after onset of symptoms and treated after 25 weeks were
compared. Comparison by the Chi-square test. (*) Statistically significant;
w, week.

versus 38/52, P <0.05). The duration between onset of symp-
toms and initiation of IFN therapy was investigated according
to the source of infection, and the duration was shortest inthe
needlestick group (9.7 £ 5.3 weeks).

4. Discussion

We examined the source of infection and optimal timing
of therapy in patients with acute hepatitis C at 12 facilities
in Japan. Since there has been no study performed in more
than 100 patients with acute hepatitis C in Japan, this study
may reflect the current situation in Japan. HCV serogroup of
25 patients were not determined (Table 1). Several reasons
are considered. Firstly, the study is retrospective. Secondly,

Table 5

Logistic regression analysis of odds ratio for sustained virological response

Variable Odds ratio 95% CI P value

Univanate
Age(40>/40<) 2.48 0.73-8.46 0.147
Gender (female/male) 248 0.74-8.33 0.143
Serogroup (1/2) 1.03 0.23-4.54 0.969
HCV RNA level (high®*/low) 1.75 0.46-6.68 0.413
Fluctuation of ALT (monophasic/bi-or multiphasic) 1.57 0.38-6.45 0.531
Duration between onset and initiation of IFN (<24w/>25w) 7.50 1.85-30.48 0.005°
Type of IFN (alpha/beta) 433 0.52-36.18 0.176
Total TFN dose (>300MU/<300MU) 227 0.63-8.15 0.208
Duration of IFN administration (>24w/<24w) 1.43 0.44-4.67 0.551

Multivariate
Duration between onset and initiation of IFN (<24w/>25w) 15.78 1.37-181.61 0.027%

ALT, alanine aminotransferase; IFN, interferon; MU, million units; 95% CI, 95% confidence interval.

2 HCV RNA level high: More than 100 KIU/ml or | Meg/ml.
b Statistically significant.
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titer of anti-HCV is often low in early phase of acute hepati-
tis C. Many patients were considered to be infected during a
medical procedure. Studies on risk of surgery for the devel-
opment of acute hepatitis C have been reported previously
[18]. Alfonso ct al. performed a large-scale surveillance in
Ttaly and found that 25.5% of patients (261/1023) with acute
hepatitis C had undergone an invasive procedure. Therefore,
medical care should be recognized as an important source
of infection in the sporadic incidence of acute hepatitis C.
On the other hand, in blood donors of Western Mexico,
the most frequent risk factors for HCV transmission were
transfusion (42%) and household exposure (14.8%) [19].
Therefore, the main risk factors for infection may differ with
countries. :

Since TEN therapy for acute hepatitis C is not covered by
the health care insurance, the therapy could not be adminis-
tered to all patients. The progression to the chronic hepatitis
C in the 18 patients with natural courses without IFN ther-
apy was almost consistent with previous reports [20.21]. As
shown in Table 3, a significant difference was observed in age,
but this may have been due to the two patients in their 80s
in the spontaneous resolution group (data not shown). The
important point is that the ALT fluctuation was monopha-
sic in all patients in the spontaneous resoltution group. In
contrast, the fluctuation was bi- or multiphasic in patients
who progressed to chronic hepatitis C. As a characteristic
of acute hepatitis C in which spontaneous elimination of the
virus is likely to occur, it has been reported that many cases
are accompanied by subjective symptoms, such as jaundice
and influenza-like symptoms [22,23]. Subjective symptoms
are sometimes influenced by the patient’s subjective sense.
In contrast, the fluctuation of the ALT level may be a more
objective index. Hofer et al. observed the natural course for at
least 30 days after onset, and when serum HCV-RNA became
negative during this period, the disease was resolved at a
high rate, suggesting that IFN therapy should be adminis-
tered to patients in whom negative conversion of HCV-RNA
did not occur within 30 days [22]. Combined with our results,
it might be likely that the disease resolves spontaneously in
patients in whom the ALT level followed the monophasic
course, as well as in those in whom the disease is symptomatic
and negative conversion of HCV-RNA occurs in the early
stage.

As the results of IFN therapy, the SVR rate was 80.3%
(57/71) as shown in Table 4. Our present study, albeit ret-
rospective analysis, revealed that therapy initiated within
24 weeks was the only factor related to the SVR in both
univariate and multivariate analysis (Table 5). In the ran-
domized controlled study by Hwang et al., the factor related
to SVR was the HCV-RNA level before initiation of ther-
apy [9]. However, there were only 33 patients, which may
have led to a result different from our results. On the other
hand, Nomura et al. recently performed a randomized con-
trolled trial in patients with acute hepatitis C, and their results
demonstrate that the SVR rate was significantly higher in the
early-intervention group (TFN therapy was initiated 8 weeks

after the onset) than in the late-intervention group (IFN ther-
apy was initiated after 1 year observation from the onset)
(87% versus 40%) [24]. Otherwise, Gruner et al. prospec-
tively investigated the T-cell dynamics in patients with acute
hepatitis C, and found that activity of HCV-specific TFN-vy-
producing T cells started to decrease 24 weeks after onset
[25]. In addition, T cell actions have been reported to be
important for elimination of HCV in the early stage of infec-
tion [26—30], and the defective functions of HCV-specific
T cells might contribute to viral persistence in chronically
infected patients [31]. It is interesting that our results support
their reports.

Next, we evaluated the optimal timing of initiation of ther-
apy within 24 weeks. In our previous study, we administered
therapy after observation of the course for about 4 weeks
when signs ofthe chronic hepatitis began to appear, not imme-
diately after the onset, and obtained good results [32,33].
Licata et al. investigated the optimum timing of TFN ther-
apy by meta-analysis [34]. Their analysis shows that delaying
therapy 2 months after the onset of the disease does not affect
the efficacy of treatment, therefore, they suggest that patients
should be treated within 60 days from the onset to avoid
the unnecessary treatment of affected patients who would
spontaneously recover. In our study, the highest SVR rate
was obtained in the group treated 912 weeks after onset of
symptoms as shown in Fig. 1, which was consistent with their
analytical results.

The SVR rate obtained by combination therapy with
Pegylated-TFN (Peg-IFN) and ribavirin for chronic hepatitis
C was 30-54% [35-37], but for acute hepatitis C, the ther-
apeutic result was good even when TFN was administered
alone. To elucidate this difference, it may be important to
investigate not only the T-cell dynamics but also viral genome
in various aspects {7]. In our present study, no patients
were treated with Peg-IFN. Recently, the efficacy of Peg-
TFN monotherapy with acute hepatitis C has been reported.
Santantonio et al. evaluated the delaying Peg-IFN therapy,
targeting sixteen patients who failed to spontaneously clear
the virus within 12 weeks from the onset. They reported that
15/16 patients (94%) showed SVR [38]. Since the highest
SVR was obtained in the group treated 9—12 weeks after
onset in our study, it is important to start the IFN therapy in
optimal timing regardless of the kind of IFN. The high SVR
has been obtained by IFN monotherapy, so that, it is neces-
sary to investigate whether ribavirin should be administered
concurrently with TFN.

In conclusion, the major sources of infection of acute hep-
atitis C in Japan were the medica! procedure and accidental
needlestick. The disease may be likely to resolve sponta-
neously in patients in whom fluctuation of the ALT level
follows the monophasic course. The SVR rate was signifi-
cantly higher in the group treated with IFN within 24 weeks
after the onset of symptoms than in the group treated after 25
weeks. In cases of acute hepatitis C, it is desirable to admin-
ister IFN at least within 24 weeks when the ALT level starts
to follow a multiphasic course.
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Abstract

We have previously reported hepatitis C virus (HCV) replication using a novel binary expression system in which mammalian cells were
transfected with a T7 polymerase-driven full-length genotype 1a HCV cDNA plasmid (pT7-fIHCV-Rz) and infected with vaccinia-T7 polymerase.
We hypothesized that the use of replication-defective adenoviral vectors expressing T7 (Ad-T7pol) or cell lines stably transfected with T7 (Huh-T7)
would alleviate cell toxicity and allow for more sustained HCV replication.

CV-1, Huh7, and Huh-T7 cells were transfected with pT7-IHCV-Rz and treated with Ad-T7pol (CV-1 and Huh7 only). Protein and RNA were
harvested from cells on days 1, 2, 3, 5, 7, and 9 post-infection. No cytotoxicity was observed at 9 days post-infection in any cell type. HCV positive-
and negative-strand RNA expression were strongest during days 1-3 post-infection; however, HCV RNA remained detectable throughout the 9-day
observation period. Furthermore, transfection with a replication-incompetent plasmid suggested that efficient HCV replication is dependent upon
NS5B gene expression. Finally, after 1-2 days of IFN treatment, HCV positive-strand levels decreased significantly compared to HCV-infected
but untreated samples (p <0.05).

In conclusion, these refined binary systems offer more durable and authentic models for identification of host cellular processes critical to HCV
replication and will permit longer-term analysis of virus—host interactions critical to HCV pathogenesis and the treatment of genotype 1 infections.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Hepatitis C virus; HCV; Replication; Genotype 1; Adenovirus vector; Huh-T7

1. Introduction (Alter et al., 1999). The combination of interferon (IFN) and
ribavirin (RBV) is the standard treatment for chronic HCV infec-
Hepatitis C virus (HCV)is a leading cause of chronic liverdis-  tion; however, their effectiveness remains limited (McHutchison

ease, including hepatitis, cirrhosis, and hepatocellular carcinoma and Poynard, 1999). The lack of a full-length HCV tissue culture
model has limited not only the ability to screen novel antiviral
agents but also the ability to precisely characterize the antiviral
effect of IFN, particularly against genotype 1 infections.

* Corresponding author. Tel.: +1 617 724 7562; fax: +1 617 726 5895, .
pore ne o We recently reported successful cell-based HCV replication
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effects of vaccinia. Moreover, vaccinia encodes two proteins,
E3L (Chang et al., 1992; Watson et al., 1991) and K3L (Carrol!
et al., 1993; Gale et al., 1996), that act as potent inhibitors of
the IFN-induced double-stranded RNA-activated protein kinase
(PKR). Due to these limitations, we sought to further refine our
HCYV replication model using alternative, less disruptive modes
of T7 polymerase delivery.

We hypothesized that the use of replication-defective aden-
oviral vectors expressing T7 or cell lines stably expressing T7
would alleviate cell toxicity and allow for more sustained HCV
replication.

Recombinant replication-defective adenoviral vectors have
comparable infectivity to vaccinia vectors. These adenoviral
vectors cannot replicate inside infected cells, because they lack
the E1A and E1B proteins necessary for viral vector replica-
tion. Moreover, these vectors lack the E3 gene that inhibits
immune responses by interacting with cytoplasmic MHC class-1
molecules (Wold and Gooding, 1989). Thus, adenoviral vectors
maintain infectivity and protein delivery with minimal cyto-
toxicity. By transfecting the HCV ¢cDNA construct into Huh7
cell lines stably expressing T7 polymerase (Huh-T7) (Schultz
et al., 1996), the need for viral delivery systems was removed
altogether. Using these alternative delivery methods, we have
established a refined HCV replication model that produces more
sustained viral RNA replication, leads to less perturbation of
host genes, and represents a more authentic system for study-
ing virus—host interactions relevant to HCV pathogenesis. These
refined models were also utilized to characterize the antiviral
kinetics of IFN on HCV replication.

2. Materials and methods
2.1. Cell lines

CV-1 cells (American Type Culture Collection, Manassas,
VA) and Huh7 (Dr. Robert Lanford, Southwest Foundation for
Biomedical Research) and Huh-T7 (Dr. Stanley Lemon, Uni-
versity of Texas) (Schultz et al,, 1996) were maintained in
Dulbecco’s modified Eagle medium containing 10% fetal bovine
serum.

2.2. Plasmids and transfection-infection

The binary replication system has been described previously
and is capable of successful positive-strand and negative-strand
HCV RNA synthesis, efficient HCV protein production, and
quasispecies generation (Chung et al., 2001; Contreras et al.,
2002). Briefly, a plasmid containing the infectious full-length
genotype 1 cDNA sequence corresponding to the H77 pro-
totype strain (Yanagi et al., 1997) was adapted at its 5’ and
3’ termini with the T7 promoter and a hepatitis delta virus
ribozyme sequence, respectively, to yield pT7-flHCV-Rz (here-
after referred to as H77). As a negative control, a mutant plasmid
in which the GDD active site of the NS5B RNA-dependent RNA
polymerase (RdRp) was mutated to AAG (hereafter referred to
as H77GDD - AAG) Was generated by site directed mutagene-
sis (Quick Change; Stratagene; La Jolla, CA). This substitution

is associated with replication-incompetence in replicon models
(Blightetal., 2000). H77 and H77Gpp —» AAG Were used to trans-
fect CV-1, Huh7, or Huh-T7 cells at 70% confluency on 6-well
plates with Lipofectamine (Invitrogen, Carlsbad, CA). Plas-
mids were transfected at concentrations of 1 ng/well for CV1
cells and 3 pg/well for Huh7 and Huh-T7 cells. Transfection
efficiency was assessed by co-transfection with 0.1 pg/well of
phRL-TK (Int™) (Promega, Madison, WI) and luciferase activ-
ity quantified using the Dual-Luciferase reporter assay system
(Promega). For CV-1 and Huh?7 cells, T7 polymerase was deliv-
ered using a recombinant vaccinia virus vector (vVIF7-3) (Fuerst
etal., 1986) or arecombinant adenovirus vector (Ad-T7pol) 24 h

-after H77 transfection. In control experiments, a replication-

defective adenovirus vector lacking the T7 polymerase gene
(Ad-Psi5) was used. Adenoviral vectors were provided by the
Harvard Gene Therapy Initiative’s Viral Vector core (Boston,
MA).

2.3. X-gal staining of pOS8-transfected cells

To compare the transfection and infection efficiency of the
vaccinia and adenovirus vectors, the pOS8 plasmid, which con-
tains a T7 promoter flanking the B-galactosidase gene, was co-
transfected into cells. After 48 h, cultured cells were washed with
PBS, fixed with 0.25% glutaraldehyde for 1 hat 4 °C, and stained
with 0.1% S-bromo-5-chloro-3-indolyl-B-D-galactopyranoside
(X-gal) as described previously (Hiasa et al., 1998; Miyake et
al., 1996).

2.4. Interferon experiments

Interferon alpha 2b was obtained from Schering Plough
(Kenilworth, NJ). For CV-1 and Huh7 cells, 100-1000IU/mL
of IFN was added 5 h after infection with adenovirus vector. For
Huh-T7 cells, 100-1000 IU/mL of IFN was added 5 h after trans-
fection with H77. Medium with or without IFN was changed at
day 1 post-infection and every 2 days thereafter.

2.5. Cellular RNA extraction and qualitative
strand-specific rTth RT-PCR

Cells were washed three times with phosphate-buffered
saline. RNA was extracted using TRIzol (Invitrogen; Carls-
bad, CA), and treated two times for 4h with DNase I using
the DNA-free kit (Ambion; Austin, TX) following the manufac-
turer’s protocol. RNA was quantified by UV spectrum analysis,
and adjusted to 0.3 pg/pL. HCV RNA was detected utilizing
a previously described qualitative strand-specific r7th reverse
transcription PCR (RT-PCR) assay (Castet et al., 2002; Lanford
et al., 1995). For detection of negative-strand HCV RNA, | pg
of RNA in 10 nL of diety! pyrocarbonate-treated water was lay-
ered with mineral oil and heated at 95 °C for 1 min, and lowered
to 70°C. A 20 pL mixture containing 10 pM of HCV-II sense
primer (5-CAC TCC CCT GTG AGG AAC T-3/, nucleotides
[nt] 38-56 of the 5'UTR) (Laskus et al., 1997), 1 x RT buffer
(Applied Biosystems; Foster City, CA), I mM MnCly, 200 uM
(each) deoxynucleoside triphosphate, and 5U of rTth enzyme
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(Applied Biosystems) was then added. The temperature was
dropped to 60 °C for 2 min for annealing and then raised to 70 °C
for 20 min for the cDNA reaction. To inactivate the RT activity
of 1Tth, chelating buffer (Applied Biosystems) was added. Forty
microliters of the prewarmed PCR mixture containing 10 pM of
HCV-I antisense primer (5'-TGG ATG CAC GGT CTA CGA
GAC CTC-3’, nt 342-320 of the 5’'UTR) (Laskus et al., 1997)
and 3.75mM MgCl, was added. Twenty-five cycles of PCR
(94°C 155, 58°C 30, 72 °C 30 s) were performed.

For GAPDH measurements, RT was carried out using an
oligo d(T)i¢ primer under standard conditions (Hiasa et al.,
2003). The cDNA product was subjected to 25 cycles of PCR
(95°C 1min, 60°C 2min, 73 °C 2 min), using 50 pM of the
GAPDH sense and antisense primers (forward primer 5'-GAA
GGT GAA GGT CGG AGT-3, reverse primer 5-GAA GAT
GGT GAT GGG ATT TC-3"), 0.1 mM of each dNTP, 2.5 mM
MgCls, and 0.5 U Tag polymerase. Reaction products were sep-
arated on 1.5 % agarose gels.

To ensure efficient removal of plasmid DNA after DNase |
treatment, a qualitative PCR was performed. The plasmid DNA
was completely digested as no PCR products were observed
using this approach.

2.6. RNase protection assay

Antigenomic HCV RNA was detected as described previ-
ously (Chung et al., 2001). Briefly, utilizing the sense-oriented
[a-32P] UTP-labeled probe (corresponding to 98 nucleotides of
the 3/ terminal HCV genome), antigenomic RNA was generated
by in vitro transcription using T7 polymerase from the vector
pHCV-3'T (Chung and Kaplan, 1999). Transcripts were gen-
erated using the RPA TIII kit according to the manufacturer’s
instructions (Ambion).

2.7. Real-time quantification of HCV positive- and
negative-strand RNA

Positive- and negative-strand HCV RNAs were quantified by
real-time PCR using LightCycler technology (Roche Diagnos-
tics, Mannheim, Germany) and SYBR green ! dye as described
previously (Blackard et al., 2005). One microgram of RNA was
used for cDNA synthesis in a mixture containing 5 U of 1Tt2 and
10 pM of the appropriate RT primer (HCV-I for positive-strand
HCV RNA or HCV-II for negative-strand HCV RNA). cDNA
was purified with the High Pure PCR product purification kit
(Roche Diagnostics).

Positive- and negative-strand HCV PCR amplifications were
performed with 2 L of purified cDNA in a reaction mixture
containing 1 pL of LightCycler Fast Start DNA Master SYBR
Green I, 4mM of MgCly, and 5 pM of antisense primer KY78
(5’-CTC GCA AGC ACC CTA TCA GGC AGT-3', nt 311288
of the 5’UTR) and 5 pM of sense KY80 (5'-GCA GAA AGC
GTC TAG CCA TGG CGT-3, nt 68-91 of the 5'UTR). The
PCR consisted of an initial denaturation step of 10 min at 95°C,
followed by 40 cycles of the following thermal conditions: 15 s
at 95°C, 5s at 70°C, and 15s at 72°C. All samples were
analyzed in triplicate. The sensitivity of the PCR for HCV

was previously determined to be approximately 230 copies
HCV/ulL.

For quantification of GAPDH mRNA, RT was performed
with the same amount of RNA used for HCV positive-
and negative-strand analysis, using the oligo d(T)1s primer
under standard conditions. For real-time PCR amplification of
GAPDH, a commercial GAPDH primer set (Roche Search LC,
Mannheim, Germany) was used under the recommended condi-
tions. For real-time PCR amplification of LacZ, sense (5'-GCC
TGC GAT GTC GGT TTC CGC GAG G-3’) and antisense
primers (5'-GCC AGC GCG GAT CAT CGG TCA GAC G-
3") were utilized under the following conditions: 10s at 95 °C,
10s at 68 °C, 16 s at 72 °C (Dobson et al., 1990), The sensitivity
of detection was approximately 210 copies/p.L.

DNA was quantified measuring SYBR green [ dye incorpo-
ration into PCR products at 530 nm following manufacturer’s
instructions. An HCV standard curve was generated using a
PCR product corresponding to nucleotides 38—342 of the 5’UTR.
At the end of each run, a DNA melting curve was performed
to control for sample homogeneity and quality. In a subset of
samples, electroporation and sequencing were performed to con-
firm the correct identity of the amplified PCR product. Data
were expressed as the copy number of HCV positive-strand (or
negative-strand) RNA per molecule of GAPDH. This analysis
was done in quadruplicate for each sample and presented as the
mean and standard deviation. Each value was analyzed statisti-
cally using the SPSS 10.0 software (SPSS, Chicago, IL). Differ-
ences in mean values were compared using the Mann—Whitney
U-test.

2.8. Western blotting analysis

Cells were washed twice with PBS, and lysed with 100 pL of
Nonidet P-40 buffer (0.5% Nonidet P-40, 10 mM Tris, pH 7.4,
150 mM NaCl, 1% SDS). Protein lysate concentrations were
measured using the DC protein assay Kit (Bio-Rad, Hercules,
CA). Forty microliters of protein lysate were utilized. Sepa-
rated products were then blotted onto Immobilon-P membranes,
and each membrane was incubated with the relevant antibody.
The ECL Kit (Amersham Pharmacia, Buckinghamshire, UK)
was used for detection. Monoclonal antibody to HCV core pro-
tein (515s) (Kashiwakuma et al., 1996) was provided by Dr.
M. Kohara, Tokyo Metropolitan Institute of Medical Science,
Tokyo, Japan; monoclonal antibody to 3-galactosidase was pur-
chased from Promega. Appropriate species-specific conjugated
secondary antibodies were obtained commercially (Amersham
Pharmacia).

2.9. ELISA for HCV core antigen

Cell culture lysates were adjusted to 0.2 mg/mL. HCV core
antigen concentrations were quantified using the HCV core pro-
tein ELISA kit (Ortho-Clinical Diagnostics, Raritan, NJ) follow-
ing the manufacturer’s instructions (Bouvier-Alias et al., 2002).
Core ELISA data were expressed as fmol of HCV core antigen
per pg of total protein. The lower level of detection for this assay
was less than 1.5 pg/mL.
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3. Results as an adenoviral vector control. At an MOI of 10, each viral vec-

tor efficiently expressed B-galactosidase in approximately 50%
3.1. Replication-defective adenoviral vectors successfully of cells 24 h after infection (Fig. 1 A). Using trypan-blue staining,
replicate HCV RNA without cytotoxicity cell injury was observed in cells transfected with vaccinia-T7 but

not in cells transfected with the Ad-T7pol or Ad-Psi5 vectors

To compare the transfection and infection efficiency of the  (data not shown).
vaccinia and adenovirus vectors, the pOS8 plasmid, which con- Ribonuclease protection assay for negative-strand HCV RNA
tains a T7 promoter flanking the B-galactosidase gene, was trans- (Fig. 1B) and Western blotting for HCV core protein (Fig. 1C)
fected into cells that were then infected with either vaccinia-T7  were performed 24 h after infection. Expression of negative-
(vTF7-3) or Ad-T7pol at a multiplicity of infection (MOI) of 10. strand HCV RNA was lower after Ad-T7pol infection compared
The parental replication-incompetent vector Ad-Psi5 was used  to vVTF7-3 infection, yet was clearly detectable. Similarly, HCV
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Fig. 1. Comparison of the transfection and infection efficiency of HCV replication system using vaccinia-T7 and adeno-T7 vectors: (A) after transfection with the
pOS8 plasmid, cells were infected with virus vectors using control adenovirus (Ad-Psi5), recombinant adeno-T7 polymerase (Ad-T7pol), or vaccinia-T7 polymerase
(vTF7-3) at an MO of 10. (B) RPA for negative-strand HCV RNA was performed with H77 plasmid as a positive control. (C) Western blotting for HCV core protein
was performed on CV-1 cell lysates 24 h after infection. (D) Quantitative HCV core ELISA results indicated that an MOI of 10 was optimal for adenoviral-driven

HCYV protein production.
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core protein production was less robust after Ad-T7pol infection;
nonetheless, it was clearly detectable. Negative-strand HCV
RNA and HCV core protein were not detected when the control
Ad-Psi5 vector was used. Quantitative HCV core ELISA results
suggested that an MOI of 10 was optimal for adenoviral-driven
HCV protein production (Fig. 1D); therefore, an MOI of 10 was
selected for all subsequent experiments.

In contrast to increased HCV RNA synthesis and protein
production in transfected/infected cells, LacZ mRNA levels
decreased rapidly after day 1 and were not detectable after day
7 (data not shown).

3.2. Adenoviral-T7-driven HCV replication is dependent on
an intact HCV polymerase gene

The H776pp - aag mutant (Fig. 2A) was used to assess
whether the HCV RNA polymerase gene (NS5B) was neces-
sary for viral replication. By qualitative RT-PCR of the 5'UTR,
HCV negative-strand synthesis was detectable only in the pres-

(A) T7

ence of both H77 and Ad-T7pol (Fig. 2B) in CV-1 cells. The
absence of detectable negative-strand HCV RNA upon trans-
fection of the mutant plasmid (H77gpp — AAG) indicates that
replication was dependent on an intact polymerase sequence.
H77 + Ad-T7pol expressed significantly higher core protein lev-
els compared to H776pp — aag + Ad-T7pol (Fig. 2C), further
suggesting an intact polymerase sequence is necessary for robust
HCV protein production. Ribonuclease protection assay demon-
strated the presence of HCV negative-strand in CV-1, Huh7, and
Huh-T7 cell lines on day 2 (Fig. 2D). However, negative-strand
HCV RNA was not detected when the H77gpp — aaG mutant
was transfected, indicating that an intact NS5B sequence was
necessary for negative-strand HCV RNA synthesis.

3.3. Kinetic analysis of HCV RNA synthesis and core
protein production

The data described above suggest that the Ad-T7pol repli-
cation system results in efficient HCV RNA and protein
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Fig. 2. (A) A control plasmid was prepared by mutating the active site motif from GDD to AAG in the NS5B RNA-dependent RNA polymerase sequence
(H776bD — aaG)- (B) A qualitative strand-specific RT-PCR for negative-strand HCV RNA was performed as previously described (Lanford etal., 1995). (C) Western
blotting analysis demonstrated that transfection/infection with H77 + Ad-T7-pol also resulted in HCV core protein production. (D) Ribonuclease protection assay
demonstrated detectable negative-strand HCV RNA in CV-1, Huh7, and Huh-T7 cell lines on day 2.
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Fig. 3. (A) Real-time PCR of HCV positive- and negative-strand RNA was performed as described. Data are expressed as the strand-specific HCV copy number per
molecule of GAPDH. Error bars indicate the mean =+ standard error (S.E.) of four replicates. (B) A quantitative core ELISA measured HCV protein production in
CV-1, Huh7, and Huh-T7 cell lines. Data are expressed as fmol (mean & S.E.) of HCV core per pg of total protein for three replicates.

expression without inducing cell toxicity. Thus, the time course
of strand-specific HCV RNA synthesis (Fig. 3A) and HCV
protein production (Fig. 3B) was examined further in CV-
I and Huh7 cells (transfected with H77 and infected with
Ad-T7pol), as well as Huh-T7 cells (transfected with H77).
Both positive- and negative-strand HCV RNA were detectable
for the entire 9-day experiment in each cell line. Positive-
strand HCV RNA levels increased significantly after infec-
tion and continued to be expressed at high levels for 3 days
and diminished thereafter. Negative-strand HCV RNA syn-
thesis paralleled that of positive-strand throughout the time
course; however, the quantity of negative-strand HCV RNA
was approximately 10% of positive-strand levels. This is consis-
tent with positive-/negative-strand ratios reported from infected
human liver samples (Komurian-Pradel et al., 2004; Laskus
et al,, 1998). As expected, HCV RNA was not detected
in CV-1 or Huh7 cells infected with the Ad-psi5 control
vector.

Using an identical experimental approach, HCV core pro-
tein production was expressed strongly during days 1-3 in all
cell lines examined, and diminished with similar kinetics as
HCV RNA (Fig. 3B). Similar to HCV RNA, HCV core pro-
tein was detectable for the entire 9-day experiment in each cell
line.

To circumvent potential perturbations in the cellular envi-
ronment due to transfection/infection with viral vectors, experi-
ments in a Huh7 cell line stably transfected with T7 polymerase
(Huh-T7) were performed. After transfection of H77 into these
cells, positive- and negative-strand HCV RNA were detected
(Fig. 3A), as well as HCV core protein (Fig. 3B), throughout the
entire 9-day experiment. Interestingly, HCV RNA levels were
lower in Huh-T7 cells than in CV-1 and Huh7 cells, although
core levels were not appreciably different between Huh7 and
Huh-T7 cells.

3.4. IFN efficiently inhibits HCV expression

Utilizing these refined models of HCV replication, the
inhibitory effects of IFN on HCV expression were examined.
To determine the potential effects of IFN on cellular gene trans-
lation, the plasmid OS8 was transfected, and LacZ mRNA levels
were measured in the presence of several doses of IFN. LacZ
mRNA expression was slightly reduced; however, no significant
toxicity in cells exposed to IFN was observed using trypan-blue
staining (data not shown).

In CV-1 cells (Fig. 4A), HCV positive-strand RNA levels
were significantly decreased in the presence of 1000 [U/mL
IFN at day 2 (14.21 +3.95 versus 8.55+0.61, p<0.05). A
trend toward reduced HCV RNA was also observed on day
3 (12.23 £5.43 versus 4.13 +£0.74, p<0.10). In Huh7 cells,
a significant decrease of HCV positive-strand was observed
on days 2 (1.07£0.07 versus 0.63+0.14, p<0.05) and 3
(1.29£0.13 versus 0.44 4+ 0.15, p<0.05). In Huh-T7 cells, a
significant decrease was also observed on day 2 (0.06 +0.03
versus 0.03 £0.007, p<0.05). For HCV negative-strand RNA
(Fig. 4B), only day 3 IFN-treated CV-1 cells had significantly
decreased levels compared to untreated cells (2.60 4= 0.41 versus
0.97 £0.31, p<0.05).

HCV core protein expression was approximately 10-fold
higher in CV-1 cells compared to either Huh7 or Huh-T7
cells (Fig. 4C). IFN treatment of CV-1 cells did not appear
to have a large effect on HCV core protein levels; however,
HCV core levels were decreased in IFN-treated CV-1 cells
compared to untreated cells at days 3 (423.51 £ 25.73 fmol/pg
versus 190.92 +35.25 fmol/pg, p<0.05) and S (60.24+
12.89 fmol/pg versus 34.15 £ 0.76 fmol/p.g, p < 0.05). For Huh7
and Huh-T7 cells, HCV core expression was significantly
reduced when treated with IFN compared to untreated cells at
all time points (p <0.05).
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Fig. 4. (A) Real-time PCR of positive-strand HCV RNA was performed in the presence of 1000 IU/mL IFN. Error bar indicates mean + S.E. for four replicates
('p<0.05; **p<0.10). (B) Real-time PCR of negative-strand HCV RNA was also performed in the presence of 1000 IU/mL IFN. (C) Quantitative core ELISA also

demonstrated decreased HCV protein production in I[FN-treated cells.

4. Discussion

Because of the cytotoxic nature of vaccinia virus, long-
term evaluation of HCV RNA synthesis and protein production,
as well as characterization of the inhibitory effects of antivi-
ral agents, such as IFN and RBYV, was not possible using our
previous replication model. By using adenovirus-derived T7
vectors, vaccinia-induced cytotoxicity was removed, allowing
sustained detection of HCV replication and protein production
for 9 days in multiple cell types. The refined binary HCV replica-
tion system efficiently synthesized HCV negative-strand RNA,
an important indicator of ongoing, active viral replication, in an
NS5B-dependent manner, as no negative-strand HCV RNA was
detected upon transfection of an NS5B mutant. Using Huh7 cell
lines stably expressing T7 polymerase (Huh-T7), dependence of
the replication models on any viral vectors was removed. Quan-
tities of HCV RNA synthesis and protein production in Huh-T7
cells were not as tobust as in CV-1 or Huh7 cells transfected
with Ad-T7. However, sustained HCV replication in Huh-T7
cells, with no obvious signs of cytotoxicity, suggests that this

viral vector-independent replication model will be useful for
future studies of virus—host interactions and the development of
antiviral agents with activity against HCV genotype 1.

These binary systems offer several advantages over currently
available HCV replication systems. First, these replication mod-
els do not require continuous antibiotic selection as do current
replicon systems (Blight et al., 2000; Frese et al., 2001; Guo
et al., 2001; Lohmann et al., 1999). Second, the requirement
of highly adaptive viral mutations for efficient replicon activi-
ties that are not necessarily viable in vivo (Bukh et al., 2002)
may limit the interpretability of certain findings obtained from
replicon systems. Because the refined replication models do not
require continuous selection and do not possess highty ‘adaptive’
viral mutations, they are more authentic for characterization of
antiviral agents, virus—host interactions, and viral fitness. Third,
these replication systems can be used to study HCV replica-
tion in a variety of hepatocyte- and non-hepatocyte-derived cell
types; in contrast, replicon systems only replicate efficiently in
Huh7 celis. Most importantly, these replication systems use a
full-length infectious genotype 1a cDNA construct that yields an
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Table |
Scveral similarities and differences between the vaccinia and adenovirus systems
cxist

Vaccinia Ad-T7

T7 polymerasc delivery Vaccinia virus Adenovirus

Cytotoxicity Yes No

HCV replication (+) and (—) strand (+) and (—) strand
synthesis; high synthesis; low but
levels cffective levels

Duration of replication 24h 9 days

HCYV protein production Yes Yes

Quasispecies generation Yes Yes

IFN inhibits replication Yes Yes

authentic dual-function template in vivo that is both translated
and transcribed. Moreover, transfected cells in our replication
systems are able to express all HCV structure and non-structural
proteins (Lin et al., 2005). Thus, they are more likely to carry out
authentic HCV RNA replication than replicon systems based on
sub-genomic constructs.

Several significant differences exist between the vaccinia and
adeno-T7 replication systems (Table 1). Both are capable of
positive- and negative-strand HCV RNA synthesis, protein pro-
duction, and quasispecies generation without the need for cell
culture adaptive mutations (Chung et al., 2001; Contreras et al.,
2002; Blackard and Hiasa et al., unpublished data). HCV replica-
tion is inhibited significantly by IFN in both systems. However,
the vaccinia-based system replicates at much higher levels than
the adeno-T7-based system; yet, HCV RNA synthesis occurs for
at least 9 days in the former due to the lack of vector-induced
cytotoxicity. Nonetheless, the decrease of HCV RNA synthe-
sis and protein production after 3 days suggests an inhibitory
effect exerted by key host cells proteins, such as protein kinase
R (PKR), since adenoviruses do not inhibit PKR function as
does vaccinia virus (Chang et al., 1992; Watson et al., 1991).
Further examination of host antiviral pathways that limit robust
long-term viral replication in culture is necessary.

We used these refined replication systems to explore the
kinetics of HCV RNA synthesis and protein production in the
presence of IFN. When 1000 IU/mL of IFN was added to the
culture medium of HCV-expressing cells, there was no- differ-
ence in HCV positive- or negative-strand quantity compared to
untreated cells at day 1. Despite this lack of short-term anttviral
activity, HCV RNA was significantly decreased in IFN-treated
cells at days 2 and 3, suggesting that the full effects of IFN may
require at least 24 h.

This cell-based HCV replication system has already been
used to examine the interaction between HCV protein expres-
sion and host type I IFN signaling components in the Jak-STAT
kinase pathway (Lin et al., 2005). Recently, in vitro systems that
support infectious HCV production have been reported. How-
ever, these systems are based on HCV genotype 2a (Wakita et
al., 2005; Zhong et al., 2005) and do not support replication
in cells other than the highly permissive Huh-7 cell line and
its derivatives. Importantly, the replication systems described
here are based on genotype la isolate and replicate in several
hepatocyte- and non-hepatocyte-derived cell lines. Thus, these

refined replication models provide the opportunity to explore
HCV molecular biology and the interactions between antiviral
agents and specific HCV and/or host proteins that are relevant
to genotype | infection.
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