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1. Rapid propagation of low-fitness drug-resistant mutants of
human immunodeficiency virus type 1 by a streptococcal
metabol ite sparsomycin (Miyauchi et al.)
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Rapid propagation of low-fitness drug-resistant
mutants of human immunodeficiency virus type 1 by
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Here we report that sparsomycin, a streptococcal
metabolite, enhances the replication of HIV-1 in
multiple human T cell lines at a concentration of
400nM. In addition to wild-type HIV-1, spar-
somycin also accelerated the replication of low-
fitness, drug-resistant mutants carrying either
D30N or L90M within HIV-1 protease, which are
frequently found mutations in HIV-1-infected
patients on highly active antiretroviral therapy
(HAART). Of particular interest was that replica-
tion enhancement appeared profound when
HIV-1 such as the L90M-carrying mutant
displayed relatively slower replication kinetics.
The presence of sparsomycin did not immedi-
ately select the fast-replicating HIV-1 mutants in
culture. In addition, sparsomycin did not alter
the 50% inhibitory concentration (IC;)) of anti-
retroviral drugs directed against HIV-1 including
nucleoside reverse transcriptase inhibitors

(lamivudine and stavudine), non-nucleoside
reverse transcriptase inhibitor (nevirapine) and
protease inhibitors (nelfinavir, amprenavir and
indinavir). The IC,s of both zidovudine and
lopinavir against multidrug resistant HIV-1 in
the presence of sparsomycin were similar to
those in the absence of sparsomycin. The
frameshift reporter assay and Western blot
analysis revealed that the replication-boosting
effect was partly due to the sparsomycin’s
ability to increase the -1 frameshift efficiency
required to produce the Gag-Pol transcript. In
conclusion, the use of sparsomycin should be
able to facilitate the drug resistance profiling of
the clinical isolates and the study on the low-
fitness viruses.

Keywords: drug resistant mutants, enhancement of
replication, HIV-1, low-fitness mutants, sparsomycin

Introduction

Highly active antiretroviral therapy (HAART) has been
successful in controlling the progression of AIDS caused by
HIV-1. However, HAART has accelerated the emergence
and spread of multidrug-resistant HIV-1. Once drug-resis-
tant HIV-1 occurs in a HIV-1-infected patient, the success
rate of HAART drops substantially. Resistance testing has
been shown to be valuable to optimize HAART against
HIV-1 infection (Hirsch e# a/., 2000; Rodriguez-Rosado
et al., 1999). Profiling drug resistance might be necessary
even before the initiation of HAART because of the spread
of drug-resistant HIV-1 (Boden e al, 1999; Gehringer
et al., 2000; Yerly ez al,, 1999).

Genotypic and phenotypic resistance testing are the two

major ways to determine the drug resistance of clinical
HIV-1 isolates. For genotyping, the HIV-1 genome
isolated from the infected individuals is sequenced. This
HIV-1 genome is than cross-referenced with a database
and we are able to predict the drug resistance profile of
HIV-1. However, it is impossible to predict the phenotype
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when we encounter a combination of mutations that has
never been documented. This may raise a concern when a
new drug is released in the market. Another problem in
the genotyping is the presence of genotype-phenotype
discordance (Parkin ez 4/, 2003; Sarmati ez a/., 2002).
Alternatively, for the phenotypic resistance testing, the
drug resistance profiles are measured by many
biological/virological assay systems (Hertogs er al, 1998;
Iga er al,, 2002; Jarmy ez al., 2001; Kellam & Larder, 1994;
Menzo et 4l., 2000; Walter ez 4/, 1999). Phenotypic resis-
tance testing is powerful because the diagnosis is based on
experimental observations. Among the systems, ones that
depend on the multi-round HIV-1 replication seemed to
provide the best drug resistance data reflecting the in vivo
condition. However, many drug-resistant mutants have
lower replication capabilities than wild-type (wt) HIV-1,
which makes the phenotypic resistance testing difficult and
time-consuming. In order to overcome these problems, it

would be useful to develop a technique to make HIV-1
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replicate faster without altering the effectiveness of
antiretroviral compounds.

During our search for an inhibitor of HIV-1
replication, we found sparsomycin, a metabolite from
Streptomyces sparsogenes, which reproducibly enhanced the
replication of HIV-1. Therefore, we tested whether spar-
somycin merits phenotypic drug resistance profiling studies
on low-fitness HIV-1 isolates.

Materials and methods

Cells and viruses

Human embryonic kidney (HEK) 293T cells were
maintained in Dulbecco’s modified Eagle’s medium
(Sigma-Aldrich, Tokyo, Japan) supplemented with 10%
fetal bovine serum (FBS; Hyclone, Logan, UT, USA), peni-
cillin and streptomycin (Invitrogen, Carlsbad, CA, USA).
HO, Jurkat, SupT1 and HPB-Ma cells were maintained in
RPMI1640 (Sigma-Aldrich) supplemented with 10%
FBS, penicillin and streptomycin. All the cell lines were
incubated at 37°C in a humidified 5% CO, atmosphere. As
previously described, HIV-1 (HXB2) was produced by
transfecting proviral DNA into 293T cells and collecting
the culture medium 3 days post-transfection (Komano
et al., 2004). The replication-incompetent HIV-1 (HXB2
Awvpr, Arev, Aenv, Anef) was produced by transfecting the
proviral DNA carrying renilla Juciferase with the nef open
reading frame into 293T cells, along with the expression
plasmid for enw, zat, rev and nef (plllex) as described previ-
ously in Komano ez /. (2004). As previously described, the
D30N, L90M, and D25N protease mutants of HIV-1
were generated by the site-directed mutagenesis (Sugiura
et al., 2002). The multidrug-resistant HIV-1 DR3577 was
a clinical isolate from a patient on HAART in which
reverse transciptase carried the following mutations
M41L, D67N, K70R, V75M, K101Q, T215F and K219Q_
and protease carried the following mutations L10I, K20R,
M36l, M46l, L63F, A71V, V82T, N88S and LL90M. For
the generation of replication-incompetent murine
leukaemia virus (MLV') vector expressing firefly luciferase,
pCMMP luciferase was transfecting into 293T cells along
with gag/po/ and VSV-G expressing plasmids as described
previously (Komano ez al., 2004).

Chemical compound

Sparsomycin was either purchased from Sigma-Aldrich (cat.
§1667) or obtained from Dr Nakajima (Toyama Prefectural
University, Toyama, Japan). Sparsomycin was dissolved in
2mM dimethyl sulphoxide and stored at =20°C until use.

Monitoring HIV-1 replication

For HIV-1 infection, 1x10° cells were incubated with the
culture supernatant containing approximately 10 ng of p24.
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Alternatively, wt HIV-1, or D30N and L90M mutants
were introduced into cells either by electroporation or
DEAE-dextran-mediated protocol as previously described
{Matsuda ez 4/, 1993; Miyauchi ef a/., 2005). The culture
supernatants were collected everytime the infected cells
were split until they ceased to proliferate. The amount of
p24 antigen of HIV-1 in the culture supernatants was
quantified by using Retro TEK p24 antigen ELISA kit
according to the manufacturer’s protocol (Zepto Metrix,
Buffalo, NY, USA). The signal was detected by Vmax
ELISA reader (Molecular Devices, Palo Alto, CA, USA).

Determining 50% inhibitory concentrations (iC)

1C,, was calculated by using a reporter cell line, MARBLE,
developed by Sugiura e a/. (personal communication). In
brief, a clone of HPB-Ma carrying the long terminal repeat
(LTR)-driven firefly luciferase cassette integrated in its
genome was infected with HIV-1 and incubated in the
presence of varying concentrations of antiretroviral
compounds for a week. The cells were then lysed to
measure the firefly luciferase activity, which represented the
propagation of HIV-1 in culture. The firefly luciferase
activity was normalized by constitutively-expressed renilla
luciferase activity. The dual luciferase assay was performed
according to the manufacturer’s protocol (Promega,
Madison, WL, USA). Chemiluminescence was detected by
Lmax (Molecular Devices).

Reporter assay

The -1 frameshift reporters, pLuc (—1) and pLuc (0), were
kindly provided by Dr Brakier-Gingras (Dulude ez 4/,
2002). The renilla luciferase expression vector phRL/CMV
was purchased from Promega. pLTR Luc encoded GFP-
luciferase under the regulation of HIV-1's LTR promoter
(Komano ez 4, 2004). pLTRAnefLuc encoded renilla
luciferase by substituting #z¢f in the proviral context of
HXB2 (Komano et al., 2004). Plasmids were transfected
into 293T cells by Lipofectamine 2000 plus reagent in
accordance with the manufacturers’ protocol (Invitrogen).
For the detection of luciferase activities, the dual glo
luciferase assay was performed at 2-3 days post-transfection
or post-infection according to the manufacturers’ protocol
(Promega). The signal was detected by Vmax ELISA reader
(Molecular Devices).

Western blot analysis

COS-7 cells were transfected with Lipofectamine 2000
(Invitrogen) or Fugen6 (Roche, Basel, Switzerland)
according to the manufacturer’s protocol with proviral
DNA encoding the D25N protease mutant. At 48 h
post-transfection, cells were washed with PBS and lysed
in a buffer containing 4% SDS, 100 mM Tris-HCI (pH 6.8),
12% 2-ME, 20% glycerol and bromophenol blue.
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Samples were boiled for 10 min. Protein lysates approxi-
mately equivalent to 5x10* cells were separated in 5-20%
SDS-PAGE (Perfect NT Gel, DRC, Tokyo, Japan), trans-
ferred to a polyvinylidene fluoride (PVDF) membrane
(Immobilon-P5% Millipore, Billerica, MA, USA), and
blocked with 5% dried non-fat milk (Yuki-Jirushi, Tokyo,
Japan) in PBS. For the primary antibody, we used rabbit
anti-Gag polyclonal antibody or mouse anti~-Gag mono-
clonal antibody. For the secondary antibody, either a
biotinylated anti-rabbit antibody or a biotinylated anti-
mouse goat antibody (GE Healthcare Bio-Science,
Piscataway, NJ, USA) was used. For the tertiary probe, a
horseradish peroxidase-conjugated streptoavidin (GE
Healthcare Bio-Science) was used. Signals were developed
by incubating blots with a chemilumenescent horseradish
peroxidase substrate (GE Healthcare Bio-Science) and
detected by using Lumi-Imager F1 (Roche).

Results

The structure of sparsomycin, a metabolite from
Streptomyces sparsogenes, is unique in that it comprises two
unusual entities, a monooxodithioacetal moiety and a uracil
acrylic acid moiety (Figure 1A). H9 cells were infected with
HIV-1 and then maintained in the presence of varying
concentrations of sparsomycin. Dimethyl sulphoxide was
added in the absence of sparsomycin throughout this study.
At 7 days post-infection, a massive syncytial formation was
found in the presence of sparsomycin (Figure 1B). The
higher the concentration of sparsomycin, the faster p24
accumulated in the culture supernatants (Figure 1C).
Similar observations were made in Jurkat, SupT1 (Figures
1D and E), and HPB-Ma cells although the speed of p24
accurnulation appeared different among the cell lines. On
the other hand, sparsomycin did not show any detectable
effect on the cell growth under concentrations of 500 nM.

These results could be due to sparsomycin’s ability to
either boost HIV-1 replication or select a mutant that repli-
cated substantially faster than the wt HIV-1. To differen-
tiate these possibilities, we recovered the virus-containing
culture supernatants from the H9 cell culture at the peak of
HIV-1 replication in the presence of 400 nM sparsomycin
(asterisk in Figure 1F). Then fresh H9 cells were infected
with the recovered virus, the cells were split into two
samples and 400 nM of sparsomycin was added to each
sample. If sparsomycin selected fast-growing mutants, the
replication . profiles of HIV-1 should resemble the original
sample with sparsomycin (solid circle, Figure 1F) regardless
of sparsomycin’s presence. However, the replication profile
in the presence of sparsomycin shifted leftward (Figure
1G), suggesting that it was unlikely that sparsomycin
selected the fast-replicating viral mutants. Therefore, it is
likely that sparsomycin boosted HIV-1 replication.
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Sparsomycin enhances HIV-1 replication

Replication-enhancing effects were also seen by using the
chemically-synthesized derivatives of sparsomycin (unpub-
lished data; Nakajima e al, 2003). The replication-
boosting effect levelled-out at 500 nM, an approximately
20-fold lower concentration than the 50% toxic dose
(TD,,) of sparsomycin (Ash ez a/., 1984).

To demonstrate the usefulness of sparsomycin in
HIV-1 research, we have examined whether sparsomycin
can also boost the replication of drug-resistant low-fitness
isolates. The D30N and 1.90M are common drug-resistant
mutations found within HIV-1 protease in HIV-1-infected
patients on HAART (Devereux et 4l., 2001; Kantor ez al,
2002; Pellegrin ez al., 2002; Sugiura ef a/., 2002). We intro-
duced proviral DNA carrying the D30N or L90M muta-
tion into HY, Jurkat, and SupT1 cells. HIV-1 replication
was than monitored in the presence of 400nM of spar-
somycin. The replication of both viral mutants was
substantially enhanced in the presence of sparsomycin in
H9 cells (Figures 2A and B). The replication of the
L90M-carrying mutant was also enhanced in Jurkat and
SupT1 cells (Figures 2C and D). Of note, the replication
enhancement appeared profound when HIV-1
displayed relatively slower replication kinetics (for example,
the replication of D30N-carrying mutant versus the wt
HIV-1 in HY cells or the replication of HIV-1 in SupT1
versus H9 cells).

Considering the use of sparsomycin in the phenotypic
resistance testing, it is critical to know whether sparsomycin
affects HIV-1s sensitivity to the antiretroviral drugs. The
respective IC, of representative antiretroviral drugs in the
absence and the presence of 400nM sparsomycin were as
follows: reverse transcriptase inhibitors; lamivudine, 13.7
and 10.4nM, and stavudine, 6.3 and 17.0nM; an non-
nucleoside reverse transcriptase inhibitor, nevirapine, 78.2
and 146.4nM; and protease inhibitors, nelfinavir, 2.8 and
1.0 nM,, indinavir, 4.2 and 3.0 nM, and amprenavir, 3.4 and
3.3nM. Then, we examined whether the presence of spar-
somycin affected the IC,; of both zidovudine (AZT) and
lopinavir (LPV) against a multidrug-resistant HIV-1
isolate, DR3577. The magnitude of both AZT and LPV-
resistance of DR3577 was in the order of 2 log (data not
shown). The IC,;s of AZT in the presence and absence of
400 nM sparsomycin were 14.0 and 36.7 nM, respectively,
and for LPV they were 103.1 and 78.9nM, respectively.
These data suggested that the presence of sparsomycin did
not significantly influence the IC,, of antiretroviral drugs
on the replication of both wt and drug-resistant HIV-1.

Finally, we investigated the possible mechanisms that
sparsomycin enhanced the replication of HIV-1 and its
mutants although the estimated magnitude of enhance-
ment per single replication cycle was small. To do this, we
used non-T' cells to increase the sensitivity of assays. First,
we examined if the early phase of HIV-1’s life cycle was
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