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Figure 4. Structure around the active site. Each PR in the L90M model is
shown in green cartoon, and each of the figands and important residues is
shown in green ball-and-stick representation. The superimposed gray
cartoons and sticks represent the structare of the WT model.

regions occur. Dislocations of the side chains of D25/D25" and
rotations of 184/I84" also occur, as in the L9OM PR/NFV
complex. These conformational changes have also been ob-
served in the crystal structure of G48V/L90M PR/SQV complex
(PDB code: 1FB7%) when compared with WT PR/SQV
complex (PDB code: 1HXB%%). In addition, a comparison of
the structure of L9OM PR in complex with SQV and the crystal
structure of G48V/L90OM PR/SQV complex shows that the 80’s
loop, where LOOM causes conformational changes, is located
at similar positions in the two structures (Supporting Information
Figure S3). In the complex with each of these two inhibitors,
1.90M mutation induces common effects: dislocations of the
25th residues and rotations of the side chains of the &th
residues. In addition, L9OM PR decreases the binding energy
with each of NFV and SQV, which would reflect the positional
shift of the inhibitors. In contrast, in the LOOM PR/LPV
complex, conformational changes hardly occur at the active site.
Dislocations of the 25th residues and rotations of the side chains
of the 84th residues hardly appear. Energetically, LPV exhibits
the same binding affinity with L90M and WT PRs. PRRT also
exhibits the same affinity with LOOM and WT PRs, although
conformations at both of the residues near 150/150” and P2’-P4’
subunits of PRRT are greatly changed. In the PRRT model, no
rotation of the side chains of 841/841 occurs, while the distance
between the two side chains of D25 and D25’ is changed. These
results indicate that rotations of the side chains of 184/184” are
involved in the resistance due to L9OM. Consequently, we can
conclude that the mechanism of resistance due to LOOM is
rotations of the side chains of the 84th residues due to
dislocations of the side chains of the 25th residues, which are
initiated by changes in the interactions between the 90th and
the 25th residues. These rotations change the shapes of the active
sites, and the change decreases the interactions between PR and
ligands (Figure 4). There is still the question of why rotation
of the 84th side chains occurs when L90OM PR is bound with
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NFV or SQV but does not occur when L9OM PR is bound with
LPV and PRRT. The answer to this question is that the rotations
is due to not only to dislocations of side chains of D25/D25’
but also to the geometry of the ligand. The shift in side chains
of 25D/25'D occurs when L90M PR is bound with NFV, SQV,
and PRRT. Focusing on the P1/P1’ subsites of those ligands,
NFV and SQV each contain a dodecahydroisoquinoline ring,
which is a rigid and bulky functional group, and PRRT has a
ring of PRO. These rings are located near D25/D25" and assist
the dislocation of the side chains of D25/D25 because of their
rigidity. Moreover, the size of the rings is responsible for the
rotation of the side chains of 184/184’. Rotation of the side chains
of the 84th residues occurs when LOOM PR is bound with NFV
or SQV. In contrast, rotation hardly occurs despite the side chain
dislocations of D25/D25" when L90M PR is bound with PRRT.
The ring size of PRRT is smaller than those of NFV and SQV
and makes no unfavorable collision with side chains of 184/
184’. Consequently, the size and flexibility 6f P1/P1” subsites
of the ligand are closely related to the resistance due to L0 M.
We speculate that a single L90OM mutation has little effect on
the binding affinity with a ligand that has a linear group or a
small ring at its P1/P1” subsite.

We further investigated the interactions between the ligands
and each amino acid residue of PRs by performing fragment
molecular orbital (FMO) calculations.®® In the FMO scheme,
the total system is divided into fragments and calculations are
carried out in parallel, which makes it possible to adopt the ab
initio MO calculation for a large molecule like a protein. The
single point energy of each model was calculated at the FMO—
HFE/6-31G level using the ABINIT-MP program® The model
structures were constructed by the following two steps. First,
the average structure was calculated on the basis of 1000
coordinates acquired during the last 500 ps of MD simulation.
Next, energy minimization was executed on the average
structure. One amino acid residue or one inhibitor was set as a
single fragment. It was confirmed from the computational results
shown in Figure 5 that each of the ligands indeed interacts with
the active site residues or their neighboring residues. Notably,
LPV and PRRT interact with only several active site residues.
That is, the residues they interact with are quite limited
compared with those with which NFV and SQV interact.
Furthermore, LPV shows no significant difference between its
interactions in WT and 1.O90OM PRs. LPV has highly specific
interactions with D29 and D25, whose mutations inactivate the
function of the PR.2%2 Figure 5 also indicates that NFV and
SQV show noticeable loss of interaction energies with several
residues in both the WT and L.90M models. In particular, NFV
has unfavorable contact with K45, R87, R8’, D29, and D30/,
and SQV has unfavorable contact with D25 and D29’. In
contrast, LPV shows little energetical loss in theinteraction with
protein residues in both models. Accordingly, we speculate that
this specificity and the little energetical loss are also reasons
why L90M mutation has little effect on the binding of LPV.

Last, we investigated whether simulations can provide the
correct order in terms of potency of the inhibitors. In the
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Figure 5. Interresidue interaction energies between PR and ligand caleulated by FMO--HF/6-31G. Black hnes below indicate the location of the active site
residues (RS, 1.23-V32, 147-150, P81-184, R¥’, L23"-V32, 147"-150’, P81" 184°).

comparison of AG, the calculated inhibitory order for NFV,
SQV, and LPV is not compatible with that determined by
experiments®? (Supporting Information Table S4). In contrast,
when compared with experimental AH, the order in calculated
AG for the inhibitors is consistent with the experimental
measurements. That is because our MM/PBSA calculations do
not include entropic terms. Hence, the incorporation of an
entropic term will enable us to accurately predict the potency
of a new drug by MD simulations.

1PV is one of the most promising drugs for AIDS treatment
as shown in the present study. However, as the number of
mutations increases, the efficacy of LPV decreases. For example,
according to Virologic phenotypic assays, patient-derived HI'V-1
confers 20-fold resistance against LPV. The PR sequence of
this HIV-1 includes some drug resistant-related mutations (1101,
K20R, M361, R41K, M46], F53L. Q6IN. L63P, ATIV, T748,
V82T, N88S, 1.90M, 193L). Results of our additional simulation
of this resistant PR with LPV have indicated a decrease in
inhibitory efficacy (AG, = —59.5 keal/mol, AAG, = +2.3 keal/
mol) (Supporting Information Figure S4). These mutations
decrease the number of hydrogen bonds between LPV and this
clinically derived PR (Supporting Information Table S5).
Furthermore, the mutations change the conformations at the flap
and 80’s loop regions (Supporting Information Figure S5). A
design to remove the collisions at these regions will further
enhance the efficacy of LPV. 1t should be emphasized that most
of the mutated residues are located at the nonactive site of PR.

(63) Yanchunas, J.. Ir; Langley, D. R.; Tao, L. ; Rose, R E ; Friborg, 1.; Colonno,
R. 1 Dovle. M. L. Antimicrob. Agents Chemother. 2005, 49, 3825

7894 J. AM. CHEM. SOC. = VOL. 128, NO. 24, 2006

Thus, to create more potent drugs, it is important to clarify the
roles of the drug-resistant related nonactive site residues.

On the basis of the findings obtained in this study, we suggest
the following strategy for the design of HIV-1 PR inhibitors.
First, inhibitors should not contain a large ring such as a
dodecahydroisoquinoline ring at P1/P1” subsites; a linear chemi-
cal group is favorable. Second, to remove the collisions at the
80s loop and the flap region, functional groups at P2P1/P1'P2’
subsites of inhibitors should be in the same size as those of
PRRT. Third, inhibitors should interact only with limited PR
residues such as D25/D25" and D29/D29’. Finally, inhibitors
should not make unnecessary contact with any residues even
in WT PR.

In summary, the mechanism of resistance due to the nonactive
site mutation LO9OM has been clarified through theoretical
calculations. The 90th residue of HIV-1 PR is located at the
dimer interface and has no direct contact with ligand chemicals.
The simulations demonstrate that the nonactive site mutation
affects conformation of the binding cavity and ligand-binding
aftinity at the active site. The results of the present study have
revealed the drug resistance mechanism of nonactive site
mutation and provide a clue for designing a promising drug to
reduce the drug resistance due to nonactive site mutation.
Adaptive drugs.% %7 which have the ability to inhibit several
variants of a targeting enzyme, are needed in anti-FI'V therapy.
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Some reviews have suggested strategies for the design of
adaptive inhibitors for HIV-1 PR.$%56-% These strategies,
however, do not give sufficient consideration to the structural
cffects due to nonactive site mutations. The findings of this work
should be useful for producing practical adaptive drugs.
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Supporting Information Available: RMSD plots during MD
simulations, determination of protonation states of catalytic
aspartates in the SQV and/or LPV complex models, a list of
hydrogen bond networks in each model, RMSF plot of main
chain atoms N, Cat and C in each model, a list of differences
between RMSD values (A) of the main chain atoms in WT and
1.90M models, comparison of the computed L90M model and
the crystal structure (1FG7), comparison of computed AG with
experimental AG and AH, results of analyses of the MD
simulations of clinically derived HIV-1 PR in complex with
LPV, and a complete list of author citations with more than 10
authors. This material is available free of charge via the Internet
at http:/pubs.acs.org.
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Discordances between Interpretation Algorithms for Genotypic
Resistance to Protease and Reverse Transcriptase Inhibitors
of Human Immunodeficiency Virus Are Subtype Dependent
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The major limitation of drug resistance genotyping for human immunodeficiency vires remains the inter-
pretation of the results. We evaluated the concordance in predicting therapy response between four different
interpretation algorithms (Rega 6.3, HIVDB-08/04, ANRS {07/04], and VGI 8.0). Sequences were gathered
through a worldwide effort to establish a database of non-B subfype sequences, and demographic and clinical
information about the patients was gathered. The most concordant results were found for monnucleoside
reverse transcriptase (RT) inhibitors (93%), followed by protease inhibitors (84%) and nucleoside RT inhibitor
(NRTIs) (76%). For therapy-naive patients, for nelfinavir, especially for subtypes C and G, the discordances
were driven mainly by the protease (PRO) mutational paitern 82I/V + 63P + 361/V for subtype C and 821 +
63P + 361 + 201 for subtype G. Subtype F displayed more discordances for ritonavir in untreated patients due
to the combined presence of PRO 20R and 10I/V. In therapy-experienced patients, subtype G displayed a lot
of discordances for saguinavir and indinavir due to mutational patierns involving PRO 90 M and 82L. Subtype
F had meore discordance for nelfinavir attributable to the presence of PRO 88S and §2A + 54V. For the NRTIs
lamivudine and emtricitabine, CRF01_AE had more discerdances than subfype B due to the presence of RT
mutational patterns 65R + 115 M and 1181 + 215Y, respectively. Overall, the different algorithms agreed well
on the level of resistance scored, but some of the discordances could be attributed to specific (subtype-
dependent) combinations of mutations. It is not yet known whether therapy response is subtype dependent, but
the advice given to clinicians based on a genotypic interpretation algorithm differs according to the subtype.

Although genotyping is commonly used, there are still many
uncertainties with respect to the value of genotype in the as-
signment of a new regimen. The current genotypic assays are

Genotyping for the assessment of anti-human immunodefi-
ciency virus (HIV) drug resistance is often used in the man-
agement of individual patient therapy. Currently, it is recom-

mended in European as well as American guidelines (17, 38).
In several retrospective and prospective studies, genotyping
proved beneficial in optimizing treatment for individual pa-
tients (5, 10, 16, 23, 25, 31, 37).

* Corresponding author. Mailing address: Rega Institute for Medi-
cal Research, Minderbroedersstraat 10, 3000 Leuven, Belgium. Phone:
32 16332160. Fax: 32 16332131, E-mail: annemie.vandamme@uz
kuleuven.ac.be.
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not always able to report all drug resistance mutations among
non-B subtypes (11, 18, 19, 24). Regardless of subtype, geno-
typing is not sensitive to mutations that are present as-a minor
variant in the population (22, 40). Genotyping results also
differ depending on the laboratory where they are performed.
Quality control studies indicate that mutations, even present as
a pure variant, are often underestimated (32).

However, separate from the quality and sensitivity issues, the
interpretation of genotypic results is still not standardized.
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Several interpretation algorithms have been designed to aid in
this, but they may differ in the prediction of therapy response
and/or drug susceptibility. Studies were performed mainly on
subtype B viruses, and even within this subtype, differences
have been detected (6, 21, 29, 34, 35, 36).

Non-B subtypes are a challenge for these systems, since
algorithms for these subtypes were designed using genotype,
phenotype, and therapy response information that was largely
derived from experience with subtype B. Recent analyses sug-
gest that non-B viruses can develop specific mutations that
differ from those identified in subtype B under the same treat-
ment pressure (1, 20). For example, in CRF01_AE but not in
subtype B viruses, V75M seems to be significantly associated
with stavudine treatment (2) and, in subtype C but not in
subtype B, V106M is a signature substitution of patients
treated with efavirenz (4). There is a continuing countroversy
about the impact of secondary protease mutations (positions
36, 71, 77, etc.) which evolve in subtype B following protease
ezposure and are relatively frequent in untreated patients with
non-B subtypes. It has been suggested that some of these can
affect the susceptibility to certain protease inhibitor (PI) ther-
apies in B and non-B subtypes (14, 28).

Although some short-term studies suggest little difference in
therapy response in patients carrying non-B subtypes from that
of patients infected with subtype B (12), other studies showed
a significant difference in responses to treatment for different
subtypes (8, 13). However, current studies have included a
limited number of subjects. Potential differences can be due to
differences in drug resistance. It is therefore important to know
how the current drug resistance interpretation systems perform
on different subtypes, and first of all, we need to know what the
subtype-dependant discrepancies between the systems are.

Comparisons between these interpretation systems have al-
ready been made for subtype B strains; however, the subtype
dependency of resistance assessment by these interpretations
systemns has not yet been determined (6, 21, 29, 34, 35, 36). In
this study, we investigated four frequently used interpretation
systems across a large number of non-B sequences to deter-
mine whether discordance between the systems was dependent
on the viral subtype.

MATERIALS AND METHODS

Sequences. Sequences of HIV-1 protease (positions 1 to 99) and reverse
transcriptase (RT) (positions 1 to 240) were collected from the published liter-
ature and from 14 tuboratories in 12 countries through the non-B workgroup, a
worldwide effort to establish a4 datubase of non-subiype B sequences (20). Three
separate analyses were performed based on the treatment history of the patient
at the time of sequencing: PI analysis, nucleoside RT inhibitor (NRTI) analysis,
and nonnucleoside RT inhibitor (NNRTI) analysis. A sequence was included in
the respective analysis either if the putient was reported to have hud no previous
exposure to 4 drug in that class or if the patient was being treated with a drug in
that class at the time of sequencing, thus separating the analyses according to
drug cluss exposure. o this way, sequences from patients that had drug exposure
from a particulas class in the past but were not at the time of sequencing taking
a drug from that class were excluded. The treatment data gathered for this
databuse were therapy history, with start and stop dutes for a treatment, the

"regimens in the therapy, and the doses of the separate antivirals. Sequences were
excluded when there was no therapy history.

Subtyping. Subtyping was performed by phylogenetic analysis using the sub-
typing tool developed by de Oliveira ot al. separately for protease and reverse
transcriptase sequences (7). Briefly, sequences are first analyzed using pure
subtypes as a reference; in a second step, known circulating recombiount forms
are added to the ulignment. To detect recombination, bootscanning wus per-
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formed using a sliding window of 400 nucleotides that was advanced 20 nucleo-

. tides at u time. Recombinants were included only if they were CRFOI_AE or

CRI02_AG sicce we had sufficient data for only these two circulating recombi-
nant forms. ’

Algorithms. Four publidy availuble algorithms were upplied on each of the
sequences: Ageace Nationale de Recherchie sur le SIDA (ANRS) July 2004 (hitp:
Jhvww sante gouv.frhimfactu/36_vih_2htra) (25), HIV RT zod Proteuse Sequencs
Databuse (HLVDB) August 2004 (bttp:/hivdb stanford.edu) (33), Rega Institute
(Regy) version 6.3 {(http/wwwinleuven.be/regaicev/pdf/ResistanceAlgorithmé 3
pdf} (39), and Bayer Health Cuare-Diugnostics (VGI) version 8 (30) (formerly
Visible Genetics).

Mutations considered. I all statistical unalyses (sce below), we scored all
mutations thut are included in one of the algorithms we used in the analyses: 1§
NRTI resistunce positions, Le., 41, 44, 62, 65, 67, 69, 70, 74, 75, 77, 115, 116, 118,
151, 184, 219, 215, and 219; 16 NNRTI resistance positions, i.c., 98, 100, 101, 103,
106, 108, 179, 181, 188, 190, 225, 227, 230, 234, 236, and 318; and 23 P resistance
positions, ie., 10, 20, 24, 30, 32, 33, 36, 46, 47, 48, 50, 53, 54, 60, 63, 71, 73, 77,
82, 84, 88, 90, und 93. For most positions, more than one mutant amino ucid can
be scored. All mixtures at resistance positions were scored as mutants.

Scoring of discordances—statistical analyses and data mining. The algorithm
specification interface at the web site for the Stanford HIV drug resistance
database (http:/fhivdb.stanford.edu) was used to apply the interpretation algo-
rithms to each sequence (3). We assigned three levels of resistance: susceptible
(8), intermediate (I), and resistant (R). For HIVDB, which assigas five levels
of resistance, we obtuined three by pooling the two highest and two lowest
categories.

lnterpretations were considered concordant if each of the algorithms assigned
the sume leve] of resistunce to 4 sequence for a particulur drug. We considered
the algorithms to be fully discordant if one of them scored the sequence S for u
particular drug, and unother one scored it as R. Interpretations were considered
partially discordant when, among the scores of the different systems, both § and
1 or both R and | were found for the same drug. The numbers of fully discordant
{counted us 1) and partially discordant {counted as (.5) strains were added to
compute the proportion of discordunt struins.

Statistical analyses were performed to see whether the number of discordances
were drug and subtype dependent. We performed a one-way analysis of vatiance
(ANOVA) with Tukey’s confidence intervals to check for differences between
different drugs and different subtypes. Differences between only subtype B and
each of the other subtypes have been unalyzed in this study.

The duta mining program Weka, version 3.4.4 (http/feww.cswaikato.ucnz/~ml
fwekaf), was used to identify mutational patterns that were responsible for the
observed discordances, thereby also identifying the algodthms thut cuused the
discordances. We used this tool to build binary decision trees with which it tries
to predict all observed discordances. To evaluate the predictive power of the
decision trees, we performed a 10-fold cross-validation. In this method, the data
set is split 10-fold and the predictive performance for every subset is evaluated
for a decision tree trained on the other subsets.

We built a model for each drug in which we found a statistically significant
effect of subtype on discordance. We included all subtypes ia the model and tried
to predict discordunces (three levels, concordant, discordant, and partially dis-
cordant). For each leaf in the resuiting tree that predicted discordunce, we
calculuted the subtype distribution. Fisher exuct tests were perfornted to analyze
whether a rule in the decision tree explained significantly more discordances for
4 particular subtype:

RESULTS

Subtype distribution. We obtained protease and/or reverse
transcriptase sequences from 5,030 patients. The subtype dis-
tribution for each analysis (PI, NRTI, or NNRTT) is shown in
Table 1. In total, we obtained 6,916 (3,926 from naive and
2,990 from treated patients) sequences for PI analyses, 5,689
{2,331 naive and 3,358 treated) for NRTI analyses, and 5,557
(4,208 naive and 1,349 treated) for NNRTI analyses. Twelve
protease and five RT sequences were filtered out due to sus-
pected recombination or were uniypable. The majority of the
sequences were of a non-B subtype except for the Pl-treated
and NRTI-treated class, where the prevalence of subtype B
was 82% and 66%, respectively. Subtypes H, J, and K were
excluded because of a limited number of sequences.
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TABLE 1. Subtype distribution for sequences in the analysis
groups PI, NRTI, and NNRTI

No. of sequences for:

Subtype Pl NRTL NNRTL
Nuive  Treated  Naive  Treated Naive  Treated
A 363 33 318 105 217 206
B 1,661 2,467 632 2,224 2,139 585
C 672 201 644 339 805 178
D 260 37 201 89 159 131
F 126 80 79 107 140 46
G 128 87 63 158 144 77
CRF01L_AE 207 36 132 251 291 92
CRF02_AG 509 47 262 85 313 - 34

“ A sequence was included in the analysis if there was no previous exposure to
a drug in that class or the patient was being treated with a drug in that class at
the time of sequencing.

Discordances. Overall, the different interpretation systems
agreed well on the level of resistance. Eighty-four percent of
the sequences had concordant results for PIs. In only 6% of the
cases, the algorithms gave full discordant results; most of the
observed differences were due to partial discordances (10%).
For NRTIs, 76% of the sequences gave concordant results and
8% were fully discordant. The most concordant results, 93%,
were found for NNRTI. Only 1% of the sequences caused full
discordances. The results for each drug are shown in Fig. 1.

The concordance was significantly higher for therapy-naive
patieats than for treatment-experienced patients (£ < 4.0001)
for all drug classes.

ANTIMICROB. AGENTS CHEMOTHER.

Protcase inhibitor analysis. The number of discordances
seemed to be drug and subtype dependent for therapy-naive
patients as well as treated patients (Tables 2 and 3).

In therapy-naive patients, results for nelfinavir were discor-
dant in 1.8% of the sequences, while for lopinavir, this was
0.3% and for tipranavir, this was 0%. When considering the
results for a single drug, the proportion of sequences displaying
full or partial discordances was subtype dependent. Concern-
ing specific subtypes in therapy-naive patients, discordances were
observed for ritonavir (subtype F, P < 0.01) and nelfinavir (sub-
types G and C) (Table 2).

In treated patients, the results were different. The highest
level of discordance was obtained for amprenavir (50%),
whereas 36% of the sequences were scored as discordant for
lopinavir and 14% for nelfinavir. Tipranavir gave still the least
discordant results; only 2% of the sequences were causing
discordances between algorithms. Compared to subtype B,
more discordances were observed for nelfinavir in subtype F
and for indinavir and saquinavir in subtype G (P < 0.01), while
less discordances were observed for amprenavir in subtypes C
and D and for atazanavir in subtype C (P < 0.01) (Table 3).

Nonnucleoside reverse transcriptase inhibitor analysis. For
therapy-naive patients, no differences could be found between
drugs, while for treated patients, efavirenz scored the most dis-
cordances (11%), followed by delavirdine and nevirapine (5%).

The proportion of sequences displaying full or partial dis-
cordances was subtype dependent in this drug class except for
delavirdine and nevirapine in naive patients. But no specific
subtypes were found that had differences in the resistance
interpretation compared to subtype B.

8000

7000

6000

2000

1000 -

@ discordant
QO partial discordant
e concordant

FIG. 1. Graphic representation of the number of discordant sequences per drug class. Gray bars represent the number of sequences for which
concordant predictions were made by the four algorithms, white bars represent the number of sequences with partial discordance, and black bars

represent sequences with discordant predictions.
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TABLE 2. Interalgorithm discordances between genotypic drug
resistance interpretation for sequences obtained from
therapy-naive patients infected with HIV-1

HIV INTERPRETATION SYSTEMS AND SUBTYPES 697

TABLE 3. Interalgorithm discordances between genotypic drug
resistance interpretation for sequences obtained from
therapy-experienced patients infected with HIV-1

Discordances P vzlue for Discordances P value for
Drug () subtype Subtypes® Drug (%) subtype Subtypes©
: deperndency” ’ dependency”
Proteuse inhibitors Protease inhibitors
Nelfinavir - 1.8 <0.01 G und C more Amprenavic 50 <{L01 C and D less
than B ’ than B
Atazanavir 11 <{.0L Atazunavir 42 <0.01 Cless thun B
Ritonavir L1 <001 F more than B Lopinavir 36 <0.01
Amprenavir 0.6 NS Saquinavic 24 <0.01 G more thun B
Indinavir 0.5 NS Indinavir 15 <0.01 G more thun B
Saquinavic 0.4 NS Nelfinavir 14 <0.01 F more than B
Lopinavir 0.3 NS Ritogavir 9 <0.01
Tipranavir 0 NS Tipranavic .2 NS
Nonnucleoside reverse Nonunucleoside reverse
transcriptase inhibitors transcriptase inhibitors
Delavirdine 5 NS Efavirenz 11 <{.01
Nevirapine 5 NS Delavirdine 5 <0.01
Efavirenz 5 <001 Nevirupioe s <0.01
Nucleoside reverse Nucleoside reverse
transcriptase inhibitors transcriptase inhibitors
Zidevadine 1.6 <041 Didanosine ' 54 <0.01 C and D less
Zalcitabine 12 <0.01 than B
Stavudine 1 <0.01 Cless than B Abacavir 49 <0.01
Abacavir 4.7 NS Tenofovir 37 <0.01 G, A, Cand D
Didanosine 0.6 NS less than B
‘Tenofavir 04 NS Zalcitabine 26 <0.01 Cless than B
Lamivudine 0.2 NS Stavudine 23 <{.01 .
Emtricitabine 0.1 : NS Zidovudine 13 <0.01
Lamivudine 7 . <0.01 CRFOI_AE
< Percentage of sequences that had discordunt results between genotypic in- more than B
terpretation algorithms. Emitricitabine 5 <Q.01 CRFO1_AE
more thap B

£ Qne-way ANOV A was used to evaluate whether the number of discordances
was subtype dependent (P of <0.05 was considered significant). NS, not signif-
icant.

€ If the number of discordances was subtype dependent, Tukey’s confidence
intervals were used for u pairwise zoulysis to look for subtypes that caused
significantly fewer or more discordances than subtype B. Although the percent-
age of discordances for some drugs was significantly subtype dependent, this did
not always relate to a specific subtype that displayed significantly more or less
discordances then subtype B.

Nucleoside reverse transcriptase inhibitor analysis. In 1.6%
of the sequences, zidovudine (AZT) was responsible for most
of the discordances in therapy-naive patients; didanosine (ddI})
was responsible for most of the discordances in treated pa-
tients (54%). The difference between drugs in this class was
significant for both therapy-naive (Table 2) and therapy-expe-
rienced (Table 3) patients. -

For zidovudine, zalcitabine, and stavudine in the naive pop-
ulation, the number of discordances was associated with sub-
type (P < 0.01). For only stavudine, subtype C was found to
display less discordances than subtype B. _

The number of discordances was significantly associated
with subtype for all drugs in therapy-experienced patients
(P < 0.01). For lamivudine and emtricitabine, CRF(1_AE
seemed to display significantly more discordances than sub-
type B. Subtypes C and D had fewer discordant interpreta-
tions for didanosine, and subtype C had also fewer for zal-
citabine. For tenofovir, 2 lot of non-B subtypes had fewer
discordant results than subtype B. This was the case for
subtypes A, C, D, and G.

Mautational features of the subtype dependency. The results
have been summarized in Table 4.

“ Percentage of sequences that bad discordant results between genotypic in-
terpretation algorithms.

? One-way ANOVA wus used to evuluate whether the number of discordances
was subtype dependent (£ value of <0.05 was considered significant). NS, not
significant. .

€ 1f the number of discordances was subtype dependent, Tukey’s confidence
intervals were used for a pairwise analysis to look for subtypes that caused
significantly fewer or more discordances than subtype B. Although the percent-
age of discordances for some drugs was significantly subiype dependent, this did
not always relate to a specific subtype that displayed significantly more or fewer
discordances then subtype B.

In therapy-paive patients among non-B subtype viruses, sub-
types C and G showed partial discordances with respect to’
saquinavir susceptibility.

For subtype C, the most frequent pattern that caused partial
discordances was a combination of protease (PRO) 82V/I +
63P + 36V/I. This pattern significantly explained more partial
discordances for subtype C than for subtype B (P < 0.0001).
This seemed due to the HIVDB interpretation algorithm. All
subtype C sequences displaying this pattern also had the PRO
93L mutation. This mutation is taken into account for only
nelfinavir by the HIVDB algorithm, which scores this pattern
as intermediate, while all other algorithms score these se-
quences susceptible.

Two rules were discovered in the tree for subtype G that
explained significantly more discordances than subtype B. One
was a rule very similar to that for subtype C, PRO 821 + 63P
+ 361 (P = 0.04), and the other rule was PRO 821 + 63mt (any
mutation) + 201 (P = 0.01). In practice, these rules cover the
same sequences, as all subtype G sequences with the first
pattern also harbor a mutation at position PRO 20 and all
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TABLE 4. Mutations at least partially responsible for the subtype dependent behavior of genotypic interpretation algorithims
for a drugs and algorithms responsible for the observed discordances

Algorithm responsible®

Drug® Subtype Mutation patterns (score)”
Naive population
Nelfinavir C : 82I/V + 63P + 36I/V (SISS)
G 821 + 63P + 361 (SISS) and
821 + 63mt + 201 (SISS)
Ritonavir F 20R + 10V/I (nISIS)

Treated population
Saquinavir G 90M + 82I (SRIR)
Indinavir G

HIVDB (all sequences also 93L, taken into account
by only HIVDB)
HIVDB (high weight for 821)

Rega (all sequences also 361, three secondary PI mutations
scored as I by only Rega)

ANRS (does not score this as resistant)

90M + 82I + 54V (RRSI) and HIVDB and ANRS {all sequences also 361, pattern scored

as R by HIVDB and ANRS)

90M + 821 + 71T + 201 (RISI) Rega (L9OM not scored as R)

Nelfinavir F 88S (RRSI) and
82A + 54V (IRRR)

Lamivudine CRFO1_AE 65R + 151M (IRRI)

Emtricitabine CRF01_AE 1181 + 215Y (SSIar)

Rega (scores this as S}

ANRS (all sequences also 361, not scored as R by ANRS)

ANRS and VGI (do not have a rule for the presence of both)
Rega (all sequences also 41L and 67N, 67N scored only by Rega)

“ Only drugs for which the subtype dependence was proven and for which we found subtypes that displayed significantly more or fewer discordances than subtype
B wre shown. As explained in the text, the decision trees for the drugs where subtype B displayed more discordances were often too complex. Those are not included

in this table.

¥ positions at which mutations are responsible for discordances us revealed by data mining analysis. The order of the scores is shown alphabetically according to the
algorithm nume (ANRS, HIVDB, Rega, and VG1). Oaly the scoring patterns that accounted for most of the discordances (>83%) are shown. or, no rule available for

the drug.

< Algorithm(s) responsibie for the observed discordunces. Some information is provided in parentheses as to why these algorithms cuuse a discordance.

sequences with the second pattern also harbor a mutation at
position PRO 36. Again, these discordances were due to the
HIVDB algorithm, which is the only one that takes into ac-
count mutations at position PRO 20 and gives a rather high
weight for the PRO 821 mutation for nelfinavir.

For ritonavir, subtype F caused more discordances than sub-
type B. We found a rule, PRO 20R + 10V/], in the decision
tree explaining significantly more subtype F partial discor-
dances than those observed in subtype B. An example of the

Weka decision tree with subsequent statistical analyses is
shown in Fig. 2. Those subtype F sequences all had the PRO
361 routation and thus harbored three secondary PI mutations.
The Rega algorithm scores this as-intermediate for ritonavir,
while all other algorithms score this as susceptible.

.For NRTIs, subtype B gave a lot of discordant interpreta-
tions. The rule predictive for this discordance in the decision
tree was any mutation at RT 215, but this was not significant
(P = 0.07). When examining the data, we found that the dis-

Discordances  Toftal

Wild type Any mutation explained  number
Subtype A 1 13
Subtype B 4 13
,, Subtype C 2 9
partial discordant Subtype D 0 9
Subtype F 1 16
CRFOI_AE 2 5
/ \ CRFOZ_AG 2 6
concordant
Wild type Any mutation
Discordances  Total
explained  number
Subtype A 10 13
concordant partial discordant SubtypeB 0 13
Subtype C 4 13
Subtype D 4 2}
SubtypeF 14 16 e 20R-+mutant1d (V/I)
CRFO1_AE 2 5 p<0.0001 (compared to subtype R)
CRF02_AG 2 6

FIG. 2. Representation of the Weka decision tree for ritonavir in our untreated population. In the circles, the amino acid position is represented
and, along the arrows, the mutation present is shown. R, arginine. We {ound that subtype F displayed more discordance. In the Weka decision tree,
two rules were found, i.e., (i) any mutations at position PRO 46 and (if) 20R + mutant 10. We calculated the number of discordances found that
were explained by these rules and compared these numbers for subtype F and subtype B. Only the second rule explained significantly more

discordances for subtype F than for subtype B.
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cordances for stavudine were due to the ANRS system, which
scores the presence of a mutation at 215 by itself as interme-
diately susceptible; all the other systems score this as suscep-
tible. We found that subtype B more often had a mutation at
this position than did subtype C, although this was not signif-
icant.

For the PI saquinavir in therapy-experienced patients, the
full discordances observed in subtype G sequences could be
attributed to mutations PRO 90 M + 821. This was due to the
ANRS interpretation system, which does not score this as
resistant (as HIVDB and VGI did) if PRO 821 is present. Only
PRO 82A is taken into account by ANRS.

For indinavir, subtype G also displayed more discordances
than subtype B, apparently due to PRO 90 M -+ 821 + 54V,
which was scored as resistant by HIVDB and AINRS because
all these samples also had the PRO 361 mutation. Another rule
predictive for discordance was PRO 90 M + 821 + 71T + 20L
The Rega system scores this pattern as susceptible, since the
PRQO 90 M mutation by itself is not scored as resistant by this
algorithm.

Subtype F causes more discordances for nelfinavir in treated
patients. The PRO 88S mutation was partially responsible for
these discordances. The Rega algorithm considers these iso-
{ates to be susceptible, while the score from other algorithms
was at least intermediate resistant. The partial discordances for
subtype F are explained by PRO 82A + 54V. All these se-
quences had also PRO 361, which is not considered resistant by
ANRS relative to the other algorithms.

Subtype B displayed a lot of discordances for amprenavir. In
fact, the decision tree incorporated subtype in this model. The
resulting rule was PRO 90 M + 54V + 20R + 82A. All these
sequences had an additional PRO 361 mutation, which is not
included in the amprenavir rules of the Rega algorithm. This
mutation pattern scored as intermediate for this system, while
for the other algorithms, the additional PRO 361 mutation is
responsible for the resistant score.

For atazanavir, subtype B caused a lot of discordances. The
decision tree was very complex, and no clear rule had a high
coverage and was predictive for the observed discordances in
all subtypes. The atazanpavir rules incorporate a number of
mutations also observed for other Pls. Patients harboring a
subtype B virus are probably treated with protease inhibitors
morse often and for a longer time, since subtype B has domi-
nated since the beginning of the epidemic in countries where
treatment was available and subsequently has been subject to
- drug selective pressure earlier. In these sequences, the large
background of PI resistance mutations probably causes the
discordances observed for atazanavir.

For lamivudine and emtricitabine (FTC), CRF01_AE scored

more discordances than subtype B. For lamivudine resistance
interpretation, this was caused by RT 65R + 151 M (P < 0.05).
ANRS scores the presence of both mutations separately as
intermediate but does not provide a rule for the presence of
both of them, while the Rega algorithm for example scores this
combination as resistant. )

For emtricitabine, no clear rules were found in the tree,
although it seemed that RT 41L + 67N + 1181 + 215Y caused
most of the partial discordances observed for CRF01_AE. The
Rega algorithm is the only one that scores the RT 67N muta-
tion for FTC. VGI does not provide rules for FTC.

HIV INTERPRETATION SYSTEMS AND SUBTYPES 699

For didanosine, tenofovir, and zalcitabine, subtype B had a
lot more discordant interpretations than a number of non-B
subtypes. The decision trees were very complex and also for
these drugs, no clear rules could be deduced.

DISCUSSION

HIV genotypic information has led to an improved under-
standing of mutations in pol, which is associated with virolog-
ical failure. Although resistance genotyping still has some lim-
itations, it is often used to guide therapy start or change. One
of the major problems is the interpretation of genotypic re-
sults. The knowledge on which such interpretation systems are
built is.based mainly on subtype B data. Considering the pos-
sible differences in therapy response in other subtypes, it would
be interesting to verify whether our genotypic interpretation
systemns are equally valid for all subtypes. A first approach is to
map discrepancies in drug resistance interpretation algorithms
between subtypes and to identify which mutational patterns are
responsible for such discrepancies. Such patterns can then
further be investigated by, for example, in vitro mutagenesis
and measuring the associated phenotype, taking into account
that virus replication under drug selective pressure not only is
a matter of protease and RT mutations but also is determined
by the whole viral genome.

In this study, performed on sequences obtained from 5,030
patients, we investigated subtype-dependant discrepancies be-
tween four commonly used interpretation systems (Rega 6.3,
HIVDB-08/04, ANRS [07/04], and VGI 8.0). The versions an-
alyzed were the ones available to us at the time of analysis. In
the meantime, updates have become available for all of these
systerns. None of these systems include subtype-dependaat
rules.

We did find drug- and subtype-dependent differences in the
drug susceptibility/therapy response predictions of commonly
used interpretation algorithms. We also identified mutational
patterns that seemed to be partially responsible for the ob-
served discordances. .

Concordance was the lowest in the interpretation of therapy-
experienced sequences, which means that it is less clear which
mutations are really important for resistance development.
This may explain some of the differences seen between algo-
rithms in predicting treatment outcome (6). For lopinavir es-
pecially, the pathway towards resistance is unclear, which ex-
plaios the high oumber of discordant results between the
interpretation systerns found in therapy-experienced patients
(26, 27).

Our analyses revealed that the proportion of discordances
between commonly used algorithms is subtype dependent for
many drugs, in naive as well as in therapy-czperienced patients.
Concordance was higher in naive patients. However, non-B
subtype sequences and subtype B sequences overall had equal
numbers of resistance mutations. Both groups had mosty -
“wild-type” sequences. Therefore, the higher number of con-
cordances is probably due to a larger agreement on what is a
wild-type sequence.

In naive patients, discordances were found for nelfinavir
{(subtypes C and G). Incidentally, it is known that the pathway
towards resistance for nelfinavir differs for subtypes C and G
from that for subtype B. The PRO D30N mutation is not the
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preferred one as in subtype B; it seems that, rather, the PRO
1.90M is selected (15) (P. Gomes, L. Diogo, M. F. Gonves, et
al., Abstr. 9th Conf. Retrovir. Opportunistic Infect., abstr. 46,
2002). We found mutational patterns that partially explained
these discordances. Those were mostly due to combinations of
secondary PI mutations, which are often present as a polymor-
phism io non-B subtypes. Some algorithms include these mu-
tations in their rules, while others do not. The PRO 93L mu-
tation for example, is included by only HIVDB and not by the
other systems. This mutation was present in all subtype C
sequences with the pattern PRO 82I/V + 63P + 36I/V. Simi-
larly for subtype G, the PRO 201 mutation is incorporated by
only HIVDB.

For subtype F and ritonavir, the pattern PRO 20R + 10V/L
also included the PRO 361 mutation. Three secondary PI mu-
tations are scored as intermediate by only the Rega Algorithm.

For NNRTIs, we did not find any subtype-dependent discor-
dances in resistance scoring, although some differences in re-
sistance development have already been reported for subtype
C under efavirenz treatment (2).

For NRTIs, only in naive patients did we find that the pro-
portion of discordances is subtype dependent for stavudine.
Subtype C had significantly less discordances than subtype B
due to a mutation on RT 215 that occurred more frequently in
subtype B sequences.

For PI resistance in treated. patients, a lot of discordances
are observed for subtype G in predicting resistance for sa-
quinavir and indinavir and in subtype F for nelfinavir resistance
prediction. The patterns observed here are related to a single
algorithm that scores this differently. Differences often occur

due to the presence of the PRO 361 mutation, which is present

as a polymorphism in non-B subtypes. This mutation often
triggers the switch to score an isolate as intermediate, while
other systems do not take into account the substitution and
consider the isolate to be susceptible. Apparently, there is no
agreement on the role of some of these polymorphic resistance
mutations in Pl resistance. :

For amprenavir and atazanavir, subtype B displayed a lot of
discordances for treated patients. The decision trees for these
drugs were very complex. The tree for amprenavir included
subtype as a node, 5o a rule, PRO 90 M + 54V + 20R + 824,
could be deduced. For atazanavir, no clear rule was found.
These two drugs are only recently being used in clinical prac-
tice, and the pathway towards resistance is not fully understood
yet. The presence of a number of PI mutations, instead of some
clear rules, is mostly used in the algorithms.

For lamivudine and emtricitabine in treated patients,
CRF01_AE scored more discordances than subtype B. Al-
though resistance for both drugs are predicted by the same
rules in the algorithms, different mutation patterns are found
in the decision trees. For lamivudine resistance interpretation,
this was caused by RT 65R + 151 M. For emtricitabine, this
was RT 41L + 67N + 1181 4 215Y (although not statistically
supported). .

Tipranavir has a low number of discordances for naive
patients as well as treated patients. This is mainly due to the
limited amount of information that is available on resis-
tance towards this drug (9). All algorithms are based on the
same available information and thus predict the same level
of resistance.

ANTIMICROB. AGENTS CHEMOTHER.

The four evaluated algorithms, in fact, belong to two differ-
ent models. The Stanford algorithm assigns a score to each of
the observed mutations and uses the sum to decide on the level
of resistance, allowing complex patterns of mutations to be
taken into account. The VGI, ANRS, and Rega algorithms are
restrained to specific rules that describe specific mutational
patterns. Therefore, the discordance for complex patterns is
especially inevitable since both models use different ways to
take these into account.

This study is not intended to draw conclusions on the validity
of the different algorithms, but rather to identify mutation
patterns that result in divergence between the algorithms,
among different subtypes. The mutations and particularly the
patterns of polymorphisms in non-B subtypes that are associ-
ated with viral resistance warrant further in vitro studies and
ultimately need to be confirmed by clinical observation. We
acknowledge, as a limitation of this study, the absence of mea-
sures of either in vitro or clinical resistance, which are pheno-
type and therapy outcome, respectively. However, the muta-
tion patterns associated with discordance between the
algorithms may identify the sequences of interest in larger
datasets, obtained prospectively, and linked to viral load
and/or CD4 data to correlate treatment outcomes.

In conclusion, the different algorithms agreed quite well on
the level of resistance scored. However, where there are dif-
ferences, in many cases these can be attributed to specific
subtype-dependent combinations of mutations. The mutations
found here should further be investigated as to whether they
contribute to differences in resistance and therapy response
between different subtypes. Our expertise in interpretation of
genotypic resistance will increase with a scale-up of treatment
to include millions of individuals with non-subtype B virus
infections.
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Abstract

Interpretation of Human Immunodeficiency Virus 1 (HIV-1) genotypic drug resistance is still a major challenge in the follow-up of antiviral
therapy in infected patients. Because of the high degree of HIV-1 natural variation, complex interactions and stochastic behaviour of evolution, the
role of resistance mutations is in many cases not well understood. Using Bayesian network learning of HIV-1 sequence data from diverse subtypes
(A, B, C, F and G), we could determine the specific role of many resistance mutations against the protease inhibitors (PIs) nelfinavir (NFV),
indinavir IDV), and saquinavir (SQV). Such networks visualize relationships between treatment, selection of resistance mutations and presence of
polymorphisms in a graphical way. The analysis identified 30N, 88S, and 90M for nelfinavir, 90M for saquinavir, and 82A/T and 46V/L for indinavir
as most probable major resistance mutations. Moreover we found striking similarities for the role of many mutations against all of these drugs. For
example, for all three inhibitors, we found that the novel mutation 891 was minor and associated with mutations at positions 90 and 71. Bayesian
network learning provides an autonomous method to gain insight in the role of resistance mutations and the influence of HIV-1 natural variation.
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We successfully applied the method to three protease inhibitors. The analysis shows differences with current knowledge especially concerning

resistance development in several non-B subtypes.
© 2007 Published by Elsevier B.V.

Keywords: HIV; Protease; Nelfinavir; Indinavir; Saquinavir

1. Introduction

Human Immunodeficiency Virus (HIV) escapes the inhibi-
tory effect of antiretroviral drags by selection of mutations that
increase resistance against those drugs. To obtain an effective
therapy, it is thus necessary to use antiretroviral drugs for which
the virus remains susceptible. Genotypic interpretation systems
predict the susceptibility or therapy response for various drugs
(Shafer, 2002; Van Laethem et al., 2002), based on the presence
of mutations at positions associated with drug resistance.
Unfortunately, the role of many resistance mutations remains
unsufficiently known, as well as the role of HIV-1 natural
variation. This variation within the HIV main group is reflected
in a subtype system with 9 identified subtypes and 16
Circulating Recombinant Forms (CRFs). In addition, unclassi-
fied strains and new recombinants are increasingly reported.
Different prevalences of known resistance-associated muta-
tions and new mutations are seen in different subtypes (Frater
et al., 2001; Grossman et al., 2001; Brindeiro et al., 2002;
Ariyoshi et al., 2003; Parkinr and Schapiro, 2004). With a few
exceptions, these differences in prevalence could not be
explained by different genetic barriers because of different
codon usage (Turper et al., 2004). In previous work, we used
Bayesian network (BN) leamning to demonstrate how poly-
morphisms may influence how drug-associated mutations get
selected. These explained some notable subtype differences
that have been observed for resistance development against
nelfinavir (Deforche et al., 2006).

In this work we present the application of Bayesian network
learning to study development of resistance against three
protease inhibitors (PIs): nelfinavir (NFV), indinavir (IDV), and
saquinavir (SQV). Results were compared in the context of
cross-resistance within the class of Pls. '

A Bayesian network (BN) is 4 probabilistic model that
describes statistical independencies between multiple vari-
ables. In this work, we learn Bayesian networks from
observations of the variables. In this way, the best Bayesian
network is searched that explains a maximum of the observed
correlations in the data using a minimum number of direct
. influences. Dependencies are visnalized in a directed acyclic
graph and form the qualitative component of the BN. In this
graph, each node corresponds to a variable, and a directed arc
(arrow) between nodes represents a direct influence. Mathe-
matically, a Bayesian network provides a refactoring of the
Joint Probability Distribution (JPD) of the data, using Bayes’
rule. As 2 BN simplifies the JPD, it provides an effective model
that summarizes statistical properties of the data.

Within the study of drug resistance, one often refers to a
mutation that is selected as a first mutation as a major mutation
(Shafer, 2002; Johnson et al., 2004). Similarly, a minor

mutation further increases resistance only in presence of cther
mutations, or compensates for a possible fitness impact of other
mutations, and is therefore selected only in presence of these
other mutations. Although these concepts are not rigorously
defined, conditional independencies in the networks allow us to
identify major and minor mutations, in agreement with these

-definitions.

2. Materials and methods

Data was derived from five clinical databases: Portugal,
Belgium, Israel, Brazil and an international database
containing sequences from subtypes other than subtype B.
In total we had access to 4911 sequences. Protease (PRO)
and partial reverse transcriptase (RT) HIV-1 sequences from
protease inhibitor (PI) naive patients and from patients
treated with only experience to NFV, IDV, or SQV as only PI,
either unboosted or boosted with ritonavir, were trimmed to
the first 350 amino-acids. At most one treated sequence and -
one naive sequence per patient were included and identical
sequences were removed. RT inhibitor experienced patients
were included in the PI naive patient population, since
no resistance to RT inhibitors is expected in the protease
gene. '

Theé analysis followed closely the method described in
Deforche et al. (2006). Subtyping was done using a
phylogenetic analysis (de Oliveira et al., 2005). We identified
wild type polymorphisms based on a prevalence greater than
10% in untreated patients and determined treatment
associated mutations by testing for independence from
treatment using a Cochran—Mantel-Haenszel x° test, stratify-
ing in each combination of subtype and database. The
statistical analysis was corrected for multiple comparisons
using Benjamini & Hochberg with a False Discovery Rate of
0.05. The data sets for Bayesian network were also stratified
for an equal ratio of treated and unireated sequences within
each combination of subtype and database, and included next
to treatment experience, Boolean variables indicating pre-
sence of each treatment associated mutation and presence of
polymorphic amino acids. Bayesian network learning was
done by searching using a simulated annealing heuristic for
the most probable network structure using a Bayesian scoring
metric. A non-parametric bootstrap was performed by
resampling from the sequences, to assess the robustness of
network features. .

In the final networks, we do not show the obvious strong
antagonistic direct influences between different amino acids at
single residue. Only network features (presence or absence of
arcs) with a bootstrap higher than 65% were considered
robust, and only robust arcs are shown. To reduce the
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complexity of the graphs, polymorphic positions that did not
directly influence any treatment-associated mutations were
omitted. Arcs were colored according to their function to
improve reading the graph, but this coloring is only indicative.
For each drug, known resistance mutations are those that are
defined for that drug in either the International AIDS Society
list of resistance mutations of 2005 (Johnson et al., 2005) or
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that are included in the resistance score in at least one of the latest
versions of public resistance interpretation systems ANRS
2004.09, REGA 6.2 or HIVDB 2004.12 (Kantor et al., 2001).
To interpret the Bayesian network in the context of
antiretroviral resistance, we considered the meaning of an
arc between two mutations that was derived in Deforche et al.
(2006). A major mutation is unconditionally dependent on
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Fig. 1. Dataset prevalence (%) of NFV, IDV, and SQV treatment-associated mutations in sequences from untreated (top bar) and treated (bottom bar) patients. For
each drug, the data was stratified for the overall subtype distribution of the sequences to be identical for treated and untreated patients.
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Fig. 2. Annotated NFVexperience Bayesian network showing direct influences between NFV-associated mutations, polymorphisms and NFV treatment (eNFV). An
arc represents a direct dependency between the corresponding variables and thickness is proportional to bootstrap support. Arc color indicates whether it is a direct
influence between NFV-associated mutations (black), an influence from background polymorphisms on NFV-associated mutations (blue), or a combination of these
(blue—black dashed) or merely an association between background polymorphisms (green). An antagonistic arc with a wild type was treated the same as a synergistic
arc with mutations at this position. Arc direction has no causal meaning, but may indicate a non-additive multivariate effect. Unconditional dependencies with
treatment with bootstrap support between 35% and 65% are shown dashed.
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treatment, which is indicated in the networks as the robust
presence of an arc between the mutation and treatment. In this
respect, an antagonistic arc with a wild type was treated the same
as a synergistic arc with mutations at this position. Similarly, a
minor mutation is expected to be conditionally independent
from treatment but dependent on other resistance mutations, and
thus indicated by the robust absence of an arc between the
mutation and treatment. As was discussed in Deforche et al.
(2006), a minor mutation may still be connected to treatment,
when the cost is lower to connect to treatment instead of all the
resistance mutations it is associated with. Where appropriate, we
used the multivariate effect implied by arc directions as well to
narrow down the list of major mutations.

3. Results
3.1. Subtyping

The subtype could be determined for 85% of the sequences.
The overall subtype distribution of the sequences was subtype
G (31%), B (27%), C (24%), Al (12%), D (3%), Fl (3%) and
other subtypes (<1%). The subtype distribution was different
for the untreated and each of the NFV, IDV and SQV treated
populations. As a result the subtype distributions for each
analysis were slightly different (Fig. 1).

PR24

PRO3

PR13 E

3.2. Treatment-associated mutations

The data used to determine mutations associated with
treatment with each of the drugs, included 479 (NFV), 539
(IDV), and 97 (SQV) sequences from patients with experience
with that drug as sole PL

Fig. 1 shows the prevalence of treatment associated
mutations in naive and treated patients, that were identified
for each of the three drugs, using a x2 statistical analysis.

The most notable discordances with known resistance
mutations were the novel mutations 20V, 331/F, 35D/G/N, 62V,
64V, 66F, 748, 891/T/V and 93M for NFV; 35D, 62V, 63T, 66F,
748, 89I/T/V and 95F for IDV; and 111, 58E, 748, 821, and 89V
V for SQV. These mutations, except for 20V, 35N, and 89T have
been previously described to be associated with PI experience
in different studies (Wu et al., 2003; Svicher et al., 2005), but
not with specific inhibitors. Some of these novel mutations
were associated with treatment by all three drugs (74S and 891/
V) or by two drugs (35D, 58E, 66F, 89T, and 95F). The
selection of some of these mutations was more pronounced than
selection of mutations that have been widely accepted as
resistance mutations.

At the same time we did not find selection of mutations 82A/
F/T/S or 84V by NFV, even though they are considered
important for NFV resistance by all algorithms.
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Fig. 3. Annotated IDV experience Bayesian network showing direct influences between IDV-associated mutations, polymorphisms and IDV treatment (elDV).

Legend as in Fig. 2.
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Fig. 4. Annotated SQV experience Bayesian network showing direct influences between SQV-associated mutations, polymorphisms and SQV treatment (eSQV).

Legend as in Fig. 2.
3.3. Bayesian network learning

The data sets for Bayesian network learning included 340
(NFV), 288 (IDV), and 31 (SQV) sequences from patients on
treatment, and respectively 967, 925, and 716 sequences from
PI naive patients. Because of the stratification, the overall ratios
of treated to untreated sequences were the same within every
combination of data set and subtype.

The Bayesian network learning discovered many robust
interactions between the variables in our data sets: the fraction
of arcs with bootsitrap support over 65% increased with
available data and ranged from 44% (for the SQV network) to
68% (for the IDV network). The networks are shown in Figs. 2~
4. For resistance against NFV, the network indicated 30N, 88S
and 90M as major mutations, since they show a robust
unconditional dependence on treatment, and analysis of the
non-additive multivariable effect implied by arc directions at
the treatment node, indicated that these three mutations occur
mostly independently. The amount of selection of one of these
major mutations is different for different subtypes (see Fig. 1).
Insubtype B, 30N is selected most. In subtypes C and G, 90M is
selected most. Finally, in subtypes Al and Fl, 88S is selected
most. For resistance against IDV, the network indicated 82A/T
and 461/L as major mutations. Mutation 84V is also selected by
IDV in our data set, but we find it to be selected only after
accumulation of mutations 82A/T or 461/L, and 10I/F. The

results for SQV were less conclusive, as more network features
(presence or absence of arcs) were not robust because of the
low amount of data. The network indicated 90M as major
mutations but could not exclude 71V as additional major
mutation (which was also unconditionally dependent on
treatment in the most probable network, but with bootstrap
support 47%), and 461, 48V, 53L, 58E, 73S, 748, or 89V as
alternative major mutations, ordered by likelihood. These
mutations were indicated by the most probable network as
conditionally independent from treatment but this indepen-
dence was not robust. Mutation 48V only occurred in subtype
B, and the most probable network indicated that it appeared
only after accumulation of mutations 90M and 101 or 748 in our
data set.

For most minor mutations, that are conditionally independent
from treatment, the networks suggest their role in more detail by
indicating robust interactions with other resistance mutations in
whose presence they are selected, and thus contribute to a
selective advantage of the virus. The network for NFV shows that
minor mutations 20T/V, 35N, 46V/L, 54V, 7T1I/T/V, and 8SI/T/V,
and the polymorphisms 63P and 89L directly influence a major
mutation, while minor mutations 10F, 231, 33I/F, 66F, or 93M are
further away in the resistance pathway. Similarly, for IDV,
mutations 10I/F, 241, 321, 54V, 66F, or 90M directly influence a
major mutation, and mutations 20R, 71V, 748, 84V, 89V/T/V, and
95F are further away in the resistance pathway.
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The networks indicate robust interactions between poly-
morphisms and resistance mutations, which may explain
subtype differences. For example, the NFV network indicated a
protagonistic interaction of the 89L polymorphism on
development of the 30N mutation, explaining the higher
prevalence of 30N in subtype B (Grossman et al., 2004;
Abecasis et al., 2005). This effect was recently confirmed in
in vitro experiments (Calazans et al., 2005). Similarly, both
the IDV and SQV networks suggested a protagonistic
interaction of the 93L polymorphism on development of the
71V mutation.

There are striking similarities when comparing the networks
for different drugs, especially when considering arcs with
bootstrap below 65% as well (which are not shown). All three
networks indicated interactions between resistance mutations
90M and 891, 90M and 71V, and 90M and 54V, and between the
polymorphism 89L/M on mutations at position 71. In addition,
interactions between polymorphisms and resistance mutations
found in two networks were interactions of polymorphism
T12S on mutation 74S, L63P on mutation 90M, I93L on
mutation 90M, I93L on mutation 71V, and L10I on mutations
54V and 90M.

4. Discussion

Based on higher prevalence in sequences from treated versus
untreated patients, we confirmed the selection of many known
mutations by antiviral drugs, but also identified selection of
novel mutations. As can be seen from Fig. 1, selection of these
novel mutations was often more pronounced or sometimes
exclusively in non-B subtypes.

The low level of selection of mutations at position 82 and 84
during NFV treatment is confirmed in other data sets (Kantor
et al., 2001). In Shafer (2002) it is argued that mutations at
position 82 have no phenotypic effect on their own for
resistance against NFV, but contribute to resistance together
with other mutations. A possible explanation for this
discrepancy may be that selection of these mutations depends
on the presence of other mutations that are not commonly
present in untreated patients, or that are not selected by NFV,
but are more common in patients exposed to other Pl treatment.

The learned Bayesian networks indicated major mutations,
largely in agreement with current knowledge (Johnson et al.,
2004), with some exceptions. For NFV we found that 88S has a
different role as 88D, and should be considered a major
mutation, and may be more important than 30N or 90M in
subtypes Al and Fl. Published phenotypic data supports this
finding by indicating a phenotypic fold change in ECsg of 8.9
for 88S alone (Kantor et al., 2001). The IDV network indicated
that 84V is not a major mutation, while it is widely considered
so. As it is documented that it rarely develops as a first
mutation, but only appears in isolates that already have a 90M
(Shafer, 2002), this discrepancy is explained by a discordant
definition of a major mutation. Similarly, according to our
semantics, the SQV network indicates that 48V is not a major
resistance mutation for SQV, since it virtually never occurred
without mutation 90M. This is not due to its low prevalence in

SQV failing sequences, which was comparable to the
prevalence of the major IDV mutation 82T. However, the
SQV' dataset was rather small to make final conclusions.

The power of Bayesian network learning to find robust
(in)dependencies in the data, depends on the sample size, the
number of variables, and the actual number of independencies
in the data set. It has previously been observed that resistance
against IDV is less structured than resistance development
against SQV (Beerenwinkel et al., 2004), which may explain
why a similar amount of robust dependencies were observed for
resistance against IDV as for SQV, despite the fact that the IDV
data set was several times larger.

The biological role of minor mutations is to further increase
resistance, and/or to compensate for a loss in replication
capacity caused by the major mutation. Minor mutations that
only improve replication capacity that was compromised by a
resistance mutation in the virus should develop in the context of
the same resistance mutations regardless of the inhibitor used.
Indeed, these mutations may even develop in absence of the
inhibitor, to improve replication capacity compromised by
other resistance mutations (van Maarseveen et al., 2006). The
similarities observed in the networks for different drugs, could
thus indicate that mutations 101, 128, 54V, 63P, 71V, 891, and
93L improve replication capacity compromised by other
mutations, although their role in increasing resistance cannot
be excluded.

The method of identifying possible resistance mutations by
considering mutations associated with treatment in a cross-
sectional data set can be confounded by drift. Drift may be the
reason for a higher prevalence of a mutation in the treated
population, and this is more likely for polymorphisms that
occur frequently in the untreated population. Even after
stratifying in combinations of database and subtype, we cannot
exclude this effect of drift. At the same time, the Bayesian
networks could not be used in most cases to reliably determine
the role of these polymorphic resistance mutations, since they
mostly ignored the relative low amount of variation associated
with treatment while explaining the larger amount of variation
at these polymorphisms in association with other polymorph-
isms. Mutations 10I and 63P however show similar linkage in
the networks for different Pls, indicating their role. The
interactions we found between 63P and the major mutation
90M are in agreement with earlier reports on the role of L63P
(Martinez-Picado et al., 1999; Sune et al., 2004). The Bayesian
networks could not clarify in a consistent way the role of other
polymorphisms that we found to be associated with treatment
(13V, 201, 35D, 361, 62V, 82I), despite the possibly important
clinical implications.

For the analysis of SQV and IDV, data from both boosted and
unboosted regimens were combined. The effect of boosting is
suggested to primarily increase the genetic barrier to develop a
clinically relevant level of resistance, by increasing the
intracellular concentration of the drug. Whether this changes
the patterns of drug resistance mutations has not been
investigated yet. If using boosted regimen changes resistance
pathways, then this would have blurred the analysis only
yielding lower bootstrap confidence per pathway.
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A difficult question in resistance interpretation is how to
score presence at baseline of minor mutations. These generally
do not have an effect on resistance on their own, and may even
represent a fitness penalty with respect to the wild type. Thus,
without considering further evolution, the virus remains fully
susceptible to the drug. However, some of these mutations
improve the fitness or resistance impact of the corresponding
major mutation. Therefore, the presence of these mutations will
speed up the selection and increase the impact of these major
mutations. Other minor mutations do not directly influence the
major mutation, and thus do not have the same clinical
significance when present at baseline. Therefore, we predict
that for NFV, in absence of major mutations 30N, 888, or 90M,
presence of mutations 20T/V, 35N, 46I/L, 54V, 71/T/V, or 891/
T/V, or of polymorphisms 63P or 89L, should impact clinical
outcome to a greater extent than mutations 10F, 231, 33U/F, 66F,
or 93M. Similarly, for IDV, in absence of major mutations 82A/
T and 461/V, presence of mutations 10I/F, 241, 321, 54V, 66F, or
90M should have a higher impact on clinical outcome than
mutations 20R, 71V, 748, 84V, 89I/T/V, and 95F.

The power of Bayesian network learning lies in its sound
mathematical foundation to distill likely direct interactions
(which in many cases could be causalities) from the many
observed associations between different residues. Bayesian
network learning has previously successfully been applied to
amino acid sequence data, in the context of secondary structure

prediction (Klingler and Brutlag, 1994), but also in the field of

HIV Drug Resistance (Beerenwinkel et al., 2004). In the latter
analysis, Bayesian network models were constrained to trees with
a special structure of the Conditional Probability Distributions
(CPDs). In this way, the models described ordered accumulation
of mutations. In contrast, we use unconstrained Bayesian
networks, and added information on background polymorphisms
to the analysis. As a consequence, both antagonistic and
synergistic interactions between treatment associated mutations
and polymorphisms were learned, without the prior assumption
of a strict ordered accumulation of mutations.

5. Conclusions

We applied Bayesian network learning to HIV-1 protease
sequence data and exposure to protease inhibitors to learn many
aspects of resistance development against three protease
inhibitors. We used the structure of the network to infer
hypotheses about the role of resistance mutations. Our analysis
confirmed current knowledge, especially for resistance devel-
opment in subtype B viruses. Our analysis shows an important
impact of polymorphisms on resistance development that could
explain subtype -differences in resistance development. Our
results may suggest new in vitro experiments, to confirm the
hypothesised role of novel resistance mutations, or be used to
update genotypic resistance interpretation systems.
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