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interface. This latter structural event may lead to a tightening
down of the FtsZ polymer spiral, much like the compression
of a spring, resulting in Z-ring contraction.

Remodeling of cytoskeletal polymers is induced by
transitions between nucleotide hydrolysis intermediates. The
energy from hydrolysis can be used to destabilize a
previously stable structure and to produce mechanical work
[15, 19, 23, 43]. In organisms without a cell wall, FtsZ is the
only conserved protein of the cell division machinery,
suggesting that FtsZ might use GTP hydrolysis to direct
cytokinesis [20, 23, 44]. Three mechanisms have been
proposed for how FtsZ may transmit energy from nucleotide
hydrolysis into mechanical force for constriction of the Z
ring [15, 19, 23, 43]. The release of FtsZ subunits from the Z
ring through depolymerization will cause the Z ring to
become smaller [22], or, alternatively, FtsZ filaments may
move relative to each other to reduce the circumference of
the ring without depolymerization occurring, as observed for
the actomyosin ring in eukaryotes [44]. In addition, the FtsZ
filaments may bend upon GTP hydrolysis [43].

Since the rate-limiting step in the turnover of FtsZ
polymers is GTP hydrolysis, and protofilaments consist
mostly of FtsZ-GTP, GTP hydrolysis will release energy in
small quanta, and will not generate a large force [23]. This
situation is different from that observed for microtubules, in
which almost every subunit is bound with GDP and the
energy from hydrolysis is stored as strain in the polymer
[33]. Perhaps microtubules need to generate a larger force
because they operate on a greater geometric scale than does
the Z ring [23]. )

Structural and Functional Homology Between FtsZ and
Tubulin

The possibility that FtsZ might be a homologue of
tubulin was first suggested by a short segment of its amino
acid sequence, GGGTGTG, which is virtually identical to
the tubulin signature motif, (G/A)GGTGSG, found in all o,
B and y tubulins [45-47]. It was not until the crystal structure
of FtsZ from Methanococcus jannaschii was determined in
1998 that the similarity between tubulin and FtsZ was fully
appreciated [15, 48]. Despite limited (10-18%) sequence
similarity [49], FtsZ and tubulin share a common fold,
comprised of two domains linked by an o-helix [50].
Conserved residues between the two proteins map to the
nucleotide-binding domain and a region involved in
protofilament formation in tubulin. Consistent with these
observations, like tubulin, FtsZ GTP hydrolysis is self-
activated, with the active site being formed by interaction of
two monomers [38]. FtsZ subunits polymerize in the
presence of GTP into straight, 5 nm-wide protofilaments,
while the subsequent hydrolysis of GTP results in the fila-
ments adopting a curved conformation. Just as microtubule
stability is controlled by microtubule associated proteins
(MAPs), assembly of FtsZ is influenced in vivo by proteins
such as FtsA, ZipA and ZapA [51-54]. Taken together, the
similarities between both protein families suggest that FtsZ
may be a prokaryotic cytoskeletal protein homologue of
tubulin [49, 55, 56] and support the hypothesis that ancient
FtsZ might have evolved into tubulin [49, 57, 58]. While
tubulin and FtsZ share some common features, the two
proteins also differ in important ways. While FtsZ subunits
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are all identical, microtubules are formed from non-identical
paired subunits (a- and B-tubulin). As shown in Fig. 4, the
two Mtb FtsZ subunits (A and B) in the crystallographic
asymmetric unit associate laterally, rather than longitudinally
like tubulin protofilaments (Fig. 4C), to form an arc-shaped
dimer [16]. A model for a Mtb FtsZ spiral filament is shown
in Fig. 4D.

Given the importance of FtsZ assembly in cell division,
compounds that interfere with FtsZ function have good
potential as novel antibacterial agents. Because of structural
and functional homology between FtsZ and tubulin,
compounds that are known to affect the assembly of tubulin
into microtubules, provide a starting point for targeting FtsZ
assembly. While the structures of tubulin and FtsZ are
similar, the fact that FtsZ and tubulin have limited sequence
homology (<20% identity) at the protein level, affords the
opportunity to discover FtsZ-specific compounds with
limited cytotoxicity to eukaryotic cells. Therefore, FtsZ can
be considered as an attractive target for the development of
agents with selective inhibitory activity against bacterial
pathogens. In addition, investigating the effects of tubulin
inhibitors on FtsZ assembly should also provide important
information for FtsZ structure and function.

COMPOUNDS TARGETING ESCHERICHIA COLI
FTSZ

Viriditoxin

Using a high-throughput FtsZT65C-fluorescein polyme-
rization assay [60], Wang e al. [61] screened more than
100,000 microbial fermentation broths and plant extracts and
discovered a small molecule, viriditoxin (Fig. 5), which
blocked E. coli FtsZ polymerization (ICso 8.2 pg/ml) and
inhibited GTP hydrolysis (ICsy 7.0 pug/ml). Morphological
assays with a specific E. coli strain (SOS-, SulA-) showed
that viriditoxin caused filamentation, and that the filaments
were not formed as a result of DNA damage. The increased
MIC resulting from the induction of FtsZ expression
provided solid evidence that viriditoxin interacts with FtsZ.
Furthermore, viriditoxin exhibited broad-spectrum antibac-
terial activity against many clinically relevant Gram-positive
pathogens, which indicated a high functional conservation of
FtsZ in these clinically important species. Presumably, the
structure of the FtsZ molecule is highly conserved in the
viriditoxin-binding site, a fact that may limit the ability of
FtsZ to develop resistance to this drug.

Zantrins

After a high throughput protein based chemical screening
of 18,320 compounds, Margalit ef al. [11] reported the
identification of five structurally diverse molecules, named
Zantrins (Fig. 6), that inhibit GTPase activity of E. coli FtsZ
at 1Csy values below 50 upM. Results from electron
microscopy and quantification of effects of Zantrins on
steady state FtsZ polymer mass and structure, indicated that
Zantrins inhibit FtsZ GTPase either by destabilizing the FtsZ
protofilaments (Z1 and Z4) or by inducing filament
hyperstability (Z2, Z3 and Z5). Margalit et al. [11] proposed
that Zantrins that destabilize the FtsZ polymer may bind at a
site between the FtsZ subunits such that the T7 synergy loop
in one FtsZ monomer fails to make optimum contact with the
GTP bound to loops T1-T6 in the neighboring monomer, an
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Fig. (4). (A) The GTPyS complex (Mtb FtsZ. subunit A, yellow; subunit B. brown) is viewed from the “inside™ of a corresponding
microtubule. GTPYS bound to the subunit A active site is shown as a space-filling model (nitrogen. blue; oxygen, red; phosphorous. yellow-
green; carbon. grey: sulfur, purple). The switch elements at the subunit interface within the dimer are highlighted in light blue. The active
sites are lavender. The two Mtb FtsZ subunits are related by a ~92° rotation about the vertical axis (grey): this axis is canted by ~50° from the
afi-tubulin protofilament axis (light green), drawn with the arrowhead pointing in the (+)-direction. (B) Rotated by 90° about a horizontal
axis (from the top in A), to better illustrate the dimmer interface. (C) Comparison of the Mtb FtsZ dimer with the af-tubulin protofilament
(PDB entry 1jff) [59]. Subunit A was aligned with the exchangeable (E) a-tubulin subunit (blue), which contains GDP (green) in its active
site and a bound Taxol (purple) molecule. The two adjacent non-exchangeable (N) B-tubulin subunits (black) in the protofilament contain
GTP (red). The protofilament axis is vertical. (D) A model for an FtsZ spiral filament. A, Twenty-four Mtb FtsZ subunits forming a right-
handed spiral are shown in this stereoview. The B (brown) and A (yellow) subunits alternate.

Reprinted from [16] J. Mol. Biol, 342, (3), Leung, A. K. W.; White. E. L.; Ross, L. J.; Reynolds, R. C.; DeVito. J. A.; Borhani, D. W..
Structure of Mycobacterium tuberculosis FtsZ Reveals Unexpected. G Protein-like Conformational Switches, 953-970., Copyright (2004),
with permission from Elsevier.

interaction essential for polymerization and for stimulating
nucleotide hydrolysis [62, 63]. They also proposed that the
stabilizing Zantrins could inhibit FtsZ depolymerization by
opposing the movement of the T3 switch loop that has been
proposed to cause a bend in the filament upon GTP hydroly-
sis. In support of this suggestion, results from immunofluore-
scence microscopy demonstrate that Zantrins perturb FtsZ
ring assembly in E. coli cells. Interestingly, Zantrins Z3 and
Z5, which stabilize FtsZ polymers in vitro, caused a
significant reduction in Z ring assembly in E. coli. Z3 and Z5
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may disrupt FtsZ’s recruitment of other stabilizing factors,
such as ZipA and FisA, to the septum. Zantrins have also
been tested against FtsZ from Mtb. The majority of Zantrins
inhibited Mtb FtsZ GTPase with ICs, values up to one order
of magnitude higher than the corresponding values against E.
coli FisZ. Zantrins have also been observed to cause lethality
to a variety of bacteria in broth cultures, including antibiotic-
resistant and virulent pathogens, further supporting the
hypothesis that FtsZ is a good target for the development of
new broad-spectrum antibacterial agents.
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Fig. (5). Chemical structure of viriditoxin.

GTP Analogue BrGTP

Lappchen et al. [42] designed a selective E. coli FtsZ
inhibitor BrGTP (Fig. 7) based on the structure of the natural
substrate GTP. Presumably, BrGTP competes with GTP for
the binding site on soluble FtsZ. The inhibitory activity of

OH OH OH
Cl Cl Cl
Z1

HO:
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BrGTP was first demonstrated by electron microscopy which
showed that addition of BrGTP resulted in shorter and
thinner FtsZ filaments. The inhibitory activity of BrGTP was
further characterized by a coupled assay, which allowed
simultaneous detection of the extent of polymerization and
GTPase activity. The results demonstrated the reversible
competitive inhibition of FtsZ by BrGTP. In the GTP
concentration range studied, the ICs, values depend on the
ratio of BrGTP to GTP, which is approximately 1/2 for
assembly and 1/1 for GTPase activity, suggesting that both
nucleotides bind with equal affinity and that BrGTP-FtsZ is
inactive. Interestingly, the addition of a 2-fold excess of
BrGTP when FtsZ had fully polymerized resulted in
complete FtsZ depolymerization and inhibition of GTPase
activity within 5 seconds, indicating that BrGTP could also
lead to polymer destabilization by directly replacing
GTP/GDP in the polymers. The observation that BrGTP
does not inhibit tubulin assembly indicates that there are
subtle differences between the GTP binding sites in FtsZ and
tubulin.

\
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B Br
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1
S (e}
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(¢]
Br Br
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Fig. (6). Chemical structures of Zantrins.
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Fig. (7). Chemical structures of BrGTP.

Sanguinarine

Sanguinarine (Fig. 8) a benzophenanthridine alkaloid
derived from the rhizomes of Sanguinaria canadensis, has a
wide range of antimicrobial activity [64]. It is also known to
inhibit proliferation of various types of cancer cells [65, 66]
and has been shown to depolymerize microtubules both in
vitro and in cancer cells [67, 68]. Recently, Beuria ef al. [69]
reported that sanguinarine inhibited cytokinesis in both
Gram-positive and Gram-negative bacteria by perturbing Z-
ring assembly through FtsZ binding. In both E. coli and B.
subtilis cells, sanguinarine not only reduced the frequency of
Z-ring occurrence, but also perturbed the Z-ring morpho-
logy, resulting in increased cell length in bacteria. Further in
vitro experiments demonstrated that sanguinarine was found
to bind to FtsZ with a dissociation constant of 18-30 uM.
Sanguinarine was shown to reduce the light-scattering
caused by FtsZ assembly, to decrease the sedimentable poly-
meric mass, and to perturb the bundling of FtsZ
protofilaments.

Fig. (8). Chemical structures of sanguinarine.

FtsZ is essential for bacterial cell division and represents
an excellent novel target for anti-bacterial drug discovery.
Although FtsZ shows a high degree of similarity among
bacterial species, there are some important differences
between the E. coli. and Mtb enzymes. Mtb FtsZ shares
~46% amino acid identity with E. coli. FtsZ, and has been
shown to be a markedly slower GTPase in vitro [11, 70]. In
addition, Mtb FtsZ has some characteristics more
reminiscent of its homologue tubulin than the E. coli protein
[70]. Therefore, compounds targeting £. coli FtsZ may not
inhibit the Mtb FtsZ or have anti-TB activity.
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COMPOUNDS TARGETING MTB FTSZ AS
POTENTIAL ANTI-TB AGENTS

Bis-ANS

Bis-ANS (Fig. 9), a well known fluorescent probe for
hydrophobic surfaces on proteins, was shown to inhibit
tubulin polymerization [71]. In 1998, Yu and Margolin [72]
reported the inhibition of E. Coli FtsZ assembly by bis-ANS
and proposed that bis-ANS inhibited FtsZ polymerization by
blocking FtsZ intermolecular hydrophobic interactions. The
titration of FtsZ with bis-ANS and vice versa, using the same
methods that were previously applied to tubulin, suggested
that FtsZ has a high affinity bis-ANS binding site as well as
multiple low affinity binding sites, with Ky values similar to
those of tubulin. The inhibition of bis-ANS binding by GTP
binding, and vice versa, suggested that the GTP and bis-ANS
binding sites overlapped. Subsequently, Nair er al. [73]
demonstrated that 50 pM bis-ANS significantly reduced the
GTPase activity of Mtb FtsZ as well as completely abolished
FtsZ polymerization in a light scattering assay. Interestingly,
in support of the observed in vitro inhibition, Slayden et al.
[74] demonstrated that bis-ANS inhibited Mtb cell
growth(H37,) with a MICy value of 1 uM, and also that
sub-MIC concentrations of bis-ANS caused filamentation in
Mtb. ANS (Fig. 9), a hydrophobic probe similar to bis-ANS,
had no inhibitory effect on FtsZ assembly or tubulin
assembly, suggesting that FtsZ and tubulin share similar
conformational properties and may interact similarly with

bis-ANS and ANS [72].

ol Y o
0 O
ANS Bis-ANS

Fig. (9). Chemical structures of ANS and Bis-ANS.

Thiabendazole and Albendazole

Albendazole and thiabendazole (Table 1) are known
inhibitors of tubulin polymerization via competitive binding
at the same site as colchicine. Importantly, Sarcina and
Mullineaux [75] demonstrated that thiabendazole caused cell
elongation in E. cofi and cyanobacteria, a phenotypic
response identical to that elicited by disruption of the FtsZ
gene in these organisms, suggesting that these tubulin
inhibitors may act in a similar manner on the FtsZ gene
product as they do on tubulin. They also observed unaffected
DNA replication and mobility of thylakoid membrane
components accompanied by cell elongation, which
indicated that thiabendazole had a specific effect on cell
division. Later, Slayden et al. [76] determined the MICys
values of thiabendazole and albendazole against Mtb cell
growth (Table 1), and studied their effects on bacterial
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Table1. Data for Tubulin Polymerization Inhibitors:
Albendazole and Thiabendazole
Compound MICy (H37Rv)
16 ug/mL (61 pM)
S /
N 0
\ N
H
H
Albendazole
16 ug/mL (80 uM)
\ —
©: N\ _§
H
Thiabendazole

ultrastructure (filamentation) and transcriptional response.
The results indicated that thiabendazole and albendazole
interfere and delay Mtb cell division processes at inhibitory
concentrations. In addition, the fact that these drugs have
inhibitory activity provides compelling evidence that the
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inhibition of FtsZ polymerization is a novel drug target that
warrants further research focus.

2-Alkoxycarbonylaminopyridines

Investigators at Southern Research Institute [77-79]
screened their compound library of 200 2-alkoxy-
carbonylaminopyridines, developed to inhibit tubulin
polymerization, for the ability to inhibit FtsZ polymerization
and for the ability to inhibit growth of Mtb. Using this
approach, they identified several compounds with the desired
properties. Colchicine, a known tubulin inhibitor, was also
included in the study as a reference compound. SRI-3072,
SRI-7614, and colchicine inhibited Mtb FtsZ polymerization
and GTP hydrolysis in a dose dependant manner (Table 2).
SRI-3072 and SRI-7614 were equipotent against susceptible
and single-drug-resistant strains of Mtb (Table 3). Impor-
tantly, there is a clear correlation between the antibacterial
activity of selected compounds (as illustrated by SRI-3072
and SRI-7614) and inhibition of FtsZ polymerization and
GTP hydrolysis. Like colchicine, SRI-7614 inhibited
polymerization of both FtsZ and tubulin, while SRI-3072
was specific for FtsZ and did not affect the polymerization of
tubulin. Furthermore, SRI-3072 reduced the growth of Mtb
in mouse-derived macrophages.

Table 2.  Results for Inhibition of M. tuberculosis H37Rv Growth
Compound Structure MICys (mg/L) 1Csp (mg/L) ST (ICs: MIC)
N\/k/l\
~N NH ‘
SRI-3072 o) I X 0.15 6.3 420
/\O/lL R
i ()
NH,
SRI-7614 0 Nl)\?(K 6.25 >200 >32
JJ\ /l\ e~
AN NN Ny
H H
Table 3.  Inhibitors of FtsZ and Tubulin Polymerization and GTP Hydrolysis
M. tuberculosis FtsZ Bovine brain tubulin
Compounds Polymerization GTP hydrolysis Polymerization
p IDsy (uM) % inhibition (100 uM) IDso (M)
Colchicine 104 +2 35 6.5
SRI-3072 52 +12 20 100 (no inhibition)
SRI-7614 60 + 0 25 4
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Taxanes

Taxanes [80, 81], synthesized in our lab, were first
screened for inhibitory activity by a real time PCR-based
(RT-PCR) assay [81]. These taxanes represent two diverse
activities; highly cytotoxic taxoids (i.e., “taxol-like com-
pounds™) that stabilize microtubules [82-84] and noncy-
totoxic (or very weakly cytotoxic) taxane-multidrug-
resistance (MDR) reversal agents (TRAs) [85-92] which
inhibit the efflux pumps of ATP-binding cassette (ABC)
transporters such as P-glycoprotein (P-gp), multidrug
resistant protein (MRP-1), and breast cancer resistant protein
(BCRP). Screening of 120 taxanes revealed that a number of
taxanes exhibited significant anti-TB activity. The anti-
bacterial activity of each compound was confirmed by
determining MICq values using the conventional
microdilution broth assay [81].

In the MIC assay, it was found that SB-RA-2001 [92],
bearing a (E)-3-(naphth-2-yl)acryloyl (2- NpCH=CHCO)
group at the C-13 position possessed very promising anti-TB
activity against drug-resistant as well as drug sensitive Mtb
strains (MICg = 2.5-5 uM; Table 4). SB-RA-2001 [92] was
selected as the lead compound for further optimization, and a
new library of taxanes was prepared by modification of 10-
deacetylbaccatin 111 (DAB) (Fig. 10 and Scheme 1).
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For the FtsZ-binding taxane-based anti-TB agents to be
useful as therapeutic drugs, these agents should not be
cytotoxic at the concentration required for their antibacterial
activity. Accordingly, it is necessary for the agents to
distinguish human § tubulin from Mtb FtsZ. It has been
shown in the SAR studies of paclitaxel (Taxol, Fig. 11) and
taxoids that substitution at the para-position of the C-2
benzoate [84, 93] substantially diminishes the binding ability
of the analogues. Furthermore, the C-10 position may affect
anti-TB activity. Therefore, we synthesized C-2 and C-10
modified SB-RA-2001 (Scheme 1, eq 1) to examine the
effects of those modifications on cytotoxicity, FtsZ binding
ability, and anti-TB activity. Some C-10 modified SB-RA-
2001 analogues show little or no anti-TB activity, while C-2
modification of SB-RA-2001 results in slightly decreased
cytotoxicity and does not affect the anti-TB activity.

A variety of hydrophobic side chains were appended to
the C-13 position of DAB in order to generate a series of SB-
RA-2001 analogues (Scheme 1, eq 2). Screening of these
compounds revealed several taxanes with activity as good as
that of SB-RA-2001 (entries 3, 5, 7, and 8, Table 4).

We also examined whether the attachment of the 3-(2-
naphthyl)acrylate side chain to the C-13 position is crucial

Table4. Antimicrobial Activities of Taxanes Against Drug-Sensitive and Mutidrug-Resistant M. tuberculosis’
Entry Taxane MIC (uM) Cytotoxicity (1Cs, #M)
M. tuberculosis M. tuberculosis MCF7 A549
H37Rv IMCJ946.K2

1 Paclitaxel 40 40 0.019 0.028
2 SB-T-0032 5 1.25 0.65 0.65
3 SB-RA-2001 5 2.5 4.5 15.7
4 SB-RA-20011 5 25 7.6 14.0
5 SB-RA-2000 5 5 54 80
6 SB-RA-1010 10 10 9.3 12.5
7 SB-RA-20032 25 25 34 45
8 SB-RA-2001MeO6 5 5 5.3 5.0
9 SB-RA-4010 20 10 14 N.D
10 SB-RA-200101 10 10 7.0 10.8
11 SB-RA-200102 10 5 39 9.6
12 SB-RA-200200 20 5 >20 4.3
13 SB-RA-2002002 10 20 94 17.0
14 SB-RA-5001 25 1.25 >80 >80
5 SB-RA-5001MeO6 2.5 25 >80 >80
16 SB-RA-5011 2.5 1.25 >80 >80
17 SB-RA-5012 25 1.25 >80 >80

*A1. berculosis (Ath) H37Rv is sensitive 1o all antibiotics tested. M. nberculosis IMCI946.K2 is resistant to nine drugs including INH, REF. EB. streptomycin (SM). kanamycin
(KM). ethionamid (ETH). p-aminosalicilic acid (PAS). cycloserine (CS) and enviomycin {EVM). MCF7 and A549 cells: human breast and non-small cell lung cancer cell lines.
respectively. Reprinted with permission from [80] J. Med. Chem. 2006, 49. (2). 463-466. Copyright 2006 American Chemical Society.
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Scheme 1. Synthesis of taxane-based anti-TB agents®

“Reagents and conditions: (i) RCOOH. DIC. DMAP. CH,Cl,: (ii) HF/Pyridine. CH;CN/Pyridine. room temperature. overnight: (iif) CeCls.
acid anhydride, THF, room temperature, 4h-6h: (iv) TESCIL imidazole, room temperature: Acid chloride, LIHMDS. THF. -40°C: (v)
RCOOH, EDC, DMAP, CH,Cl,. room temperature. Reprinted with permission from [80] J. Med. Chem. 2006, 49, (2). 463-466. Copyright

2006 American Chemical Society

DAB

SB-RA-2001

Fig. (10). Chemical structures of DAB and SB-RA-2001. Reprinted with permission from [80] J Med Chem. 2006. 49, (2). 463-466.

Copyright 2006 American Chemical Society.

for the anti-TB activity of the SB-RA-2001 series via
interaction with FtsZ. Accordingly, we attached the same
side chain moiety to the C-7 and C-10 position to see the
effects of these changes on the potency and profile of the
resulting taxanes (Scheme 1, eq 3). In fact, the 10 modified
analogue SB-RA-4010 showed only slightly reduced anti-TB
activity (entry 9, Table 4).

In addition to the above modifications, we also intro-
duced functionalities to improve the water solubility of these
TRAs. Thus, N,N-dimethylglycine and N, N-diethyl-B-alanine
esters were introduced to SB-RA-2001 as a pendant group at
the C-7 or C-10 position (Scheme 1, eq 4). This modification
caused only minor reduction in the anti-TB activity of these
analogues (SB-RA-200101, SB-RA-200102, SB-RA-
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200200, and SB-RA-2002002) as compared with SB-RA-
2001 (entries 3, 10, 11, 12, and 13, Table 4).

Although SB-RA-2001 is certainly an excellent lead
compound for optimization, it will be even better if a
noncytotoxic lead compound, which does not bind to
microtubules at all, is identified. Recently, we have been
investigating a novel antiangiogenic taxoid (IDN5390) [94,
95}, which bears a C-secobaccatin (i.e., C-ring-opened
baccatin) skeleton and is much less cytotoxic than paclitaxel.
Accordingly, we prepared the C-seco analogue of SB-RA-
2001, i.e., SB-RA-5001 (Scheme 1, eq 5). Three analogues
of SB-RA-5001 (Fig. 12) were also prepared and assayed for
their anti-TB activity and cytotoxicity. Significantly, SB-
RA-5001 series compounds (entries 14-17, Table 4)
possessed potent anti-TB activity (MIC 1.25-2.5 uM) against
drug sensitive and drug-resistant MTB strains without
appreciable cytotoxicity (ICsp > 80 pM).

As Table 4 shows, paclitaxel, SB-T-0032 (Fig. 11), SB-
RA-2001 and its congeners were assayed for their growth
inhibitory activity against drug-sensitive Mtb strain (H37Rv)
and a multi-drug-resistant strain (IMCJ946K2), cultured
from clinical isolates of MDR-TB. The Mtb strain IMCJ
946K2 is associated with nosocomial outbreaks in Japan and
is resistant to all the clinically prescribed anti-TB drugs used
in Japan (9 drugs; see Table 4 legend).

Paclitaxel (Fig. 11), a microtubule-stabilizing anticancer
agent, exhibits modest antibacterial activity against both Mtb
strains (MIC 40 uM), but its cytotoxicity against human
cancer cell lines (a benchmark for activity against human

Paclitaxel

Fig. (11). Chemical structures of paclitaxel and SB-T-0032.

SB-RA-5001: X =H
SB-RA-5001Me06: X =MeO
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host cells) is 3 orders of magnitude more potent (ICs, 0.019-
0.028 uM; entry 1, Table 4). These data clearly indicate that
paclitaxel is highly specific for microtubules. SB-T-0032
(Fig. 11) exhibits one order of magnitude higher antibacterial
potency and 20-30 times reduced cytotoxicity compared to
paclitaxel. Since it is likely that the 1Cqo values would be at
least 10 times larger than the ICs, values (as the former
measures complete cell growth inhibition while the latter
only measures 50% inhibition), it appears that SB-T-0032
has comparable affinities to microtubules and FtsZ (entry 2,
Table 4). SB-RA-2001 and its congeners derived from DAB
(entries 3-13, Table 4) are clearly much less cytotoxic than
paclitaxel (200-1000 times less toxic) and SB-T-0032, while
keeping the same level of antibacterial activity to that of SB-
T-0032. These TRAs appear to have higher specificity to
FtsZ than microtubules. As entries 14-17, Table 4 clearly
indicated, C-seco-TRAs are noncytotoxic so far at the upper
limit of solubility and detection, while keeping the MIC
values of 1.25-2.5 puM against drug-resistant and drug-
sensitive Mtb strains. Thus, we have now discovered
noncytotoxic taxane lead compounds to develop a novel
class of anti-TB agents. The specificity of these novel
taxanes to microtubules as compared to FtsZ appears to have
been completely reversed through systematic rational drug
design. Moreover, we observed that the treatment of Mtb
cells with SB-RA-5001 at the MIC caused filamentation and
prolongation of the cells (Fig. 13), a phenotypic response to
FtsZ inactivation. In addition, a preliminary study on the
effect of TRA SB-RA-5001 on FtsZ polymerization and
depolymerization using the standard light scattering assay

Ph

SB-T-0032

SB-RA-5011: X =0
SB-RA-5012: X =8

Fig. (12). Chemical structures of highly promising noncytotoxic anti-TB taxane leads derived from C-seco-baccatin.
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Control SB-RA-20018

Qjima et al.

SB-RA-S]

Fig. (13). Electron micrographs of Mtb cells before (Control) and after treatment with SB-RA-20018 and SB-RA-5001. Reprinted with
permission from [80] J. Med. Chem. 2006. 49, (2), 463-466. Copyright 2006 American Chemical Society.

demonstrated a dose-dependent stabilization of FtsZ against
depolymerization.

CONCLUSION

Multi-drug resistant Mtb is a major worldwide health
problem. Therefore, it is critical to develop new antibiotics
with novel modes of action to overcome this emerging
resistance problem. FtsZ, a tubulin-like GTPase, plays an
essential role in bacterial cell division, and is present in
almost all eubacteria and archaea. Inhibitors of the GTP-
dependent polymerization of FisZ are expected to result in a
new class of antibacterial agents.

The strong structural homology between FtsZ and tubulin
raises the possibility that some of tubulin inhibitors could
affect bacterial cell division. The search for a suitable lead
compound was greatly facilitated by screening libraries of
tubulin inhibitors. The fact that the protein sequence
homology between FtsZ and tubulin is low (<20% identity)
strongly indicates an excellent possibility in discovering
FtsZ specific agents that are non-cytotoxic to eukaryotic
cells. Recently, a number of FtsZ inhibitors have been
reported. Some of them have been observed to perturb Z ring
assembly, and cause bacterial lethality, confirming the
hypothesis that FtsZ is a sensitive target for anti-TB drug
discovery. However, much remains to be done to exploit
FtsZ as a new target. Structural and kinetic analysis of
compounds binding to FtsZ, determining the mechanism of
drug action and evaluating structure relationships of active
compounds are all critical aspects of the rational drug
discovery process, which will facilitate the further
optimization of chemical leads into specific FtsZ inhibitors
with high affinity.
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