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Abstract Focusing on the final step of osteoclastogenesis, we studied cell fusion from tartrate-resistant acid phosphatase
(TRAP)-positive mononuclear cells into multinuclear cells. TRAP-positive mononuclear cells before generation of multinuclear
cells by cell fusion were differentiated from RAW264.7 cells by treatment with receptor activator of nuclear factor kappa
B ligand (RANKL), and then the cells were treated with lipopolysaccharide (LPS), followed by culturing for further 12 h.
LPS-induced cell fusion even in the absence of RANKL. Similarly, tumor necrosis factor (TNF)-o and peptidoglycan (PGN)
induced cell fusion, but M-CSF did not. The cell fusion induced by RANKL, TNF-x, and LPS was specifically blocked by
osteoprotegerin (OPG), anti-TNF-a antibody, and polymyxin B, respectively. LPS- and PGN-induced cell fusion was partly
inhibited by anti-TNF-o antibody but not by OPG. When TRAP-positive mononuclear cells fused to yield multinuclear cells,
phosphorylation of Akt, Src, extracellular signal-regulated kinase (ERK), p38MAPK (p38), and c-Jun NH2-terminal kinase (JNK)
was observed. The specific chemical inhibitors LY294002 (PI3K), PP2 (Src), U0126 (MAPK-ERK kinase (MEK)/ERK), and
5P600125 (INK) effectively suppressed cell fusion, although SB203580 (p38) did not. mRNA of nuclear factor of activated
T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP) during the cell fusion was quantified,
however, there was no obvious difference among the TRAP-positive mononuclear cells treated with or without M-CSF, RANKL,
TINF-a, LPS, or PGN. Collectively, RANKL, TNF-o, LPS, and PGN induced cell fusion of osteoclasts through their own receptors.
Subsequent activation of signaling pathways involving PI3K, Src, ERK, and JNK molecules was required for the cell
fusion. Although DC-STAMP is considered to be a requisite for cell fusion of osteoclasts, cell fusion-inducing factors other than
DC-STAMP might be necessary for the cell fusion. ). Cell. Biochem. 9999: 1-13, 2006. @ 2006 Wiley-Liss, Inc.
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LPS, lipopolysaccharide; MAPK, mitogen-activated protein
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Bone is continuously remodeled by bone
formation and resorption, and the cooperative
bone metabolism is precisely regulated to
maintain homeostasis. Osteoclasts, which are
responsible for bone resorption in bone metabo-
lism, are multinucleated cells originating from
hematopoietic precursor cells of the monocyte/
macrophage lineage. One of the key factors for
osteoclastogenesis, which is induced by osteo-
blasts, is receptor activator of nuclear factor
kappa B ligand (RANKL), a member of the
tumor necrosis factor (TNF) family [Anderson
etal., 1997; Wonget al., 1997; Lacey et al., 1998;
Yasuda et al., 1998]. RANKL was found to be
expressed by T-cells [Wong et al., 1997; Josien
et al., 1999; Kong et al., 1999] and B-cells [Li
et al., 2000] as well as osteoblastic/stromal cells
and to be essential for osteoclast differentiation.
Receptor activator of nuclear factor kappa
B (RANK), which is one of TNF receptor family
members, is expressed in osteoclasts and their
precursor cells as the receptor of RANKL
[Josien et al., 1999; Li et al., 2000; Choi et al.,
2001]. Downstream signaling through RANK is
essential for osteoclastogenesis.

Osteoclasts are differentiated through multi-
ple steps that include cell fusion at the latest
step of differentiation, yielding multi-nuclear
cells. Dendritic cell-specific transmembrane
protein (DC-STAMP) was recently found to play
a role in the cell fusion of osteoclasts, which
seems to support the activity of bone resorption
by osteoclasts [Kukita et al., 2004; Yagi et al.,
2005]; however, the factors involved in and
the precise mechanism of the cell fusion are
unknown.

Deviation from the normal conditions of bone
resorption results in bone diseases such as
osteopetrosis, osteoporosis, and bone resorptive
infectious disease. Periodontal disease is
the most frequent bone resorptive infectious
disease and is thought to be caused mainly by
infection with Gram-negative bacteria. Such an
infectious and pathological condition induces
inflammation, resulting in bone resorption.
A major bacterial factor for inflammation
has been believed to be lipopolysaccharide
(LPS), a main component of the cell surface of
Gram-negative bacteria. LPS has the ability
to induce proinflammatory cytokines such as
TNF-a, interluekine-1p (IL-1B), and inter-
luekine-6 (IL-6) in various kinds of cells [Wang
and Ohura, 2002]. Bacterial components such
as LPS or various cytokines elicited in infectious

lesions may modulate physiological osteo-
clastogenesis, leading to a pathological bone
resorptive condition.

In the present study, we investigated
what bacterial components or cytokines affect
osteoclastogenesis at the stage of cell fusion,
what receptor molecules are involved in the
cell fusion, and what signaling pathways are
necessary for the cell fusion.

MATERIALS AND METHODS
Reagents

Anti-nuclear factor of activated T-cells cl
(NFATecl) (7A6), anti-phospho extracellular
signal-regulated kinase (ERK) (E-4), anti-
TRAF6 (H-274) and anti-cellular homolog of v-
src (c-Src) were purchased from Santa Cruz
(Santa Cruz, CA). TNF-o, anti-TNF-a, osteo-
protegrin ligand (OPG), and transforming
growth factor-p (TGF-p) were from R&D
Systems Inc. (Mineapolis, MN). Anti-ERK,
anti-p38 MAPK (p38) (5F11), anti-phospho-
p38 (28B10), anti-Akt, anti-phospho-Akt,
and anti-phospho-c-Jun NH2-terminal kinase
(JNK) antibodies were from Cell Signaling
Technology (Beverly, MA). RANKL was from
Peprotech EC Ltd (London, United Kingdom).
LY294002, PD169316, SB203580, SP600125,
PP2, U0126, and PD98059 were purchased
from Calbiochem Corp. (La Jolla, CA). M-CSF
was from Kyowa Hakko Kogyo Co., Ltd (Tokyo,
Japan). RANKL was from Peprotech (Rocky
Hill, NJ). ¢cDNA of mouse kidney was from
Clontech. Minimal essential medium o modifi-
cation (z-MEM) and all other reagents includ-
ing LPS, PGN, IL-1p, and IL-6 were obtained
from Sigma (St. Louis, MO).

Cell Culture

The murine monocytic cell line RAW264.7
(ATCC, Rockville, MD) was cultured in a
humidified incubator with an atmosphere of
5% CO5 in air at 37°C and maintained on
uncoated plastic dishes of 9 cm in diameter in
a-MEM containing 10% (v/v) heat-inactivated
fetal calf serum (FCS) with 2 mM glutamine,
100 U/ml penicillin, and 100 pg/ml strepto-
mycin. For subculture, the cells were resus-
pended with 10 ml of fresh medium by mild
pipetting and transferred to a 15 ml conical
tube. After sitting for 5 min, the upper 14.5 ml
fraction was removed, and aggregated cells
were collected from the bottom and seeded into
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a fresh dish containing 12 ml of fresh medium.
For osteoclastogenesis experiments, the indi-
cated number of cells was seeded on tissue
culture plates in the presence or absence of
RANKL and chemical reagents.

Tartrate-Resistant Acid Phosphatase
(TRAP) Staining

Cells were fixed with 4% paraformaldehyde in
phosphate-buffered saline (PBS) at 4°C for more
than 60 min. The cells were then treated with
0.2% Triton X-100 in PBS at room temperature
for 5 min, followed by rinsing twice with PBS.
Finally, the fixed cells were stained with 0.01%
naphthol AS-MX phosphate (Sigma) and 0.05%
fast red violet LB salt (Sigma) in the presence of
50 mM sodium tartrate and 90 mM sodium
acetate (pH 5.0) for 15—-60 min and then rinsed
twice with PBS.

Measurement of TRAP Intensity

Following TRAP staining, the plates were
scanned by a transparent light scanner, and the
red color image was extracted from the scanned
image using the Photoshop (Adobe Systems
Inc., San Jose, CA) computer program. The
intensity of the red color image was measured
using National Institutes of Health (NIH)
Image computer program and is represented
as TRAP intensity in this paper.

Cell Proliferation Assays

Cell proliferation was measured using a Cell
Counting Kit (Dojindo, Kumamoto, Japan)
according to the manufacturer’s instructions.
Similar to the MTT [3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyl 2H-tetrazolium bro-
mide] assay, this kit measures intracellular
mitochondrial dehydrogenase activity in living
but not in dead cells by forming water-soluble
formazan dye with the tetrazolium compound
WST-1, a sodium salt of 4-[3-(4-iodophenyl)-
2-(4-nitrophenyl)-2H-5-tetrazoliol-1,3-benzene
disulfonate.

Immunoblotting

Cells were seeded at 5 x 10° cells/well on a
24-well plate and kept in a humidified incubator
with an atmosphere of 5% CO, in air at 37°C for
4 h. The cells were stimulated with RANKL or/
and other chemical reagents and incubated for
the indicated time. After incubation, the cells in
the 24-well plate were rinsed twice with ice-cold
PBS, followed by addition of 50 ul of sodium
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dodecyl sulfate (SDS)-sample buffer [1% SDS,
100 mM dithiothreitol (DTT), 10% glycerol,
0.0025% bromophenol blue, 62.5 mM Tris/
HCl, and pH 6.8] containing 1 mM sodium
orthovanadate (protein tyrosine phosphatase
inhibitor), 1 mM phenylmethylsulfonyl fluor-
ide, 1 pg/ml aprotinin, 1 pg/ml pepstatin, 1pg/ml
chymostatin, and 1 pg/ml leupeptin. The whole
cell lysate was then treated in ice-cold water by
sonication (two 15-s pulses with a 60-s interval)
(Bioruptor UDC-200T, Cosmo Bio, Tokyo,
Japan). After boiling for 5 min, 4—7 pl of the
lysate (20 pg of protein) was subjected to
SDS- polyacrylamide gel electrophoresis
(PAGE), and the proteins in the gel were
transferred to a polyvinylidene difluoride
(PVDF) membrane. The membrane was incu-
bated in 5% skim milk, 25 mM Tris/HCl (pH
7.6), 150 mM NaCl, and 0.1% Tween-20 (TBST)
at room temperature for 1 h, washed twice with
TBST for 5 min, and then incubated with an
antibody at 2000-4000 x dilution in TBST at
4°C for 16 h. The membrane was washed three
times with TBST for 10 min, incubated with a
horse radish peroxidase (HRP)-conjugated sec-
ond antibody at 4000-8000 x dilution in TBST
at room temperature for 1 h, washed vigorously
five times for 10 min, and subjected to chemilu-
minescence (ECL-plus, Amersham Pharmacia
Biotech, Piscataway, NJ) to visualize HRP. In
some experiments for reprobing, the membrane
was stripped of antibody with Reblot Plus
Strong (Chemicon, CA) according to the manu-
facturer’s instructions.

Real-Time PCR

Total RNA was prepared using an RNeasy
Mini Spin Column (Quiagen) according to the
manufacturer’s instructions, and the cDNA
was reverse-transcribed by SuperScript II
Reverse Transcriptase (Invitrogen, Carlsbad,
CA). Using an M x 3005PTM Real-time PCR
System and Brilliant SYBR Green QPCR
Mastermix (Stratagene), the reverse-tran-
scribed cDNA was amplified and quantifed with
specific primers according to the manufac-
turer’s instructions. The primer sequences
used for amplification were as follows:
mouse GAPDH, 5-ACCCAGAAGACTGTG-
GATGG-3" and 5-CACATTGGGGGTAGGAA-
CAC-3; NF-ATcl, 5'-TCATCCTGTCCAACA-
CCAAA-3" and 5'-TCACCCTGGTGTTCTTCC-
TC-3'; DC-STA-MP, 5'-GGGCACCAGTATTTT-
CCTGA-3' and 5'-TGGCAGGATCCAGTAAAA-
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GG-3'; and TRAP, 5-CAGCAGCCAAGGAG-
GACTAC-3 and 5-ACATAGCCCACACCGT-
TCTC-3'. The relative amounts of each mRNA
were normalized by the GAPDH expression.

RESULTS

LPS-Mediated Inhibition in the Initial Step of
Osteoclast Differentiation

LPS, a major component of the cell wall of
Gram-negative bacteria, has been reported to
strongly induce inflammation, which is thought
to cause bone destruction. LPS induces bone
resorption when administered in vivo; however,
it suppresses osteoclast formation from bone
marrow macrophages in vitro cell cultures. In

order to determine what step of osteoclasto-
genesis is influenced by LPS, we examined
whether LPS affected RANKL-induced osteo-
clastogenesis when it was present in RAW264.7
cell culture at different time periods after
treatment with RANKL. In a previous study,
we found that 1-3 uM U0126, a MAPK-ERK
kinase (MEK)/ERK inhibitor, accelerated osteo-
clastogenesis of RAW264.7 cells in the presence
of RANKL but that 10 uM of U0126 suppressed
osteoclastogenesis [Hotokezaka et al., 2002]. In
culture conditions with or without 2 uM U0126,
cells were treated with LPS for different periods
of 12 h during the total 48-h culture. In both
culture conditions, LPS suppressed osteoclas-
togenesis when added for the first 12 h, and the

+ RANKL

Fig. 1. Effect of LPS on differentiation of RAW264.7 cells into osteoclast-like cells, RAW264.7 cells in 250
pl of a-MEM were cultured in a 96-well tissue culture plate in the presence of 25 ng/m| RANKL with (upper;
16,000 cells) or without (lower; 8,000 cells) 2 uM U01 26. The cells were stimulated with 25 ng/ml LPS during
the indicated period in the absence of RANKL. TRAP activity was visualized by TRAP staining. A: culture
plate scanned. B: measured TRAP intensity, the mean of three different determinations was plotted. C: cell
shapes under an optical microscope. Bars indicate 50 pm. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.|
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suppression was markedly weaker when LPS
was added at a later 12-h period (Fig. 1). Similar
to the previous reports [Takami et al., 2002;
Zou and Bar-Shavit, 2002; Zou et al.,, 2002;
Hayashi et al., 2003], LPS inhibits osteoclasto-
genesis only in the early step of differentiation
suggests that effects of cytokines or Toll-like
receptor (TLR) ligand molecules such as LPS on
osteoclastogenesis may vary among steps of
differentiation.

Effects of Cytokines or TLR Ligands on the
Latest Step of Osteoclastogenesis

In this study, we used an enhanced culture
condition in which the cells were cultured in
the presence of both RANKL and U0126
since TRAP-positive multinuclear cells were
generated in the culture condition within 48 h
(Fig. 1). Effects of various cytokines or TLR
ligands on the latest step of osteoclastogenesis
and fusion of TRAP-positive mononuclear cells
were investigated. First, TRAP-positive mono-
nuclear cells were generated from RAW264.7
cells by incubation with RANKL and U0126 for
36 h. The cells were then incubated in culture
medium with various cytokines or TLR ligand
molecules for 12 h in the absence of RANKL.
Similar to the previous reports [Lam et al., 2000;
Zou and Bar-Shavit, 2002; Zou et al., 2002],
LPS, PGN, and TNF-« induced cell fusion as
well as RANKL (Fig. 2). Although M-CSF failed
to induce cell fusion, it increased the number of
TRAP-positive mononuclear cells. IL-1p had no
ability to induce cell fusion in this condition. In
addition, we examined IL-6 (0.1-50 ng/ml),
TGF-p (0.1-50 ng/ml), phorbol myristic
acetate (PMA; 0.1-10 pM), concanavalin A
(0.1-10 pg/ml), amphotericin B (AmB; 0.1-10
ug/ml), and oxydized low-density lipoprotein
(LDL; 0.1-10 pg/ml). None of them induced cell
fusion (data not shown) although PMA, AmB,
and oxydized LDL are known as inducers of
proinflammatory cytokines in macrophages
[Stuart and Hamilton, 1980; Cleary et al,
1992; Pollaud-Cherion et al., 1998]. These
results suggested that cell fusion in the latest
step of osteoclastogenesis might be induced by
treatment with RANKL, TNF-o, LPS, and PGN
but not by treatment with others.

It is known that IL-1p-induced cell signaling
is similar to that of LPS and PGN with respect to
involvement of MyD88, an adaptor molecule of
IL1R family members [Subramaniam et al.,
2004]. We investigated whether the IL-1f

receptor IL1RI was expressed in RAW264.7
cells. Real-time RT-PCR analysis revealed that
ILIRI was not expressed in RAW264.7
cells, whereas RANK, c-fms, TLR2, and TLR4,
receptors for RANKL, M-CSF, PGN, and
LPS, respectively, were expressed in the cells
(Fig. 2F). Absence of the IL-1p receptor in the
cell line may account for the disability of IL-1p to
induce cell fusion.

Ability of LPS and PGN to Induce
TNF-a-Independent Cell Fusion

LPS and PGN are known to induce TNF-a« in
RAW264.7 and other cells [Remick et al., 1988;
Gupta et al., 1995]. Furthermore, TNF-a
was reported to induce osteoclastogenesis in
macrophages exposed to permissive levels of
RANKL [Lam et al., 2000]. In order to deter-
mine whether cytokines or TLR ligands directly
or indirectly induced cell fusion, OPG—a neu-
tralizing antibody against TNF-o (anti-TNF-),
and polymyxin B were used to block RANKL,
TNF-2, and LPS, respectively (Fig. 3). OPG,
anti-TNF-a, and polymyxin B (each 0.3 pug/ml)
specifically inhibited the osteoclast cell
fusion induced by RANKL, TNF-x, and LPS,
respectively. Anti-TNF-x strongly inhibited
TNF-a-induced cell fusion and also had some
inhibitory effects at 1 ug/ml on LPS- and PGN-
induced cell fusion (Fig. 3A). Anti-TNF-a (1 pg/
ml) completely suppressed cell fusion induced
by TNF-a (10 ng/ml) and the secretion of TNF-a
induced by LPS or PGN was less than 1.2 ng/ml,
suggesting that LPS and PGN had the ability to
induce TNF-a-independent cell fusion (Fig. 3B).

Immunoblot Analysis During the
Cell Fusion Process

An intracellular domain of RANK interacts
with TNF receptor-associated factor (TRAF)
2 and TRAF 6 [Galibert et al., 1998, Wong
etal., 1998, 1999; Darnay et al., 1999; Kimet al.,
1999], which appear to be involved in the
activation of downstream signaling molecules
such as nuclear factor kappa B (NF-kB), Src
[Horne et al., 1992; Lowe et al., 1993], phos-
phatidylinositol 3 (P13), protein kinase B (PKB/
Akt), and mitogen-activated protein kinases
(MAPKs) including p38, ERK, and JNK
[Xia et al., 1995; Wong et al., 1998, 1999;
Matsumoto et al, 2000; Chang and Karin,
2001; Lee et al., 2002; Wei et al., 2002]. In order
to study cell signaling during the cell fusion
process, we determined the amounts of several
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transcription factors and phosphorylation of
various signaling molecules by immunoblot
analysis. In our culture system, TRAP-positive
mononuclear cells began to fuse at 8 h, and they
were fully fused at 16 h after stimulation. As
shown in Figure 2, RANKL, TNF-«, and LPS
equally induced fusion of TRAP-positive mono-
nuclear cells, but M-CSF did not. Phosphoryla-
tion of Akt, Sre, ERK, JNK, and p38 was
observed at 480 or 960 min in cells stimulated
with RANKL, TNF-a, and LPS (Fig. 4). p38
showed the most prominent phosphorylation by
stimulation with RANKL, TNF-a, and LPS
throughout the incubation period. Continuous
phosphorylation of Akt was observed in cells
treated with M-CSF, in contrast to the transient
phosphorylation in cells treated with RANKL,
TNF-o, or LPS at 8 and 16 h. The continuous or
transient phosphorylation of Akt may be
involved in cell fate, growth, or fusion. Since
phosphorylation of signaling molecules is
thought to be involved in the subsequent
cellular responses, we determined the impor-
tance of the signaling molecules in the cell
fusion process by using specific inhibitory
compounds. As expected, LY294002 (PI3K
inhibitor), PP2 (Sre¢ inhibitor), U0126 (ERK
inhibitor), and SP600125 (JNK inhibitor) effi-
ciently inhibited the RANKL-induced cell
fusion, but SB203580 (p38 inhibitor) had no
inhibitory effect (Fig. 5). Another p38 inhibitor,
PD169316, also had no effect (data not shown).
In order to study whether p38 is involved in an
activity of osteoclast, resorption pit formation
was measured. However, resorption pit forma-
tion induced by RANKL, TNF-«, or LPS was not
inhibited by the p38 inhibitor SB203580. The
role of p38 during the cell fusion process in
osteoclastogenesis remains unclear.

Real-Time PCR Analysis of Expression of
NFATc1, DC-STAMP, and TRAP

It was recently found that DC-STAMP parti-
cipates in the cell fusion of osteoclasts [Kukita
et al., 2004; Yagi et al, 2005]. First, we

determined levels of mRNA of NFATel, DC-
STAMP, and TRAP in cells treated with
RANKL at several time points. The mRNA level
of NAFTcl increased at an earlier time point
than did the mRNA levels of DC-STAMP and
TRAP. DC-STAMP and TRAP mRNAs
increased immediately before cell fusion
(Fig. 6). We then investigated the expression
of NFATc1, DC-STAMP, and TRAP in the latest
step of osteoclastogenesis. RAW264.7 cells that
had been treated with RANKL for 36 h were
then treated with RANKL, M-CSF, LPS, or
TNF-a for 6 h. At this time point, the cells
began to fuse. Then the expression of NFATc1,
DC-STAMP, and TRAP in the cells was deter-
mined by real-time PCR analysis. Expression of
DC-STAMP in RANKL- or LPS-treated cells
was not significantly different from that in
M-CSF-treated cells or non-treated cells. The
M-CSF-treated cells and non-treated cells
showed no cell fusion, whereas RANKL-, LPS-,
and TNF-a-treated cells showed cell fusion. We
could not find any significant difference in
expression of NFATc1, DC-STAMP, and TRAP
between the fused cells and non-fused cells.
These results suggest that an essential factor
other than DC-STAMP may determine whether
TRAP-positive mononuclear cells are fused
or not.

DISCUSSION

In an in vitro culture system using osteoclast
precursor cells purified from various tissues
such as bone marrow, spleen, and liver, it is
difficult to avoid contamination with other
cell lineages such as T-cells and mesenchymal
stromal cells. In this study, we used
RAW264.7—a murine macrophage cell line that
can differentiate into osteoclast-like cells in the
presence of RANKL [Hsu et al., 1999]. There
are some characteristic differences between
RAWZ264.7 cells and macrophages; for example,
RAW264.7 cells do not respond to IL-1f, and
the osteoclast-like cells differentiated from
RAW264.7 cells form smaller and shallower

Fig. 2. Effectsoffactors on cell fusion of osteoclasts. RAW264.7
cells (1.6 x 10°) were cultured for 36 h in 250 pl of o-MEM
containing 10% FCS, 25 ng/m| RANKL, and 2 uM U0126 in a 96-
well tissue culture plate. Then the medium was replaced with
250 pl of x-MEM containing 10% FCS and indicated factors.
Concentrations used were 50 ng/ml for M-CSF, 10 ng/m| RANKL,
10 ng/ml LPS, 100 ng/ml PGN, 10 ng/ml TNF-a, and 50 ng/ml
IL-1B. A: scanned culture plate. B: area % of multinuclear cells,

C: number of mononuclear cells. D: TRAP intensity. E: cell
shapes under an optical microscope. F: mRNA quantified by real-
time RT-PCR. Total RNAs were prepared from RAW264.7 cells
treated with RANKL and UD126 for 36 h and kidney cells of mice,
and they were subjected to real-time RT-PCR using primers for
RANK, c-fms, TLR4, and IL-1R type 1. Bar indicates 100 pm.
[Color figure canbe viewed inthe online issue, which is available
at www.interscience.wiley.com.]
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Fig. 4. Westernblotting analysis during cell fusion process. The cells were treated with 25 ng/mlI RANKL, 25
ng/ml TNF-a, 25 ng/mi LPS, or 100 ng/ml PGN for the indicated time and then subjected to Western blotting
analysis probing with antibodies against c-Fos, NFATc1, phosphorylated (P-) Akt, P-Src, P-ERK, P-p38, P-p65
(RelA, 65 kD subunit of NF-xB), Akt, TRAF6, tubulin, and P-JNK.

Fig. 3. RANKL, TNF-a, LPS, and PGN induced cell fusion TNF-a; indicated number pg/ml were used). The fused cell area
specifically through their receptors. RAW264.7 cells (1.6 x 105) was measured as percent of total plate area. Concentrations used
were cultured for 36 h in 250 pl of a-MEM containing 10% FCS, were 10 ng/ml RANKL, 10 ng/ml TNF-a, 10 ng/ml LPS, and
25 ng/ml RANKL, and 2 pM U0126 in a 96-well tissue culture 100 ng/ml PGN (A). Amounts of TNF-a in the culture media
plate. Then the medium was replaced with 250 pl of a-MEM stimulated with RANKL, LPS, and PGN were measured by ELISA
containing 10% FCS, indicated stimulation factors (RANKL, TNF- (B). The mean of three different determinations was plotted.

a, LPS, and PGN), and blocking reagents (OPG, PMXB, and Anti-
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resorption pits on dentin slices than do osteo-
clasts derived from bone marrow macrophages.
However, the cell line is useful to analyze the
detailed mechanisms of osteoclast differentia-
tion.

In this study, we focused on the cell fusion
step of osteoclastogenesis. Several investigators
reported the later stage of osteoclastogenesis
[Lam et al., 2000; Zou and Bar-Shavit, 2002; Zou
et al.,, 2002]. However, this process is not
characterized well since it is not easy to isolate
cells at each step during the process of osteoclast
differentiation. In this study, we used an
enhanced culture condition for osteoclasto-
genesis of RAW264.7 cells. By culturing the cell
line in the presence of RANKL and the MEK/
ERK inhibitor U01286, the culture period for
osteoclastogenesis was shortened to 48 h, less
than half of the standard culture period, and
almost all the cells are fused to one another at
the end of the culture period. Therefore, the
TRAP-positive mononuclear cells (preosteo-
clasts) prepared shortly before cell fusion in
the enhanced culture condition appear to be
almost homogeneous in terms of differentiation.

In the present study, LPS suppressed
RANKL-induced osteoclast formation at the
initial step; in contrast, at the latest step it
induced cell fusion without RANKL, resulting
in osteoclast formation. The suppressive effect
of LPS on osteoclastogenesis, which was
observed in the present study when LPS and
RANKL were simultaneously added at the
initial step, has previously been reported for
bone marrow macrophages by Takami et al.
[2002]. Moreover, it has been reported that LPS
promotes the survival of mature osteoclasts via
TLR4 [Itoh et al., 2003]. Taken together, the
results indicate that the effects of LPS on
osteoclastogenesis vary among steps of osteo-
clast differentiation. In this context, itis notable

Fig. 5. Effects of chemical inhibitors of signal transduction on
cell fusion and pit formation. RAW264.7 cells (1.6 x 10°) were
cultured for 36 h in 250 pl of a-MEM containing 10% FCS, 25 ng/
ml RANKL, and 2 pM UO126 in a 96-well tissue culture plate,
Then the medium was replaced with 250 pl of e-MEM containing
10% FCS, 25 ng/ml RANKL, TNF-a, and 10 of chemical
inhibitors, and the cells were cultured for a further 12 h. The
fused cell area was measured as percent of total plate area (A).
The TRAP intensity and cell viability were also measured (B and
C). D: Pit formation was measured on a plate coated with calcium
phosphate (BD BioCoat Osteologic Bone Cell Culture System,
Nippon BD, Tokyo, Japan) stimulated with 25 ng/ml RANKL,
TNF-a, or LPS in the presence or absence of 10 uM 5B203580 or
LY294002.
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Fig. 6. Real-time PCR for NFATc1, DC-STAMP, and TRAP. RAW264.7 cells (1.6 x 10°) were cultured for
36 h in 250 pl of a-MEM containing 10% FCS, 25 ng/ml RANKL, and 2 pM U0126 in a 96-well tissue culture
plate (A). Then the medium was replaced with 250 pl of a-MEM containing 10% FCS, 25 ng/ml RANKL, or
TNF-a, and the cells were cultured for further 6 h (B), followed by RNA preparation and real-time RT-PCR.
Each value was normalized by that of GAPDH, The mean of three different determinations was plotted.

that LPS induces bone resorption when injected
into bone surfaces of mice [Umezu et al., 1989].
Since osteoclast precursor cells of various
steps of differentiation exist together in an in
vivo condition, osteoclast precursor cells of the
pre-fusion step around bones might differen-
tiate into mature osteoclasts in response to LPS,
resulting in bone resorption.

Cell fusion is seen in muscle, nerves, bone in
their development, and in the liver in its
repair and regeneration [Ogle et al., 2005].
TRAP-positive multinuclear osteoclasts appear
in bone. TRAP-positive mononuclear cells fuse
to one another because the cell fusion increases
cell size and enables the cells to resorb bone to a
larger extent [Vignery, 2005]. This explanation
is supported by the finding that a DC-STAMP
knockout mouse in which TRAP-positive mono-
nuclear cells do not fuse to one another shows an
increase in bone density due to a decrease in
bone resorption by osteoclasts [Yagi et al.,
2005]. Osteoclasts seem to have the same origin
in cell lineage as that of macrophages. Macro-
phages sometimes fuse with one another during

]

infection and tissue repair. The resulting multi-
nucleated macrophages effectively phagocytise
pathogens and repair tissues. The mechanism
by which macrophages repair tissues seems to
be similar to bone resorption of osteoclasts. In
this study, inflammatory factors such as TNF-«,
LPS, and PGN induced cell fusion, which
may be one of mechanisms to repair the
inflammatory circumstance of bone, although
the inflammation results in an unfavorable
bone loss.

Cell fusion-inducing factors include several
groups. One is known as fusogens that can
directly induce cell fusion. And other groups
that include receptors, signaling proteins, tran-
seription factors, and proteins organizing cyto-
skeleton and membrane, indirectly induce cell
fusion [Ogle et al., 2005]. Although EFF-1 of
Caenorhabditis elegans might be the only
one fusogen that have been found in higher
eukaryotes so far as we know [Kontani and
Rothman, 2005], no fusogens have been found in
mammalian cells. Some molecules such as
meltrin-o [Harris et al., 1997; Inoue et al.,
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1998], CD47, MFR (also reported as SIRP,
SHPS-1, BIT, and MyD-1) [Vignery, 2005],
and DC-STAMP have been suggested as cell
fusion-inducing factors in osteoclasts. In the
bones of mice lacking DC-STAMP multinuclear
osteoclasts were completely absent, although
development of mononuclear osteoclasts was
normal. The DC-STAMP-deficient mice suffer
from mild osteopetrosis probably because mono-
nuclear osteoclasts can still resorb bones [Yagi
et al., 2005]. The expression of DC-STAMP was
not significantly different between fused and
non-fused cells in this study, suggesting the
presence of other cell fusion-inducing factor(s)
that directly function at the latest stage of
osteoclastogenesis. Further study is needed to
understand the molecular mechanisms of cell
fusion of osteoclasts.
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