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Summary

The inner ear contributes to sense of hearing and bal-
ance, consisting of cochlea and vestibular systems.
Each system is composed ol a few thousand
mechanosensory receptors, hair cells and ganglion neu-
rons. The inner ear has not been thought to possess
potentials to regenerale after loss of hair cells and neu-
rons. However, recent studies showed existence of
progenitor and pluripotent stem cells in the adult mam-
malian inner ear. These findings of the stem cells pro-
vide three strategies for functional regeneration of the
inner ear after damages: 1. Transplantation of stem cells
that possess potentials to differentiate to hair cells and
spiral ganglion neurons, 2. Sl‘imulation of asymmetrical
cell division of inner ear stem cells, 3. Transdifferentia-
tion of inner ear stem cells. This review highlights
advances of inner ear stem cell researches and transla-

tional researches for a clinical application of the inner

ear regenerative medicine.

Kojima, Ken / lto, Juichi
Department of Oolaryngology-Head and Neck Surgery.
Graduate Schoot of Medicing, K volo University
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Objective: Aging is a common cause of acquired
hearing impairments. This study investigated
age-related morphologic changes in human co-
chleae, with a particular focus on degeneration of
the stria vascularis (SV) and the spiral ganglion
(SG). Study Design: Retrospective case review.
Methods: The study group comprised 91 temporal
bones from individuals aged 10 to 85 years who
had no history or audiometric findings suggestive
of specific causes of cochlear degeneration. We
quantified the SV and SG atrophy at each co-
chlear turn using morphometric measurements.
Correlations of the SV and SG atrophy with age,
audiometric patterns of hearing loss, and audi-
tory thresholds were statistically investigated.
Result: The SV and the SG both showed a tendency
for progressive atrophy to develop with age. How-
ever, statistically significant correlations were ob-
served between aging and SV atrophy only in the
apical and basal cochlear turns. These findings
were consistent with those reported previously in
gerbils. No significant correlations were detected
between SV or SG atrophy and audiometric find-
ings. Conclusion: SV atrophy appears to be the most
prominent anatomic characteristic of aged human
cochleae. Key Words: Aging, atrophy, cochlea, hu-
man, pathology, spiral ganglion, stria vascularis.
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INTRODUCTION

Age-related degenerative hearing loss (HL) is known
as presbycusis and is the most common cause of hearing
impairments in adults. As human populations age, this
condition is expected to become more prevalent. At
present, the therapeutic options for presbycusis are lim-
ited to the use of hearing aids. Until recently, mammals
were thought to be unable to regenerate cochlear ele-
ments; however, recent medical advances have high-
lighted the potential for the regeneration of cochlear ele-
ments through gene or cell therapy.:-2 In addition, animal
experiments have identified various molecules that might
be applied therapeutically to protect cochlear cells.3-5 Al-
though these experimental findings have not yet been
applied clinically, they could help to establish novel ther-
apeutic strategies for presbycusis.

It is crucial to determine the cells or tissues in aged
cochleae that should be targeted by future therapies. Sev-
eral animal experiments have indicated that degeneration
of the stria vascularis (SV) or the spiral ganglion (SG) is
a prominent pathologic, age-related cochlear change.6-12
However, studies on human temporal bones will be nec-
essary to confirm the precise targets for therapeutic strat-
egies. Previous research has demonstrated several age-
related histopathologic changes in human cochleae.3-18
However, the general features of aged cochleae have not
yet been established for humans. This is partly because
the subjects of previous studies have tended to include
patients with ear diseases or profound hearing impair-
ments. In such cases, cochlear degeneration might be
caused by ototoxic pathogens or an ototoxic internal envi-
ronment, which makes it difficult to distinguish the spe-
cific abnormalities caused by aging. Recently, two arti-
cles9:20 carefully excluded temporal bones of subjects with
a history of ear diseases. However, previous authors have
examined insufficient numbers of human temporal bones
to allow the general histopathologic characteristics of aged
cochleae to be determined. To address these issues, we
conducted a quantitative analysis of age-related histopatho-
logic changes of the SV and SG using a large sample of
human temporal bones.

Suzuki et al.: Age-Related Changes in Human Cochleae



MATERIALS AND METHODS

Subjects

In total, 91 temporal bones from a collection of 1,278 spec-
imens held at the Department of Otolaryngology, Fukushima
Medical University, Japan, were selected for morphometric anal-
yses. We used unilateral temporal bones from 91 different pa-
tients. We excluded subjects with history of ear diseases or oto-
toxic drug use by reviewing their medical records. Pure-tone
audiometry had been performed within 24 months of death for all
of the selected subjects. Individuals with audiograms showing a
characteristic 4,000 Hz dip (that is, thresholds greater than 25 dB
at 2 and 8 kHz), which indicates noise-induced HL, were excluded
from the study. The subjects ranged in age from 10 to 85 years,
with a mean and standard deviation of 59.7 and 16.8 years,
respectively.

For all of the chosen subjects, the temporal bones had been
removed within 48 hours of death and were fixed with 10%
formalin. After decalcification, the temporal bones were em-
bedded in celloidin and serially sectioned in a horizontal plane
at a thickness of 20 um. Every 10th section was stained with
hematoxylin-eosin. The adjacent two mid-modiolus sections were
subjected to morphometric assessments. In all the specimens
used in this study, we found no postmortem degeneration in the
SG and SV.

Audiometric Classification

The audiometric hearing-loss patterns were determined
based on the air-conductance thresholds at frequencies of 250,
500, 1,000, 2,000, 4,000, and 8,000 Hz. All audiometric patterns
with a threshold less than 25 dB were considered to be normal. A
flat pattern was defined as HL with a threshold greater than 25
dB and a maximum threshold difference of 20 dB between fre-
quencies of 250 and 8,000 Hz. A high-tone-loss pattern was
defined as HL with a threshold greater than 25 dB at 4,000 and
8,000 Hz and a difference in thresholds between 2,000 and 4,000
Hz with an increase of more than 20 dB. A descending pattern
was defined as HL with a threshold greater than 25 dB at 2,000,
4,000, and 8,000 Hz and a difference in thresholds between 2,000
and 4,000 Hz with an increase of less than 20 dB. In addition
to the audiometric hearing-loss patterns, the average bone-
conductance thresholds were determined at the following five

stria vascularis

frequencies: 250, 500, 1,000, 2,000, and 4,000 Hz. This measure
was used as an audiometric parameter.

Morphometric Assessments

Morphometric assessments of the SV and the SG were per-
formed for each cochlear turn at the mid-modiolar level. Images
were acquired with a charged-coupling device camera connected
to a personal computer. The areas of the SV, Rosenthal’s canal,
and cochlear turn were quantified by measuring their cut sur-
faces using Image/J software (http:/www.nist.gov/lispix/imlab/
prelim/dnld.html) (Fig. 1A). The total number of nuclei in
Rosenthal’s canal was counted for each cochlear turn. The ratio of
the SV area (SV ratio) and the cell density of the SG (SG density)
were used to reduce the variance caused by differences in cutting
directions among the cochlear specimens. The SV ratio was de-
termined by dividing the SV area by that of the cochlear turn. The
SG density was determined by dividing the number of nuclei in
Rosenthal’s canal by its area.

Statistics

The Pearson’s correlation coefficient with Fisher’s z trans-
formation was used to examine the relationships between the
following variables: age and average bone-conductance threshold;
age and SV ratio or SG density for each cochlear turn; and
average bone-conductance threshold and SV ratio or SG density.
Differences in the SV ratio and SG density according to audio-
metric pattern were examined by a single factorial analysis of
variance. A P value less than .05 was considered statistically
significant.

RESULTS

Figure 2 shows the distribution of average bone-
conductance thresholds according to age. A significant
correlation was discovered between age and average au-
ditory threshold (Fig. 2) (r = 0.47, P < .0001). This indi-
cated that aging had a significant effect on the elevation of
auditory thresholds among the members of the study

group.

Area of the

cochlear turn

Rosenthal’s canal

Fig. 1. Morphology of human cochleae. (A) Basal turn of cochlea of 38-year-old male. Area of cochlear turn (black line). Area of SV (dotted line).
Area of Rosenthal’s canal (gray section). (B) Stria vascularis (SV) of 19-year-old male showing no atrophic changes. (C) Spiral ganglion (SG)
of a 37-year-old female exhibiting numerous neurons. (D) SV of 79-year-old male, which is more atrophic than that shown in B. (E) SG of a
77-year-old female, which shows relatively few neurons. Scale bars = 100 um.
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Fig. 2. Relationship between auditory threshold and age. x-axis
shows age (years) and y-axis shows average bone-conductance
thresholds (dB) at five frequencies (250, 500, 1,000, 2,000, and
4,000 Hz). Significant correlation was detected between average
auditory threshold and age using the Pearson’s correlation coef-
ficient with Fisher’s z transformation (r = 0.47, P < .0001).

Figure 3 shows the distribution of SV ratios for each
cochlear turn according to age. A trend for the SV ratio
to decrease with age was seen at every cochlear turn.
A significant correlation between age and the SV ratio
was found in the basal cochlear turn (Fig. 3A) (r = —0.36,
P = .0003) and the apical cochlear turn (Fig. 3C) (r =
—0.23, P = .025). By contrast, no significant correlation
was observed in the middle cochlear turn (Fig. 3B). Figure
4 shows the distribution of SG densities for each cochlear
turn according to age. Although the SG densities tended
to decrease with age, none of the cochlear turns showed
a statistically significant correlation between these
variables.

The subjects of the present study were divided into
four groups according to their audiometric patterns, as
follows: 37 subjects showed a normal pattern, 25 subjects
showed a descending pattern, 19 subjects showed a flat
pattern, and 10 patients showed a high—tone-loss pattern.
The means and standard errors of the SV ratios and SG
densities for each audiometric-pattern group are shown in
Figure 5. There were no significant differences in either
the SV ratios or the SG densities among the audiometric
pattern groups for each cochlear turn. We also examined
the relationship between the average auditory threshold
and the SV ratio or the SG density at each cochlear turn.
No significant correlations were observed between these
parameters.

DISCUSSION

The study group in the present analysis was screened
to exclude individuals with hearing impairments caused
by ototoxic pathogens other than aging by reviewing their
medical records and pure-tone audiograms. Morphometric
analysis of the 91 selected subjects revealed a significant
correlation between auditory threshold and age, which
indicated that aging had important effects on hearing
performance, at least within our study population.
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Fig. 3. Relationship between stria vascularis (SV) ratio and age in
basal (A), middie (B), and apical (C) cochlear turns. x-axis shows age
(yr) and y-axis shows SV ratio. Significant correlations between SV
ratio and age were observed in basal and apical cochlear turns
according to Pearson’s correlation coefficient with Fisher’s z trans-
formation (r = —0.36, P = .0003 and r = —0.23, P = .025,
respectively).

Our present findings demonstrated a significant
correlation between SV atrophy and aging in human
cochleae. This was consistent with previous findings
reported for animal models. A series of studies on ger-
bils that were maintained under quiet conditions indi-
cated that SV degeneration was the most prominent
age-related histologic change in their cochleae.6-8 Age-
related SV degeneration in these gerbil models was
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Fig. 4. Relationship between spiral ganglion (SG) density and age in
basal (A), middle (B), and apical (C) cochlear turns. x-axis shows age
(yn) and y-axis shows SG density. No significant correlations were
observed between SG density and age in basal, middle, and apical
cochlear turns.

usually found to originate in both the base and the apex
of the cochleae. Our present results also identified sig-
nificant aging effects on SV atrophy in the basal and
apical portions of human cochleae. These findings
support the hypothesis that SV degeneration is a
morphologic characteristic of age-induced cochlear
degeneration.

Schuknecht and Gacek!4 described degeneration of
the SV as the most prominent morphologic characteristic
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of age-related HL based on their observations of human
temporal bones. Recent morphometric analysis of human
temporal bones2° also supported this hypothesis. Nelson
and Hinojosal® controversially concluded that SV atrophy
was not specific to aged human cochleae with flat audio-
metric patterns of HIL based on a precise morphometric
analysis. The present study found no significant correlation
between SV atrophy and audiometric patterns of HL or
thresholds, although a significant correlation was detected
between SV atrophy and aging. Previous studies on human
subjects have indicated a poor correlation between audio-
metric patterns of HL and cochlear histopathology.15-18
We therefore conclude that SV atrophy is an anatomic
characteristic of age-induced cochlear changes but suggest
that it is difficult to discern cochlear histopathology from
conventional pure-tone audiometry.

The present study failed to find an age-dependent
decrease in SG density. By contrast, several previous
studies found significant correlations between aging and
loss of SG neurons in both humans!520 and animal mod-
els.11.12 These reports frequently noted a loss of SG neu-
rons coupled with a loss of cochlear hair cells. Gates and
Mills!8 showed that subjects experiencing loss of cochlear
hair cells and SG neurons frequently had histories of noise
exposure, indicating that these morphologic findings in
human cochleae might have been induced by environmen-
tal noise. By contrast, in gerbils maintained under quiet
conditions, which demonstrated age-dependent SV degen-
eration, loss of auditory nerve function was indicated by
elevation of the compound action potentials of auditory
nerves.’® Recently, changes of the expression patterns
of brain-derived neurotrophic factors have been demon-
strated in the SG neurons of aged rats and gerbils.2! This
functional degeneration involved no significant loss of SG
neurons. We therefore consider that the degeneration of
SG neurons might be involved in age-related HL. How-
ever, these degenerative changes of the SG neurons can-
not be detected by conventional histopathology of human
temporal bones.

The present study failed to identify significant corre-
lations between morphologic and audiometric findings in
human subjects similar to those reported previously. One
possible explanation for this discrepancy is that histologic
findings obtained by conventional light microscopy cannot
reveal changes in the functionality of cochlear elements,
which might play critical roles in the process of age-
induced HIL.

CONCLUSION

Our present analysis of 91 temporal bones indicates
that SV atrophy is the most common histopathologic fea-
ture of aged human cochleae. This conclusion is supported
by previous observations of aged animal models and hu-
man temporal bones. By contrast, age-dependent SG at-
rophy was not detected by conventional light microscopy
in the present study, although several previous studies
have indicated a correlation between functional degener-
ation of SG neurons and aging.
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Fig. 5. Means and standard errors of stria vascularis (SV) ratios (A to C) and spiral ganglion (SG) densities (D to F) of experimental groups divided
according to audiometric hearing-loss patterns. No significant differences in SV ratios or SG densities were found among experimental groups
in the basal, middle, or apical cochlear turns.
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Sensorineural hearing loss is a common disability, but treatment options are currently limited to
cochlear implants and hearing aids. Studies are therefore being conducted to provide alternative
means of biological therapy, including gene therapy. Safe and effective methods of gene delivery to
the cochlea need to be developed to facilitate the clinical application of these therapeutic
treatments for hearing loss. In this study, we examined the potential of cell-gene therapy with
nonviral vectors for delivery of therapeutic molecules into the cochlea. NIH3T3 cells were
transfected with the brain-derived neurotrophic factor (Bdnf) gene using lipofection and then
transplanted into the mouse inner ear. Immunohistochemistry and Western blotting demonstrated
the survival of grafted cells in the cochlea for up to 4 weeks after transplantation. No significant
hearing loss was induced by the transplantation procedure. A Bdnf-specific enzyme-linked
immunosorbent assay revealed a significant increase in Bdnf production in the inner ear following
transplantation of engineered cells. These findings indicate that cell-gene delivery with nonviral
vectors may be applicable for the local, sustained delivery of therapeutic molecules into the cochlea.

Key Words: gene therapy, cell transplantation, hearing loss, cochlea, brain-derived neurotrophic
factor, nonviral vector

INTRODUCTION

Sensorineural hearing loss (SNHL) is one of the most
common disabilities in industrialized countries. Defects
in the auditory hair cells, and in their associated spiral
ganglion neurons (SGNs), can lead to hearing loss or
deafness. Approximately 50% of SNHL cases have a
genetic basis, a significant proportion of which is non-
syndromic and usually inherited in an autosomal reces-
sive manner [1]. In the past decade, many genetic
mutations that cause deafness have been identified,
which may contribute to the biological sources available
for therapeutic approaches. Should the restoration of
mutated genes in the cochlea by gene manipulation
become a reality, gene therapy might be a promising
method for treating SNHL of genetic origin.

Protecting auditory hair cells and SGNs from irrever-
sible degeneration is a primary objective as inner ear cells
have limited regeneration capacity. With the recent
increase in understanding of the role of neurotrophic
factors, including brain-derived neurotrophic factor
(BDNF), on the maintenance of the mature peripheral
auditory systems, there have been numerous attempts to
define ways to reduce hair cell and SGN degeneration [2-6].

Since neurotrophins have a short serum half-life of just
minutes or hours [7], their sustained local delivery is
essential for cochlear protection. Previous studies have
used viral vectors, particularly adenoviruses or adeno-
associated viruses, to deliver neurotrophins to the cochleae
[8-13]. However, despite their high transduction effi-
ciency, high titer, and ease of production, viral vectors
involve potential toxicity.

Gene therapy could enable the long-term delivery of
several agents into the inner ear. Cell transplantation has
been used as a means of delivering peptides or proteins
into the central nervous system, demonstrating its use as
a delivery vehicle for therapeutic molecules {14-16]. In
addition, recent studies have demonstrated successful cell
transplantation into the mouse cochlea {17,18]. There-
fore, transplantation of cells that have been genetically
manipulated in vitro using nonviral vectors potentially
resolves the problem of viral vector toxicity in cochlear
gene therapy.

In this study, we conducted an examination of the
efficiency of cell-gene delivery into the cochlea for
application of therapeutic molecules to the treatment of
SNHL. We chose NIH3T3 cells as a delivery vehicle for the
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