Is there affective working memory? 61

Raisin D Reward  Potato

No reward

b s i

IR TR OIS R T T N WL U0, TS SO SO A S0 A0, SO SE T

Cabbage i

D Reward 0 Reward

TL2701

Fig. 6 — An example of an lateral prefrontal cortex (LPFC) newron showing differential activity depending on the reward block, not
only during the instruction and delay periods, but also during the pre-instruction period. The task situation is the same as in Figure 3A.
For this newron, the activity is shown from 9 sec before the Instruction presentation to 3 sec after the Go signal presentation. The first
and the second vertical dotted lines indicate the onset and offset of the 1-sec Instruction presentation, and the third vertical line indicates
the time of the Go signal presentation. Other conventions are the same as Figure 3 (From Watanabe et al., 2002, with kind permission

Jrom the Journal of Neuroscience).

receive task-related cognitive and motivational
information from the LPFC (Kawagoe et al., 1998;
Platt and Glimcher, 1999; Sugrue et al., 2004).
Indeed, anatomical studies indicate that the LPFC
receives highly processed cognitive information
from the posterior-association cortices, as well as
motivational information from the OFC (Barbas,
1993). In a recent paper, in which neuronal activity
was recorded from both the OFC and LPFC in the
same monkey (Wallis and Miller, 2003), reward
selectivity arose more rapidly in the former region
than in the latter. Furthermore, LPFC neurons more
often encoded both reward and WM-related
information while OFC neurons more often
encoded reward information alone. Thus, reward
information might initially enter the OFC before
being passed to the LPFC, where it is integrated
with cognitive information. The LPFC could
therefore play important roles in modulating eye
movement-related neuronal activity in the LIP and
caudate nucleus by sending integrated cognitive
and motivational information to these areas.

Representation of “Cognitive” and “Affective”
Goals in the Primate PFC

We propose here that the PFC is involved in
representing both the goal of the behaviour (by the
reward/omission-of-reward  expectancy-related
neuronal activity) and the way in which the goal
could be attained (by the WM-related neuronal
activity). We also propose that the LPFC is
involved in the integration of cognitive and
motivational operations for goal-directed behaviour.
Similar ideas have previously been put forward
suggesting that the PFC represents both goals and
the means to achieve them (Miller and Cohen,
2001). However, it should be noted that there is a
critical difference regarding the meaning of the
term “goal” in these proposals; by “goal” we mean
“reward”, whereas Miller and Cohen (2001) mean

“proper behaviour” or the “correct response in the
task situation”. Thus, when they say “the PFC
provides bias signals throughout much of the rest
of the brain, affecting sensory processes as well as
systems responsible for response execution,
memory retrieval etc., by active maintenance of
patterns of activity that represent goals and the
means to achieve them”, the “goal” is not an
affective or motivational (reward) goal, but rather a
cognitive or behavioural (correct response) one. If
the “ultimate goal” of the organism is the survival
of the individual and its species, the affective goal
might be the “immediate goal” in a given situation,
while the cognitive goal might be the “intermediate
goal” towards the affective goal, As Miller and
Cohen (2001) argue, the representation of both
(cognitive) goals and the means to achieve them
are surely essential for accurate task performance.
We would like to extend their proposal concerning
the function of the PFC in the control of behaviour
to include the concept of an “affective” goal. It
appears that the representation of the cognitive goal
in the PFC is essential for the animal to make
correct choices, while the representation of the
affective goal might instead work to modulate the
WM-related neuronal activity that is concerned
with the representation of the means by which the
affective goal can be obtained.

Whereas WM-related neuronal activity is
predominantly observed during the delay period,
the representation of the goal in PFC neuronal
activity is observed not only during the delay
period but also during the pre-instruction baseline
period. Figure 6 illustrates an example of an LPEC
omission-of-reward expectancy neuron that showed
differential activity depending on the difference of
the affective goal (reward), not only during the
delay period but also during the pre-instruction
baseline period. Such neurons might be involved in
representing the affective goal throughout the trials
when a certain reward is used continuously.
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Fig. 7 - (A) A model of functional differentiation in the monkey prefrontal cortex (PFC) in relation to the domain (affective and
cognitive) of information held in working memory (WM). (B) Our model of functional differentiation in the monkey PFC in relation to
cognitive and motivational operations. The numbers indicate areas in Walker’s (1940) map of the monkey PFC.

There are also neurons in the LPFC that appear
to be involved in representing the cognitive goal in
relation to the current task requirements during the
pre-instruction baseline period (Sakagami and Niki,
1994; Asaad et al., 2000). Those LPFC neurons
that show task- or rule-dependent sustained activity
during the delay period might also be concerned
with representing the cognitive goal (White and
Wise, 1999; Wallis et al., 2001).

In addition, we reported pre-instruction baseline
activities in the OFC reflecting the affective goal
(Figure 4). Whereas reward/omission-of-reward
expectancy-related neurons are relatively common,
WDM-related neurons are rarely observed in the
primate OFC (Tremblay and Schultz, 2000), which
supports an ablation study that indicated no clear
WM deficit in OFC-ablated monkeys (Pribram and
Bagshaw, 1953).

Thus, we propose that the OFC might be
predominantly concerned with representing the
“affective” goal, while the LPFC is involved in
representing both “affective” and “cognitive” goals.
The magnitude of neuronal activity representing the
“affective” goal differs depending on whether the
organism expects the delivery or omission of
reward, and/or a difference in the type or
magnitude of the reward. By contrast, there would
be only one “cognitive” goal (for example, to
respond according to the current task rule) in a

given task situation. The LPFC appears to play a
critical role in (affective) goal-directed behaviour
by representing not only cognitive but also
affective goals, as well as representing the means
to attain these goals in WM. While the affective
goal representation modulated WM-related
neuronal activity (Figure 2C), it will be interesting
to examine whether the representation of the
cognitive goal also modulates WM-related neuronal
activity in the LPFC.

CONCLUSIONS

It has been suggested that the PFC is
functionally differentiated with regard to the
domain of WM information: the dorsolateral and
ventrolateral PFC are concerned with representing
spatial and object information in WM, respectively
(Goldman-Rakic, 1996), while the OFC might be
concerned with representing affective and
motivational information in WM (Davidson and
Irwin, 1999). Figure 7A illustrates a domain-
specific differentiation model of WM in the
monkey PFC, as proposed by Goldman-Rakic
(1996) and Davidson (2002). Neurons in the
ventrolateral PFC receive ventral “what”
information and are more tuned to objects, while
neurons in the dorsolateral PFC receive dorsal
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“where” information and are more tuned to spatial
stimuli (O’Scalaidhe et al., 1997). A recent study
also indicated that the LPFC is functionally
differentiated, with the ventral and dorsal sectors
concerned with processing object information and
the numerical position (‘rank order’) of objects,
respectively, during a temporal-order memory task
(Ninokura et al., 2004). Thus, there appears to be a
domain-specific differentiation of the monkey
LPFC with regard to the cognitive aspects of the
stimulus, although it remains uncertain whether
there is such a domain-specific differentiation of
the LPFC with regard to WM.

Our model of the functional differentiation of
the PFC is illustrated in Figure 7B. We follow the
ideas put forward by Petrides (1996), D’Esposito et
al. (1998) and Owen et al. (1998), and propose that
the LPFC might be concerned with retaining and
manipulating all types of “cognitive” information
in WM without domain-specific differentiation. The
OFC, which receives motivational information
from the limbic system, particularly from the
amygdala, is not directly concerned with WM (that
is, the ‘temporary storage and manipulation of
information for complex cognitive tasks’), but
rather is predominantly concerned with
representing the affective goal. We propose that
WM-related neuronal activities are concerned with
representing which response should be performed
to attain the affective goal and that
reward/omission-of-reward  expectancy-related
activities represent the affective goal of the
response. Representation of the affective goal by
reward/omission-of-reward  expectancy-related
neuronal activities appears initially in the OFC and
the information might then be sent to the LPFC
(Wallis and Miller, 2003). In the LPFC, the
representation of both affective and cognitive goals
could be integrated with WM-related information
to guide and control behaviour in order to obtain a
reward more effectively, and thus leading to better
survival.
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