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Fig. 3. Structure of the IDM. Inputs are the desired joint angle and their first-
and second-order derivatives at times £ to ¢ 4 3. Outputs are stimulus currents to
each muscle. Number of neurons in the second layer is determined in computer
simulation.

reason, it is not necessary to divide the control phase and the
learning phase. The feedback controller functions mainly when
IDM is not learned, then the role gradually transits to IDM as
learning progresses. This means that IDM mainly controls limbs
and the feedback controller functions as a disturbance compen-
sator if IDM acquires the inverse dynamics of limbs perfectly.

The input signal is the desired joint angle (84), and IDM out-
puts stimulus current to each muscle as the feedforward con-
troller using the desired angle and its first and second deriva-
tives. The feedback controller also outputs stimulus current for
each muscle to cancel out the difference between the desired
joint angle (f4) and the actual angle (6). The summed vector of
the respective controllers’ outputs and the offset corresponding
to the threshold levels of electrically stimulated muscles is deter-
mined as the FEL controller output (S), after clipping out with
the limiter to prevent excessive stimulation. In general, the con-
troller must solve the ill-posed problem because the dimension
of § is higher than that of 6.

2) Feedforward Controller: In this study, a four-layered per-
ceptron (Fig. 3) was used to form IDM. The inputs were the
desired angle, angular velocity, and angular acceleration at the
time ¢ to ¢ + 5. One discrete time interval corresponds to 50 ms.
Therefore, the desired trajectory at the present time and the near
future (until 250 ms later) was given to IDM. The output of each
neuron was defined as
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where z; represents outputs of the neurons in the previous layer,
w; are the connection weights from neurons in the previous
layer, ¢ is the bias term, and 4 is the index of the neuron in
the previous layer. This is a common expression of an artificial
neuron model. The output function f(z) of the neurons in the
second and the third layers is the sigmoid function
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The output range of this function is 0-1 because z is a real
number. The output function in the fourth layer is linear as
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The error back-propagation algorithm [33], [34] was used for
IDM learning. The learning rule is to change the connection
weights so as to reduce total error (F) in the network outputs
by gradient descent
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The coefficient ¢ is the learning speed coefficient that effects on
convergence speed of learning. The outputs of the feedback con-
troller were referred as error signals. The connection weights
were adjusted between the first and the second layer, and be-
tween the second and the third layer. The connection weights
between the third and the fourth layer were fixed at (I} - I5),
and the bias terms in the fourth layer were fixed at zero. The
values of I ., I, describe the maximum and the threshold
current of muscle i, respectively. The outputs of IDM were feed-
forward stimulus currents to each muscle.

3) Feedback Controller: The PID controller given by (5)
was used as the feedback component
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In (5), the error vector e, was defined as e,, = 0,(1D) —9,(1M) ((9,(1D) R
09/1) are the desired and the measured joint angle vector at time
n). The CHR method [35] was used to determine the PID pa-
rameter matrices Kp, Ky, and Kp with the following two cri-
teria; quick response without overshoot, and step change in the
desired value. Because the original CHR method was proposed
on single~input, single—output (SISO) systems, we applied it on
single—-input, multiple-output (SIMO) systems as follows:
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where L; and T; are the latency and time constant of the step re-
sponse of muscle %, and At is the sampling period. Coefficients
m;; transform the joint angle space into the stimulus current
space. In this paper, the coefficients were elements of a gener-
alized inverse matrix of the Jacobian matrix M describing the
relationship between stimulus current vectors and joint angle

vectors of a musculoskeletal system [24].

B. Development of a Forward Dynamics Model of the Wrist

We developed a forward dynamics model of the wrist that can
be used in computer simulations for optimizing controller pa-
rameter. Two muscles were selected for the dynamics model;
their responses in the palmar/dorsi- flexion angle were mod-
eled. The muscles were the extensor carpi radialis longus/brevis
(ECR: ECRL and ECRB) and the flexor carpi ulnaris (FCU). Be-
cause selective stimulation was difficult with surface electrodes,
the extensor carpi radialis longus and the extensor carpi radialis
brevis were treated as a single muscle and labeled as ECR in
this paper.

The forward dynamics model was composed, as shown in
Fig. 4, using artificial neural networks. The dynamics model
consisted of two components: a static nonlinear part and a part
expressing second-order dynamics. Two circuits were prepared
for gravitational and for anti-gravitational movements in the dy-
namics component because the time constant differed between
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Fig. 4. Structure of the forward dynamics model. Inputs are the stimulus currents to ECR and FCU, followed by the one-tap delay (z~*!). Output is the wrist
angle in the direction of dorsi/palmar flexion. Model comprises two components: static—nonlinear and dynamic-linear components. Latter describe linear and
second-order dynamics, in which two circuits are prepared for anti-gravitational and gravitational movements. Circuits are switched according to the direction of
movements. Connection weights of the thick connections are unity. Only the thin connections are adjusted by the error back-propagation algorithm.

these movements. Two types of neurons were included in the
network. The first kind were neurons of which output function
was the sigmoid function given by

1—e™"
f(z) = [y )

whereas other neurons had a linear output function as in (3).

The connection weights in the network shown as thick lines
were unity, whereas those shown as thin lines were adjusted by
the error back-propagation algorithm. The teacher signals were
obtained from an able-bodied subject (Subject A) who had suf-
ficient experience with surface electrical stimulation. Ag/AgCl
surface electrodes (F-150M; Nihon Koden Corporation) were
placed over the motor points of the muscles in his left forearm.
The stimulation frequency and the pulse width were fixed at 20
Hz and 200 us, whereas the pulse amplitude (current) was mod-
ulated. The subject sat on a chair with his left arm hanging to
the gravitational direction (down); the shoulder, the elbow, and
the hand were in a free position. Thereby, the forearm was about
90° pronated from the anatomical position. The subject was in-
structed to relax his left arm and hand as much as possible. The
neutral angle of the wrist was defined at this posture.

Fifty-eight stimulation patterns (12: ramp shaped patterns, 6:
step, and 40: random) were applied to the subject. The random
patterns were produced by filtering random time series with the
Butterworth-type low-pass filter whose cutoff frequency was 1
Hz. The joint angle was sensed with a magnetic three-dimen-
sional (3-D) position and orientation sensor (FASTRAK; Pol-
hemus Inc.). The measured response data were used as teacher
signals for the purpose of learning of the forward dynamics
model. For random patterns, only 20 patterns were used for
learning. The remaining 20 patterns were used for validation of
the forward model. Learning was done in two steps: learning of
the static part, then learning of the dynamic parts.

C. Computer Simulation

1) Parameter Optimization: The forward dynamics model
described in the previous section was used as a controlled object
in this simulation study. This computer simulation was intended
for parameter optimization, e.g., the number of the neurons in
the hidden layer of IDM and the learning speed coefficient (¢).

Clinical-site use of the FEL controller demands that itera-
tions and the time required for IDM learning should be minimal
without sacrificing learning stability. Therefore, the learning
speed coefficient was set large (0.0003 for the desired trajectory
explained in the following paragraph) at the beginning of the
learning. Afterwards, it was halved as learning progressed for
the purpose of fine-adjustment of the connection weights. Ini-
tial connection weights in IDM were determined by a random
number generator, which was regulated so that the unlearned
IDM did not produce large outputs.

Our previous experimental results [24], which concerned the
trajectory tracking control of the wrist by the PID controller that
could deal with redundant musculoskeletal systems, showed
that the control error was largely the result of delayed response
that occurred when the cycle period of the desired trajectory
became fast (3 s). In this study, the controller was evaluated at
a faster movement with the cycle period of 2 s (0.5 Hz). The
trajectory was ten reciprocating sinusoidal motions of 50° in
amplitude (15° in the palmar-flex, 35° in the dorsi-flex). These
ten reciprocating motions constituted one iteration when IDM
learned.

The progress of IDM learning was demonstrated by computer
simulation when the number of neurons in the second layer
varied from 9 to 72. These numbers were a half to four times
the number of neurons in the first layer. Simulation was carried
out 100 times for each condition; the initial connection weights
were regenerated by the random number generator at the begin-
ning of each trial.
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2) Evaluation on Other Trajectories: The same FEL con-
troller was used for controlling and learning other movements.
The trajectories were three sinusoidal movements (the cycle pe-
riodwas 1 s,4 s, and 10 s) and a random movement. The random
trajectory was produced by filtering random time series with the
Butterworth-type low-pass filter whose cutoff frequency was 0.75
Hz. The number of neurons in the second layer was 36, and the ini-
tial value of the learning speed coefficient was 0.0003. The com-
puter simulation was done four times for each trajectory.

D. FES Experiments

After the computer simulations, the controller was evaluated
on FES experiments with six able-bodied subjects (Subject
A-F). Able-bodied subjects were used for this study because
they were more readily available and because, in general, a
relaxed able-bodied limb and a paralyzed limb respond sim-
ilarly to electrical stimulation [14], [39]. However, there are
significant differences between normal and paralyzed limbs
(e.g., spasticity of paralyzed limbs). Therefore, results pre-
sented in this paper will be referred on FES controls of limbs
not exhibiting spasticity. The subjects were checked during
experiments whether or not they were relaxed their forearm
and hand by giving sudden stops of electrical stimuli without
previous notice and by observing the response movements. In
addition, the subjects were not given any information about
experimental conditions such as a desired trajectory to avoid
intentional voluntary contractions.

The palmar/dorsi-flexion angle was controlled by contracting
ECR (ECRL and ECRB) and FCU. The stimuli were delivered to
the peripheral nerves of the musclesin theirleftforearm with apair
of Ag/AgClsurface electrodes (F-150M; Nihon Koden Corpora-
tion) placed over the motor points. A laboratory FES systemincor-
porating a 3-D position-orientation measurement system (FAS-
TRAK; Polhemus Inc.) was used to generate pulse stimuli and to
measure the wrist angle [37]. The 3-D position-orientation mea-
surementsystem was used for sensing the jointangle. It consists of
a fixed magnetic-dipole transmitting antenna called a transmitter
(5.3 x 5.3 x 5.8cm, 0.27kg), freely movable magnetic-dipole re-
ceiving antennascalledreceivers (2.83 x 2.29 x 1.52¢cm, 17.0g),
and a System Electronics Unit (28.91 x 28.90 x 9.22 c¢m, 2.26
Kg). The system calculates 3-D position and orientation of the
receivers in the transmitter coordinates using electro-magnetic
fields. The static accuracy is 0.08 cm root means square (rms) for
the receiver position and 0.15° rms for the receiver orientation,
when the receivers are placed within 76 cm from the transmitter.
In our experiments, the transmitter was placed and fixed near the
subjects, and two receivers were placed on the subjects to sense
the wrist angle: one was on the back of the hand, and the other one
was on the back of the forearm close to the wrist. The wrist angle
can be obtained only using the orientation data of the receivers by
calculations of rotational matrices [37]. The system was devel-
oped for laboratory use.

The pulse amplitude was modulated at the range of 0-25
mA, whereas the pulse width and the frequency were fixed
at 200 ps and 20 Hz, respectively. The desired trajectory was
ten sinusoidal reciprocating motions with the cycle period
of 2 s (0.5 Hz) to evaluate the control performance for the
faster movement containing single frequency. The able-bodied
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Fig.5. Static responses of the model output (mesh) and subject’s wrist (lines).

subjects might recognize that the reference trajectory was
sinusoidal movement after a few iterations. However, it was
expected that this did not affect evaluation of delay time and
tracking error because the subjects had no information about the
exact start timing and the amplitude of the desired movement.
Learning-control activities were performed up to 40 iterations.
The subjects seated with his left arm hanging; the shoulder,
the elbow, and the hand were in a free position. Thereby, the
forearm was about 90° pronated from the anatomical position.
The neutral angle of the wrist was defined at this posture.

The number of neurons in the second layer of IDM was 36;
other parameters, such as the learning speed coefficient, were
the same optimized values determined in the computer simula-
tions. Control performance was evaluated with the mean abso-
lute error and the delay time. These FES experiments were done
in three situations: the FEL controller whose initial weights in
IDM were determined by a random number generator (random),
the FEL controller in which IDM was pretrained in advance
with the forward dynamics model in computer simulation (pre-
trained), and the PID-only control (pid). The PID parameters
were determined by the CHR method. Experiments were done
three times on different days for Subject A, whereas a single
time for Subject B-F; total eight sets for the six subjects.

Effect of an external load on control performance was also
tested with one subject (Subject A). After learning of IDM under
the load-free condition, a 250 g ceramic cup was fastened to the
hand with a brace. Then, the wrist angle was iteratively con-
trolled with the FEL controller. The desired trajectory was the
same ten sinusoidal reciprocating motions with the cycle period
of 2 s.

III. RESULTS
A. Forward Dynamics Model of the Wrist

Outputs from the learned forward model were compared with
measured responses. Fig. 5 shows static characteristics. The z
and y axes represent stimulus currents applied to each muscle,
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Fig. 6. Example of the dynamic response to the random stimulation pattern. Upper graph shows the model output and the measured angle of the subject’s wrist.

Mean error was 4.5°. Lower graph shows the stimulation pattern.

whereas the z-axis shows the joint angle. The measured char-
acteristic was drawn with thick lines, which were superimposed
on the mesh that shows the model outputs. The mean error be-
tween the measured angle and the model output for all 12 lines
was 1.8° and the standard deviation was 0.5°. Fig. 6 shows a
dynamic response to a random stimulation pattern that was not
used for learning. The upper graph shows the model output and
the measured actual angle when the stimulation pattern shown
in the lower graph was applied. The mean error and the stan-
dard deviation of the 20 random patterns used for the learning
were 4.9°, and 1.6°, whereas the values of the other 20 random
patterns that were not used for the learning were 5.6°, and 1.7°,
respectively. The mean error was 2.7° and the standard deviation
was 0.8° for six-step stimulation patterns. For all 58 patterns in-
cluding both static and the dynamic responses, the mean error
was 4.3° and the standard deviation was 2.0°. These results in-
dicate that the forward dynamics model successfully acquired
the characteristics of the subject’s wrist. Thus, this model was
controlled in the computer simulations.

B. Computer Simulation

1) Parameter Optimization: The number of neurons in the
second layer was determined in the computer simulation after
optimization of the learning speed coefficient and distribution
range of initial connection weights in IDM. The mean tracking
error as a function of the iteration number is plotted in Fig. 7.
Two typical cases from the 100 trials for each condition are
shown in the graph. Fast convergence of the error was usually
observed when the number of the neurons was 18 or 36. The
graph shows that the error became small as the iteration number
and the learned FEL controller performed better than the PID
controller adjusted by the CHR method because tracking error
by the PID was 7.1°. The average error decreased because of
shortened delay in the response. The percentage of successful
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Fig. 7. Mean tracking error as the function of the iteration number. Number
of the neurons in the second layer (num) was varied in the range of 9-72. If the

PID controller was used alone, the error was 7.1°. Two typical cases from the
100 trials for each condition are shown.

TABLE 1
PERCENTAGE OF SUCCESSFUL LEARNING

Number of neurons in the Percentage (%)

2nd layer
9 70
18 96
36 90
54 47
72 29

learning is presented in Table I. The successful learning was
Jjudged according to whether or not the average tracking error
fell to less than 2.5° at the 50th iteration. It was shown that the
percentage exceeded 90% for 18 or 36 neurons. The percentage
fell when the number was larger or less than these values.
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Fig. 8. Change of the power ratio as the function of the iteration number.
Number of the neurons in the second layer (num) was 18 or 36. When the power
ratio was 0%, it describes that only the PID controller functioned. About 90%
of the control was held by IDM after the 20th iteration. Two typical cases from
the 100 trials for each condition are shown.

Fig. 8 shows the change of the power ratio in the FEL con-
troller defined as follows:

. 2 Pow(t)

Power ratio(%) S + 5 Pon®
Here, Pipy(t) represents the output power of IDM at time ¢,
whereas Pprp(t) is the power of the PID controller. Fig. 8 shows
that the wrist was controlled mostly by the PID controller at the
first iteration; thereafter, IDM became the dominant controller
within 20 iterations in most trials. This demonstrated that IDM
successfully learned the inverse dynamics of the forward model
because the power ratio was high and the joint angle was con-
trolled with small average error.

2) Evaluation on Other Trajectories: The controller was ap-
plied for other trajectories. The number of neurons in the second
layer was 36. Fig. 9 shows the change of the average tracking error
for each sinusoidal movement. Fast convergence of the error was
usually observed when the cycle period (1") was 2,4, and 10s. In
general, theerror decreased as T  increased. However, fastconver-
genceoftheerrorwasnotobservedforT = 1s.Thelearning failed
forT = 1eventhough the number of neurons and other controller
parameters were varied. Saturation of stimulus currents was ob-
served in these failed learning. These simulation results show that
the learning of IDM will succeed when desired trajectories have
frequency bands of 0.5 Hz or lower.

Fig. 10 shows an example of control performance for a
random trajectory. Fig. 10(a) shows the time course of the
joint angle. A typical result is drawn. The dotted line showing
“before learning” was the result of the first iteration, whereas
“after learning” was the result of the 100th iteration. Delay in
the response was observed in the result of “before learning.”
The response delay remarkably decreased “after learning.”
However, quick motions were observed around inflection
points in the desired trajectory.

Fig. 10(b) shows the change of the average tracking error and
the power ratio as a function of the learning iteration. The simu-
lation was done four times for the same random reference trajec-
tory. Transition of the dominant controller from the PID to IDM
was observed in most trials because the power ratio changed
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Fig. 9. Mean tracking error as the function of the iteration number. Number
of the neurons in the second layer was 36. Desired trajectories were ten

reciprocating movements with the cycle period (T) of 1, 2, 4, and 10 s.
Computer simulation was done four times for each cycle period.

from 0%-20% to 85%—-90%. The average tracking error halved
after learning as the delay time decreased.

C. FES Experiments

The FEL controller worked as expected in all FES experi-
ments for all subjects. Fig. 11 shows examples of control perfor-
mance when the experimental condition was “random.” Graphs
in Fig. 11(a) show the result of the first iteration (i.e., first con-
trol just after the connection weights in IDM were determined
by the random number generator). If the PID controller was used
alone, the results were almost identical to this result. Fig. 11(b)
shows the 32nd iteration result. Fig. 11(a), the time course of
the joint angle, Fig. 11(b) the tracking error, Fig. 11(c) the stim-
ulus currents, and Fig. 11(d) the outputs of each controller are
shown. The muscles were co-contracted when the joint angle
crossed 0°; the threshold of the stimulus current for ECR was
7.0 mA and that for FCU was 5.1 mA. As for the first iter-
ation {Fig. 11(a)}, small amplitude and large delay in the re-
sponse were observed. IDM generated small outputs and the
joint angle was mostly controlled by the PID controller as seen
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Fig. 10. Computer simulation results for a random trajectory. Random
trajectory was produced by filtering random . time series with the
Butterworth-type low-pass filter whose cutoff frequency was 0.75 Hz. (a) Time
course of the joint angle. A typical result is drawn. Dotted line showing “after
learning” is the result of the 100th iteration. (b) Change of the average error
and the power ratio. Computer simulation was done four times for the same
random trajectory. If the PID controller was used alone, the error was 3.7°.

in the bottom graph. The delay decreased remarkably and the
tracking error became small after 32 times iterative learning as
shown in Fig. 11(b) even though small oscillatory motion was
seen when the angle changed from plus (dorsi-flex.) to minus
(palmar-flex.). Furthermore, primary output was produced by
IDM as shown in the bottom graph. These results demonstrated
that the control performance improved because IDM success-
fully acquired inverse characteristics of the subject’s wrist. It
must be noticed that the amplitude in the response movement
shown in Fig. 11(a) could be enlarged if the PID parameter ma-
trixes were optimized for this specific trajectory. However, the
authors determined the parameters by the CHR method because
the parameters could be obtained systematically with simple
procedures. Moreover, it was thought difficult to decrease re-
sponse delay without oscillations just by adjusting the PID pa-
rameter matrixes.

Fig. 12 shows the results when IDM was pretrained with the
forward dynamics model in computer simulation (pretrained).
The subject (Subject F) was a different person who cooper-
ated in development of the forward dynamics model. The re-

sponse delay and the error were small from the first iteration
although the palmar-flex. angle was short to the desired trajec-
tory [Fig. 12(a)]. Moreover, it was seen that IDM produced large
outputs. Adding a few iterations of electrical stimulation, the
control performance improved and the outputs of the PID con-
troller became small as shown in Fig. 12(b).

Fig. 13 shows changes in the average error and the power ratio
defined by (8). The error decreased to about 40% of the first
iteration and the power ratio increased as iterations proceeded.
The change of the power ratio indicated the transition of the
dominant controller from the PID to IDM. About 80% of the
control was held by IDM after the 18th iteration. The thick solid
and dashed lines show the error and the power ratio if IDM
was pretrained. The error was small and the power ratio was
high from the first iteration. Adding a few iterations of electrical
stimulation, about 90% of the control was held by IDM with
small average error. The result demonstrated that the iteration
and the time required for learning of IDM could be shortened
with pretraining. This result has great implications for clinical
applications.

Fig. 14 summarizes the average delay time and error of all
FES experiments for six subjects. The delay time was calcu-
lated by averaging ten data at the 5° in dorsi-flexion (i.e., the
phase angles in the trajectory were 0 rad, and 7 rad). The delay
time and the error for “pid” (i.e., when only the PID controller
was used) were almost identical to the values for “random (be-
fore learning)” because IDM generated small outputs and the
dominant controller was the PID in this controller condition.
The delay time was more than 200 ms, whereas it decreased
remarkably to 40 ms after learning. The average error was also
halved after learning. When IDM was pretrained, the delay time
was about 50 ms from the first iteration. The average delay
time slightly decreased after learning, whereas its variance was
halved. The pretraining was more effective for decrease of the
tracking error. The error decreased to 3.3 & 0.8° after learning,
and it was less than 40% of the “pid.” The average iteration
number for all experiments were 23.5 for “random™ and 5.8 for
“pretrained” to reach minimum error.

Fig. 15 shows control performance when an external load was
applied to the hand. The wrist angle was controlled three times
with a 250 g cup in the hand. The controller was tuned under
the load-free condition with the same subject. The amplitude
in the response was short to the desired angle at the first iter-
ation, probable because the weight of the controlled object in-
creased. However, the control performance improved with a few
iterations as seen in the graphs. This result demonstrated suc-
cessful adaptation of the controller to the change in characteris-
tics of controlled limbs. For slow movements, the controller will
show good control performance from the first iteration under the
loaded condition because the feedback component can compen-
sate for the load and disturbance.

We concluded from these results that the proposed controller
functioned as expected on FES experiments with the redundant
musculoskeletal system for the tested sinusoidal trajectory. IDM
was successfully learned during FES control and the FEL con-
troller performed better than the conventional PID controller ad-
justed by the CHR method in terms of error evaluation and the
delay time for the fast movement.
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Fig. 12. Results of FES experiments (Subject F pretrained). Graphs show (a) the time course of the joint angle, (b) the tracking error, (c) the stimulus currents
(S in Fig. 2), and (d) the outputs of each controller. Threshold of the stimulus current for ECR was 7.0 mA and that for FCU was 5.1 mA. Output range of S was
0-16.8 mA for ECR and 0-14.6 mA for FCU.

The FEL scheme was introduced in the FES controller. The
experimental results showed that adding the inverse dynamics

IV. DISCUSSION

model decreased the response delay to 40 ms even though the
electrically stimulated musculoskeletal system had the latency
of a hundred milliseconds and the time constant of a few hun-
dred milliseconds. When multiple joints are controlled simul-
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taneously (e.g., reaching movements), delay in one joint move-
ment may yield failure in tracking accuracy of end effectors such
as fingertips because of its kinematics. Moreover, considering
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Fig. 15. Control results with an external load (Subject A). Wrist angle was
controlled three times with a 250 g cup in the hand. Controller was tuned under
the load-free condition and applied to this loaded condition with the same
controller parameters.

gait controls, control delay may cause patients to fall. There-
fore, controllers that can control limbs with small delay hold
great importance for FES control of paralyzed limbs. In addi-
tion, the burden caused by synthesis and regulation of stimula-
tion patterns in clinical sites can be reduced with the proposed
controller because IDM learns while controlling limbs. The ad-
justment of PID parameters is required before controlling limbs.
However, these adjustment tasks cannot be burdensome for pa-
tients or medical staff because parameters are determined using
only step and ramp responses as described. Those can be ob-
tained automatically. Other prior measurements for obtaining
characteristic of controlled limbs are not necessarily required
for IDM learning.

This study used a four-layered neural network for the IDM.
A general problem for using the neural network is its slow
convergence of learning. These experimental results show that
the network satisfactorily learned within a few dozen iterations
for the tested ten-cycle reciprocating motion. Furthermore, only
several iterations were required when IDM was pretrained with
the artificial forward model. The required iteration number was
inferred to be not large, even for use in clinical sites. Chang
et al. [14] reported that 5000 training iterations were required
to train their neuro-PID controller for one-muscle-one-DOF
random movement of the knee. In addition, it must be noticed
that the FEL controller can be used without learning for slow
movements because the untrained controller is almost identical
to the PID controller. However, we believe that further study
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of the controller on other trajectories and on other joints is
necessary for more precise evaluation. Not only layered neural
networks, but also any other forms that are able to acquire in-
verse dynamics can be used for IDM. Therefore, other types of
networks, such as radial basis function (RBF) neural networks
[38] are candidates for the feedforward controller. From the
viewpoint of additional learning ability, RBF is advantageous
to the perceptron used in this study.

The average tracking error by our controller was 3.3 £ 0.8°
for 0.5-Hz movements. The tracking error for 0.5-Hz move-
ments by the neuro-PID controller [14] was 5.32 &+ 1.44° on an
able-bodied subject and 5.14 + 0.70° on a patient. The com-
parison between these controller performance is difficult be-
cause the FEL controller was evaluated on 2-muscle—1-DOF
movement of the wrist, whereas the neuro-PID controller on
1-muscle—1-DOF movement of the knee. However, both con-
trollers showed better control performance than single PID con-
troller. Therefore, the hybrid arrangement is expected having
high control performance. The advantages of the FEL scheme
compared with other hybrid controllers are as follows: 1) ability
to control redundant musculoskeletal systems; 2) pretraining of
the feedforward controller (IDM) can be eliminated because it
learns by itself while controlling limbs; and 3) the FEL con-
troller can be used as a feedforward controller without sensors
once IDM learning finishes.

Parameter optimization and pretraining using the artificial
forward dynamics model facilitated the rapid learning of IDM.
Development of the forward model and computer simulation of-
fered great practical advantages for use of the controller. How-
ever, the forward model might not be a precise model of the
subject’s wrist in the FES experiments. Some inaccuracy might
have been introduced into our study. For example, although the
forward dynamics model was trained using the data obtained
from Subject A, it was applied for the other subjects (Subjects
B-F). As for Subject A, several days had passed after develop-
ment of the model; the surface electrodes had been replaced.
In addition, the forward model requires that each muscle had
the same time constant of muscle activation. However, the iter-
ation number that was required for IDM learning decreased re-
markably by the pretraining of IDM. The results demonstrated
that the use of the forward model, which might not be a per-
fect model of an individual person, was still quite effective for
reducing the burdens of controller parameter tuning. Therefore,
the following situation is anticipated if the FEL controller finds
use in clinical sites: rough tuning of IDM is made with the stan-
dard forward dynamics model developed with data from a repre-
sentative subject; thereafter, several iterations of fine-tuning are
made for a specific patient. As described in the method chapter,
such fine-tuning can be achieved while control. The controller
learned and validated under the very specific condition (i.e., arm
in the hanging position). Control performance will be degraded
if the other joints, such as the elbow and the shoulder, are moved
while controls because of the changes in muscle length and in
the direction of the gravity. The angles of the other joints must be
given into the model for varied conditions. Moreover, it is antic-
ipated that IDM would acquire inverse dynamics within shorter
iterations if the forward dynamics model was modified to allow
different muscle activation dynamics.

In this paper, the controller was evaluated on
two-muscle—one-DOF movement of the wrist. Our next
research interest is the evaluation of the FEL controller on
four-muscle-two-DOF movements (the dorsi/palmar-flexion
and the radial/ulnar -flexion of the wrist). Development of the
FEL controller for such a controlled object cannot be a difficult
subject because our PID controller showed good performance
on four-muscle-two-DOF movements [24]. However, some
simplification methods must be proposed for developing the
forward dynamics model of such controlled objects because the
number of combinations of stimulation patterns for obtaining
the input-output properties of musculoskeletal systems usually
increases exponentially. A combination of neural networks and
mathematical models may constitute a realistic approach to
express forward models.

The tracking error converged and never decreased to 0° in all
experiments and computer simulations even if learning~control
activities were repeated more than several hundred times. The
power ratio did not increase to 100%. These results show that
IDM could not acquire accurate inverse dynamics of the con-
trolled limbs. The reason is under investigation. However, it is
thought that some technical limitations exist in the structure of
IDM or in the feedback component. The control performance of
the FEL controller is affected by the feedback controller because
IDM refers to the feedback controller outputs for its learning.
Therefore, improvement of the feedback component may con-
tribute for more accurate FES control by the FEL controller.
Other improvement can be an insertion of a low-pass filter in the
controller. As shown in Fig. 10(a), quick motions were observed
with the learned FEL controller. It is expected that smoother
movements will be obtained if low-pass filters are inserted just
after the FEL controller.

V. CONCLUSION

We studied a FES controller using the FEL scheme. The
palmar/dorsi-flexion angle of the wrist was controlled by de-
livering stimuli to two muscles in the computer simulation and
in FES experiments. Results showed that the FEL controller
can learn within an acceptable number of iterations and that the
controller performed better than the conventional PID controller
that was adjusted by the CHR method for the tested fast move-
ment, resulting decreased average tracking error and decreased
response delay. Furthermore, the iteration can be decreased if
the IDM is pretrained with the forward model of the controlled
objects.

Further examination of the control system on other trajectories
and on other joints is necessary. Extension of the controller and
the experimental setup for controlling multiple DOF and multiple
joint movements are our subjects for further study. Evaluation of
the controller with actual patients is also necessary from a prac-
tical perspective. It is strongly hoped that joint-angle sensors that
are easy to handle in clinical sites and are sufficiently accurate for
use in a feedback controller can be developed for practical use.
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