Instructions for Authors

elderly: Part II: Balance, habil 1990; 71: 739-41.

idation of a functional fitidults. J Aging Phys Act

ssessing functional fitness . Aging Clin Exp Res

am MM. Methods to asassociated with fall risk 5-64.

Kleinberg A. Stressing nethod for testing bal-50.

atric Society, and Ameranel on Falls Prevention.

I older persons. J Am

CH, Clase CM. Muscle matic review and meta-121-9.

or MD. Influence of low-s on the outcome of an): 256-62.

The relationship of knee me residents: An isoki-13-20.

CW. Joint torques durple with Parkinson's dis-

l, et al. Fall-related fac-OS prospective study.

fall just a fall: correlates ealth, Aging and Body 103; 51: 841-6.

Long-term prediction women: Study of Os-004; 52: 1479-86.

ne-Adams PG, Barnard ngth training in sedenfled Sci Sports Exerc

idt J, Moyer-Mileur L, sing together: effects Med Sci Sports Exerc

. Physiological factors welling women. J Am

al. Dance-based aerorisk in older women.

sure of maximal and '000; 55A: M429-33.

SUBMISSION OF MANUSCRIPTS

Authors are requested to send 4 hard copies of the manuscript together with a disk version and a cover letter to:

From European, Asian, and African countries: Gaetano Crepaldi, M.D. – Editor-in-Chief – Aging Clinical and Experimental Research

Clinica Medica 1

Via Giustiniani, 2 – 35128 Padova, Italy Tel.: +39 049 8212152 – Fax: +39 049 8212151 E-mail: aging@unipd.it

From American and Pacific countries:

Roger J.M. McCarter, Ph.D. - Executive Editor - Aging Clinical and Experimental Research

Center for Developmental and Health Genetics, Penn State University - 101 Amy Gardner House - University Park, PA 16802, USA - Tel.: (814) 865.1717 - Fax: (814) 863.4768 E-mail: rim28@psu.edu

Disk submission: the version of the manuscript on disk should match the hard copy exactly. Authors asked to revise their manuscripts should submit an updated disk containing the revised version along with the revised hard copies. Both MAC and WINDOWS "Microsoft Word" formats are accepted. The disk should be labeled with the format of the file and the file name. Please, if possible, avoid using "Word Perfect".

Cover letter: a letter undersigned by the corresponding author should accompany the manuscript and include a statement, signed by all authors, that the material submitted for publication has not been previously reported and is not under consideration for publication elsewhere.

Redundant or duplicate publication: copies of material that might be considered as redundant or duplicate publication should be submitted with the manuscript and clearly marked as such. If a paper has been presented at a scientific meeting but not published in full, or has already been reported in small part in a published article of a minor/local publication, the author(s) should add a statement referring to this in the title page.

COPYRIGHT

Copyright of published manuscripts will be held by the publisher, Editrice Kurtis s.r.l., which must receive in writing the Assignment of Copyright from the authors of accepted manuscripts. Copyright forms will be sent to authors by the publisher.

Permission to reproduce material from other sources: text, illustrations and tables adapted or reproduced from other publications should be acknowledged, and written permission to republish should be submitted with the manuscript.

TYPES OF MANUSCRIPTS

The following types of manuscripts/information are considered: Original Articles, Short Communications, Review Articles, Mini Reviews, Editorials, Letters to the Editor, Viewpoints, Case Reports, Special Articles, and Book Reviews.

Original Articles should be based on original rather than confirmatory data, and should conform to the format described below. It is assumed that all human investigations have been conducted according to the principles expressed in the Declaration of Helsinki.

Short Communications (about 8 double-spaced pages) may represent either a final report on definitive studies which do not require a larger space for complete documentation, or a prelim-

inary report on new observations of sufficie warrant rapid publication.

Review Articles (about 20-25 double-spaced bles/Figures and References) should consist assessments of literature and data sources pertain jor interest; meta-analyses will also be considered

Mini Reviews (about 10-15 double-spaced p. bles/Figures and References) should consist of cu of topical information.

Letters to the Editor (about 4-5 double-space short, stimulating and pertinent to the aims of the ter is a constructive comment on work recently punal, the other author(s) will have the opportunity to or the subsequent issue of the Journal. Letters maters of general interest to geriatrists or briefly confaging. A few references and a small table/illucluded. Publication of this material is at the discrebut letters including original data will be sent out

Viewpoints (about 8-10 double-spaced page ences) should present the opinion of an expert of or controversial interest.

Case reports (about 8-10 double-spaced ${\tt p}$ scribe clinical cases of geriatric interest.

Special Articles include articles on reports of r guidelines or recommendations from authoritative search centers, or manuscripts on geriatric topics other sections.

Book reviews include short reviews of books evant to geriatrics.

Announcements of meetings, conferences, tional grants etc. are welcome.

Review Articles, Editorials, Viewpoints, and may be submitted spontaneously or on invitation

High-priority manuscripts: manuscripts desc signed experiment and/or pertaining to an importa granted priority and possibly published within 3 n tance. Authors should state in the cover letter why its urgent publication.

EDITORIAL REVIEW

Authors are encouraged to indicate the names referees (providing their full postal and electronic ad tact numbers).

All submitted manuscripts – either commiss taneous - are reviewed initially by an editor. If juc consideration, they are sent to expert consultants

EDITING

Accepted manuscripts are copyedited accordin (American Medical Association Manual of Style). A rected manuscript is sent to the corresponding auththe galley proofs. Authors are responsible for all stattheir articles, including changes made by the copycepted by the corresponding author.

ORGANIZATION AND STYLE

All manuscripts should be double-spaced throug nized as follow: title page, abstract, text, acknowle

Instructions for Authors

pendix, references, figure legends, figures and tables. Each section should begin on a new page; pages should be numbered consecutively, beginning with the title page.

Manuscripts should be written in English, using either American or British spelling. They should be carefully checked for accuracy of typing, spelling and grammar before they are submitted.

Manuscripts should conform to the "Uniform Requirements for Manuscripts Submitted to Biomedical Journals" (N Engl J Med 1997; 336: 309-315 or www.icmje.org).

Title page should include: title of paper; running head; full name(s) of author(s); department(s) and institution(s) in which the work was carried out; 4-6 key words; and correspondence, indicating the full postal address, phone/fax numbers and e-mail address of the author to whom correspondence, galley proofs and reprint requests should be sent.

Abstract for Original Articles and Short Communications should consist of about 250 words and be structured in 4 parts: 1) Background and Aims; 2) Methods; 3) Results; and 4) Conclusions.

The abstract should be self-explanatory, without reference to the text. Abbreviations may be included, provided they are defined in the abstract as well as the main text.

Short Abstracts are also recommended for the other major articles, (Mini) Review Articles and Viewpoints.

Main Text for Original Articles should include the following sections: Introduction, Methods (including Material or Subject/Population, Statistical Analysis, etc.), Results, Discussion, and Conclusions.

Introduction: should include both a brief review of literature data that are strictly related to the object of the paper, and a short statement on the aims of the study.

Methods: should be described in sufficient detail to allow other workers to duplicate the study. Previously reported procedures may be cited, but newly adopted modifications should be specified in detail.

Results: should be clearly and concisely described with the help of appropriate illustrative material.

Discussion: should be limited to the reported findings, propose their interpretation, and indicate their implications and limitations.

Conclusions: provided that they are directly supported by the evidence reported, the conclusions should briefly summarize the outcome and scope of the study.

References (suggested number: 30max., except for Reviews) should be cited in numerical order (in parentheses) in the text and listed in the same order at the end of the paper. Articles in press (i.e., accepted for publication) may be included with indication of Journal and year, but references to unpublished data or personal communications are unacceptable. If essential, such material may be incorporated in the appropriate place in the text. Abstracts may be cited only when they contain substantial data not published elsewhere, with the addition of the term "Abstract" at the end of the reference. Authors are responsible for the accuracy and completeness of their references and for correct citation (in sequence) in the text.

The style of references is based on the formats used by the NLM in Index Medicus: 1- titles of journals are abbreviated according to Index Medicus, and 2- all authors are listed when 6 or less; when 7 or more, the first 3 are listed, followed by "et al." Examples:

1) Journal: Ostir GV, Volpato S, Kasper JD, Ferrucci L, Guralnik JM. Summarizing amount of difficulty in ADLs: a refined characterization of disability. Results from the Women's Health and Aging Study. Aging Clin Exp Res 2001; 13: 465-72.

2) Book chapter: Stuck AE, Wieland D, Rubenstein LZ, Siu AL, Adams J. Comprehensive geriatric assessment: meta-analysis of main effects and elements enhancing effectiveness. In Rubenstein LZ, Wieland D, Bernabei R, Eds. Geriatric assessment technology: the state of the art. Milano: Ed. Kurtis, 1995: 11-26.

3) Book: Kane RL, Ouslander JG, Abrass IB. Essentials of Clinical Geriatrics, $2^{\rm nd}$ ed. New York: McGraw-Hill, 1990.

Illustrations/Figures should be numbered consecutively with arabic numbers. Legends are typed with double-spacing on a separate sheet. Name of first author, number and top of figure are indicated by a soft pencil on the back of each figure. Graphs should be submitted as high-quality computer print-outs. Color illustrations will be published when approved by the editors.

Tables should be typewritten on separate sheets and numbered consecutively with arabic numbers. Each table must have a concise heading and should be comprehensible without reference to the text. Tabular data in general should not be duplicated in the text or figures.

Authors are requested to indicate the approximate position of each table and figure in the text. Footnotes should be typed immediately below the table or figure.

Abbreviations and symbols should be used in their standard form and clearly defined in both the Abstract and body of the text. The full term for which an abbreviation stands should precede its first use in the text (in parentheses) unless it is a standard unit of measurement. Concerning units of measurement, the use of the International System of Units is recommended.

Drug names: generic names and/or chemical names should be used whenever possible; a brand name may be included in parentheses after a generic name the first time it is used but only if this is relevant to the paper. Nomenclature for hormones and chemical compounds should conform to current recommendations of appropriate international committees.

Galley proofs will be sent to the corresponding author, unless otherwise indicated, along with the Assignment of Copyright and the reprint order form, if applicable.

Authors are requested to keep copies of everything submitted.

Reprints may be purchased at the price indicated in the reprint order form accompanying the galley proofs.

PRIVACY POLICY

Handling of personal data is managed by Editrice Kurtis with data being stored in hardcopy and electronic archives in conformity with Italian law 675/96 ruling the processing and handling of personal data. This information will remain confidential at all times and will be used by Editrice Kurtis to keep our readers up to date with new initiatives, offers and publications concerning our company's business. Your personal data will not be disclosed to third parties and you may have it changed or cancelled at any time by sending us a request in writing.

Cutoff and Target Values for Intra-Abdominal Fat Area for Prevention of Metabolic Disorders in Pre- and Post-Menopausal Obese Women Before and **After Weight Reduction**

Ryosuke Shigematsu, PhD; Tomohiro Okura, PhD*; Syuzo Kumagai, PhD**; Yuko Kai, PhD**,^{‡‡}; Teruo Hiyama, MD[†]; Haruka Sasaki, MD^{††}; Hitoshi Amagai, MSc‡; Kiyoji Tanaka, PhD*,§

Background The Japan Society for the Study of Obesity originally proposed a cutoff value of >100 cm² for the intra-abdominal fat area (IFA) as a definition for "visceral fat obesity" in Japanese adults. There are no studies on the cutoff or target values after weight reduction in pre- and post-menopausal women.

Methods and Results In the present study 149 pre-menopausal obese women (PreM, 43.3 years, 27.3 kg/m²) and 58 post-menopausal women (PostM, 53.9 years, 27.7 kg/m²) participated in a 14-week weight reduction program. The IFA was measured by computed tomography. The program induced significant reductions in body weight (8.6kg in PreM and 7.8kg in PostM). The IFA decreased significantly from 80.4±41.3 to 50.7±23.8 (PreM) and from 115.4±38.0 to 75.7±30.5 (PostM).

Conclusions The receiver-operating characteristic curve analyses revealed that the appropriate cutoff values were 80 cm² (PreM) and 110 cm² (PostM) before the program, and after the program the appropriate target values were determined as 60 and $70 \,\mathrm{cm^2}$, respectively. (Circ J 2006; 70: 110-114)

Key Words: Diet; Exercise; Fat body; Menopause; Metabolic syndrome

he "visceral fat obesity" refers to the condition of excess intra-abdominal fat (IF), which places people having this type of excess fat at high risk for obesity-related metabolic disorders, such as hyperglycemia and dyslipidemia. The Japan Society for the Study of Obesity (JASSO)1 originally defined visceral fat obesity in Japanese as having an IF area (IFA) >100 cm² and indicated that such people tend to have 1 or more metabolic disorders! Nakamura et al reported that approximately 62% of patients with coronary artery disease have an IFA =100 cm² or more? and Banno et al found that sleep-disordered breathing was closely associated with obesity3

JASSO used a cross-sectional study design to validate the cutoff value for IFA of 100 cm2 for the diagnosis of visceral fat obesity! but intervention studies for assessing an appropriate target value that can be used for people who reduce their IF significantly have been lacking, and it is unclear whether, or at what point, decreasing IF improves metabolic disorders.

(Received August 26, 2005; revised manuscript received October 19,

Faculty of Education, Mie University, Tsu, *Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, **Institute of Health Science, Kyushu University, Fukuoka, †Division of Cardiology, Higashi Toride Hospital, Toride, ††Department of Internal Medicine, Chikushi Hospital, Fukuoka University, Chikushino, ‡Department of Orthopedic Surgery, Moriya Keiyu Hospital, Moriya, ‡‡Physical Fitness Research Institute Meiji Yasuda Life Foundation of Health and Welfare, Tokyo and §Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan

Mailing address: Ryosuke Shigematsu, PhD, Faculty of Education, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan. E-mail: rshige@edu.mie-u.ac.jp

2005; accepted November 4, 2005)

There are several studies of the effects of menopause on the relationship of IF with metabolic diseases. Excess IF deposition is more prevalent in post-menopausal women than in pre-menopausal women⁴ although it occurs more frequently in males of all ages. Hunter et al6 and Gower et al7 showed that the IFA and the risk of coronary heart disease (CHD) were positively correlated and that each average in post-menopausal women was higher than that in pre-menopausal women. The results of the study by Rebuffe-Scrive et al⁸ suggest that one of the reasons for this phenomenon is the more pronounced activation of lipoprotein lipase in the omental adipose tissue of postmenopausal women than in that of pre-menopausal women. The cutoff value for the IFA derived by JASSO1 was defined using a combination of pre- and post-menopausal women; the standards were, therefore, not established while considering the presence of menopause.

Based on these results, the current study assesses JASSO's visceral fat obesity IFA cutoff value of 100 cm² in pre- and post-menopausal women and also assesses the IFA target value after a weight reduction program. We tested 2 related hypotheses: (1) the cutoff value would be valid when applied to a group consisting of only pre- or post-menopausal women and (2) it would remain valid in each group after reducing the IFA.

Methods

Participants

Advertisements were placed in local newspapers and on bulletin boards in Toride City in Ibaraki Prefecture and Abiko City in Chiba Prefecture in Japan to locate potential

Circulation Journal Vol. 70, January 2006

IFA and Metabolic Disorders

participants with a desire to lose weight. Those who responded to the advertisements were interviewed by telephone. The participants supplied information on demographics, menstrual status, and medical history. They were excluded from the study if their weight had been unstable for the past 6 months, if they had attended any weight reduction programs in the past year, or if they were breast feeding or pregnant. A study physician confirmed if participants were possibly pregnant. Further, the study staff and radiologic technologist explained to all participants that computed tomography (CT) can have deleterious effects. After applying the exclusion criteria to potential participants, the selected participants (n=220) received the details of the study's purpose and protocol. Oral informed consent, following the Helsinki Declaration principles and approved by the Higashi Toride Hospital Review Board, was obtained from each person. We defined "menopause" as the status of no menses for 1 year prior to the study. "Pre-menopause" was used define individuals who were not experiencing menopause. Therefore, the pre-menopausal group consisted of women who declared having menses in the year prior to the study (PreM). The post-menopausal group included those women who had not had menses for more than 1 year prior to the beginning of the study (PostM).

IFA

We measured the IFA and subcutaneous fat area (SFA) at the level of the umbilicus using cross-sectional CT (SCT-6800TX; Shimadzu, Japan). Scans were performed with the participants in the supine position. Details of the scanning have been reported by Tokunaga et al⁹ and Yoshizumi et al!⁰ Measurements taken before and after the program were conducted at the same time of day by the same technician to minimize technical error. The IFA and SFA were calculated using a computer-software program (FatScan; N2system, Japan)!⁰ The intra-class correlation for repeated IFA determinations in the laboratory (Institute of Health and Sport Sciences, University of Tsukuba) is 0.99 (n=30).

Obesity-Related Metabolic Disorders

The obesity-related metabolic disorders were defined as follows: accumulation of IF (waist circumference ≥90cm in female) plus 2 or more co-morbidities consisting of (i) triacylglycerol (TG) ≥150 mg/dl and/or high-density lipoprotein cholesterol (HDLC) <40 mg/dl, (ii) systolic blood pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP) ≥85 mmHg, or (iii) fasting plasma glucose ≥110 mg/dl!^{11,12} These biochemical assays were performed on approximately 10ml of blood drawn from each participant after an overnight fast. The blood assays were analyzed by technicians at the Koto Biken Research Institute in Tsukuba, Japan. Total body composition was assessed by bioelectrical impedance methods!³ We used the Tanaka formula¹³ to estimate the total body density (Db) and the Brozek formula¹⁴ to determine the percentage of body fat. The Tanaka formula accurately predicts the total Db in obese Japanese women (R=0.903, SEE=0.0061 g/cm³, with the hydrodensitometrically determined Db). SBP and DBP were taken from the right arm using a mercury manometer after at least a 20-min rest while seated. Cuff sizes were selected based on upper arm girth and length.

Weight Reduction Program

A 14-week weight reduction program was monitored by

a physician, dietician, exercise instructors, and graduate school students majoring in exercise intervention. After the baseline assessment, participants received instruction on the diet program, which comprised weekly 90-min diet consultations, at which a diet-recording notebook and several handouts were given to participants to help them adhere to the principles of the daily diet. They were asked to take a well-balanced supplemental food product (MicroDiet; Sunny Health Co, Ltd, Japan) daily as 1 of their meals, preferably as lunch or dinner. The MicroDiet, which includes various amino acids, vitamins, and minerals, was developed for very low-energy diets. To prevent boredom, the MicroDiet was served in 7 flavors: coffee, milk tea, cocoa, yogurt, banana, strawberry, and apple. Participants received packages consisting of 7 meals (each flavor) once a week. The nutritional values for each flavor were slightly different (ie, there was a range for protein (20.6-21.5 g), carbohydrate (15.0-18.1 g), fat (1.6-3.0 g), and energy (169–173 kcal) for each meal). The diet records were obtained from 86 participants (60 in the PreM group, 26 in the PostM group), who were randomly selected. One week before the study, the participants were asked to record everything they had eaten for the 3 days prior to the study. Furthermore, they were asked to record their diets for 3 days during week 7, the midpoint of the intervention.

The exercise program included 3 weekly 45-min sessions. During the first and second weeks of the 14-week program, exercise sessions consisted mainly of walking and stretching, with the gradual addition of a bench-stepping exercise 15 as the main element. Thereafter, the exercise session consisted of a 10-min warm-up, 25-min bench stepping, and a 10-min cool-down. The bench stepping targeted an exercise intensity in which the participant's heart rate reached a level 10-15% higher than the level corresponding to her lactate threshold (LT). The LT was defined as the point at which blood lactate concentration maintained a non-linear increase above the level at rest!6 To determine LT, a series of venous blood samples (1 ml each) was drawn from the antecubital vein every minute during a maximal cycling exercise test, which was done with an accompanying electrocardiogram as a baseline assessment. All blood samples were analyzed by the electrochemical enzymatic method using a lactate analyzer (model 23L, YSI Inc, OH, USA). For establishing LT, the log (oxygen uptake) – log (lactate) transformation method was used 16

Exercise was consistently performed for 45 min throughout the 14 weeks, but the intensity was progressively increased. In the first 2 weeks, the bench-stepping instructor targeted the intensity as described. After the 3rd week, the instructor progressively increased the intensity by increasing the cadence of the step and adding more dynamic movements. Ratings of the perceived exertion (RPE)¹⁷ by all participants were also monitored during the bench stepping. Based on their RPE, the instructor moderated the intensity as "somewhat hard" to "hard," which corresponded to LT or a little above LT!⁸

Statistical Analysis

Differences in variables between the beginning and end of the program were tested in each group by using Student's paired t-tests. Data were analyzed with the SPSS 11.01J statistical software package (SPSS, Chicago, IL, USA), and P-values less than 0.05 were considered statistically significant.

To assess the cutoff value (before weight reduction) and

112 SHIGEMATSU R. et al.

Table 1 Baseline Characteristics of Participants

	PreM + PostM (n=207)	PreM (n=149)	PostM(n=58)
Age (years)	46.2±8.1	43.3±6.7 (24–57)	53.9±6.0 (45–62)
Height (cm)	157.0±5.2	157.9±5.1 (146.1–171.8)	154.6±4.9 (145.6–165.4)
Weight (kg)	67.6±8.2	68.1±7.6 (53.6–87.6)	66.3±9.7 (50.0–111.3)
Body mass index (kg/m²)	27.4±3.0	27.3±2.9 (21.8–37.3)	27.7±3.3 (20.9-40.7)
Percent body fat (%)	34.6±4.9	34.1±4.2 (24.9–46.7)	35.9±6.2 (24.1–51.9)
Intra-abdominal fat area (cm²)	90.2±43.3	80.4±41.3 (12.2-222.9)	115.4±38.0 (32.3–191.2)
Subcutaneous fat area (cm²)	252.2±82.1	250.9±75.4 (103.5-548.0)	255.5±97.9 (90.5–684.0)
Abdominal circumstance (cm)	95.7±8.6	95.1±8.4 (73.8–118.0)	97±8.9 (80.5–131.5)

Values are means ± standard deviations (minimum-maximum).

PreM, pre-menopausal obese group; PostM, post-menopausal obese group.

Table 2 Effects of a 14-Week Weight Reduction Program on Anthropometric Variables, Abdominal Fat Area, Metabolic Variables, and Blood Pressures

	PreM + PostM (n=207)		PreM (n=149)		PostM (n=58)	
	Before	After	Before	After	Before	After
Weight (kg)	67.6±8.2	59.3±7.4* (-12%)	68.1±7.6	59.6±6.9* (-12%)	66.3±9.7	58.5±8.5* (-12%)
Body mass index (kg/m²)	27.4±3.0	24.0±2.7* (-12%)	27.3±2.9	23.9±2.6* (-12%)	27.7±3.3	24.4±2.9* (-12%)
Percent body fat (%)	34.6±4.9	29.4±4.6* (-15%)	34.1±4.2	28.8±4.0* (-15%)	35.9±6.2	31.1±5.5* (-13%)
Intra-abdominal fat area (cm2)	90.2±43.3	57.7±28.1* (-32%)	80.4±41.3	50.7±23.8* (-31%)	115.4±38.0	75.7±30.5* (-34%)
Subcutaneous fat area (cm2)	252.2±82.1	181.6±76.9* (-29%)	250.9±75.4	176.2±73.2* (-31%)	255.5±97.9	195.5±84.6* (-24%)
Abdominal circumference (cm)	95.7±8.6	85.2±8.6* (-6%)	95.1±8.4	84.9±8.0* (-5%)	97.3±8.7	86.2±10.0* (-7%)
Fasting plasma glucose (mmol/L)	5.41±1.13	4.94±0.68* (-7%)	5.25±0.86	4.88±0.68* (-6%)	5.84±1.57	5.10±0.67* (-10%)
Total cholesterol (mmol/L)	5.71±0.95	5.17±0.89* (-9%)	5.59±0.95	5.02±0.83* (-9%)	6.00±0.89	5.57±0.92* (-7%)
Triacylglycerol (mmol/L)	1.18±0.59	0.80±0.41* (-23%)	1.13±0.59	0.76±0.38* (-24%)	1.30±0.58	0.91±0.48* (-21%)
HDLC (mmol/L)	1.70±0.38	1.65±0.33* (-1%)	1.72±0.36	1.65±0.32* (-2%)	1.66±0.44	1.65±0.35 (+2%)
SBP (mmHg)	132.4±18.8	120.6±16.5* (-8%)	129.9±17.9	118.6±15.5* (-8%)	138.7±19.7	125.8±17.7* (-9%)
DBP (mmHg)	82.1±11.7	74.4±11.0* (-9%)	81.0±11.5	74.2±10.5* (-8%)	84.9±11.9	74.8±12.4* (-12%)

Values are means ± standard deviations (relative change, %).

PreM, pre-menopausal obese group; PostM, post-menopausal obese group; HDLC, high-density lipoprotein cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.

 $\begin{tabular}{ll} Table & 3 & Number and Percentage of Participants That Exceeded Each Criterion of the Metabolic Disorders Before and After Weight Reduction Program \\ \end{tabular}$

	PreM (n=149)		PostM (n=58)	
	Before	After	Before	After
High abdominal circumference	112 (75%)	37 (25%)	50 (86%)	18 (31%)
High triacylglycerol and/or low HDLC	27 (18%)	6 (4%)	11 (19%)	6 (10%)
High triacylglycerol	26 (17%)	5 (3%)	9 (16%)	5 (9%)
Low HDLC	3 (2%)	3 (2%)	4 (7%)	2 (3%)
High systolic and/or diastolic blood pressure	80 (54%)	36 (24%)	41 (71%)	23 (40%)
High systolic blood pressure	74 (50%)	33 (22%)	39 (67%)	23 (40%)
High diastolic blood pressure	52 (35%)	22 (15%)	28 (48%)	8 (14%)
High fasting plasma glucose	11 (7%)	6 (4%)	14 (24%)	6 (10%)

Abbreviations see in Table 2.

the target value (after weight reduction) for IFA, receiver-operating characteristic (ROC) curve analysis was applied to the data derived from the IFA and the number of metabolic disorders. By provisionally varying the cutoff/target values of IFA, we calculated the sensitivities and specificities for each value. Sensitivity was defined as the proportion of participants having a given disorder who also had an IFA equal to or greater than the provisional value to all participants having a given disorder. Specificity was defined as the proportion of participants having no disorders who had an IFA that fell below the provisional value to all participants having no disorders. The sensitivities and specificities were calculated for every $10\,\mathrm{cm}^2$ of IFA from 30 to $140\,\mathrm{cm}^2$. At each $10\,\mathrm{cm}^2$ provisional value, the sensitivity was multiplied by the specificity, and the point having the maximum

product of sensitivity×specificity was considered to be the most valid cutoff/target value.

Results

Of the 220 women originally enrolled in this study, 13 dropped out because they moved out of the area, needed to care for a family member, or felt fatigued. Consequently, 207 women completed the study (Table 1), and attendance averaged 92% (range 83–100%).

There were significant decreases in the anthropometric variables, IFA, SFA, metabolic variables, and blood pressures in each group (Table 2). Total body composition analysis revealed that the reduction in body weight was mostly from loss of body fat. The reduction in fat-free mass

Circulation Journal Vol. 70, January 2006

^{*}Significant intra-group difference (P<0.05).

IFA and Metabolic Disorders

Table 4 Sensitivities and Specificities From Each Provisional Cutoff/Target Value of Intra-Abdominal Fat Area (IFA)

Cutoff/target value (IFA, cm²)	PreM				PostM			
	Before		After		Before		After	
(IFA, CM²)	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity	Sensitivity	Specificity
30	0.96	0.04	0.93	0.22	1.00	0.00	1.00	0.06
40	0.91	0.23	0.87	0.42	1.00	0.06	1.00	0.11
50	0.89	0.37	0.73	0.57	0.98	0.12	1.00	0.3
60	0.80	0.47	0.67	0.71	0.95	0.18	0.91	0.40
70	0.72	0.55	0.33	0.82	0.93	0.29	0.91	0.63
80	0.63	0.74	0.27	0.89	0.90	0.41	0.82	0.66
90	0.53	0.81	0.07	0.96	0.88	0.59	0.64	0.72
100	0.45	0.89	0.07	0.98	0.85	0.59	0.64	0.79
110	0.40	0.95	0.07	0.99	0.73	0.71	0.45	0.96
120	0.27	0.96	0.07	0.99	0.56	0.82	0.36	0.98
130	0.21	0.97	0.07	1.00	0.41	0.94	0.18	1.00
140	0.16	0.97	0.00	1.00	0.29	0.94	0.09	1.00

Abbreviations see in Table 1.

Underlined values indicate the most valid cutoff/target values.

was significant, but the absolute change was less than the change in fat mass.

The daily average energy intake in the PreM group was 2,100±354 kcal at 1 week before the study and it decreased significantly to 1,163±242 kcal. The PostM group significantly reduced their energy intake from 1,870±394 kcal to 1,029±152 kcal. The daily protein intake in the PreM group was 78.1±15.1 g, and it decreased significantly to 70.3±14.2 g. In the PostM group, it decreased significantly from 86.1±33.5 g to 65.1±9.0 g. The daily fat intake decreased significantly from 66.3±14.9 g to 33.1±9.9 g in the PreM group and from 56.6±20.4 g to 27.4±6.2 g in the PostM group. The daily carbohydrate intake also decreased significantly from 285.5±61.2 g to 147.5±31.3 g in the PreM group and from 272.3±94.1 g to 136.1±23.8 g in the PostM group.

The percentage of participants that exceeded each criterion of the metabolic disorders is shown in Table 3. More than 50% of the participants had a high abdominal circumference before the program (PreM, 75%; PostM, 86%). The most frequent disorder in both groups was hypertension, with hyper-SBP (PreM, 50%; PostM, 67%) and hyper DBP (PreM, 35%; PostM, 48%). After the program, the percentages of all disorders, except for hypo-HDLC in the PreM group, decreased.

The characteristics of the 12 provisional cutoff/target values for IFA from 30 cm² to 140 cm² are presented in Table 4. Sensitivities before the program ranged from 0.16 to 0.96 in the PreM group and from 0.29 to 1.00 in the PostM group. Specificities ranged from 0.04 to 0.97 for the PreM group and from 0.00 to 0.94 for the PostM group. The products obtained by multiplying the sensitivity by the specificity at each provisional value ranged from 0.04 to 0.47 in the PreM group and from 0.00 to $\bar{0}.52$ in the PostM group. The largest products of sensitivity and specificity were found at 80 cm² (0.47) for the PreM group and 110 cm² (0.52) for the PostM group. Therefore, the cutoff values with the best equilibrium between sensitivity and specificity approached 80 cm² in the PreM group and 110 cm² in the PostM group before weight reduction. Using the same method of analysis, the most valid target values after the weight reduction program were determined to be 60 cm² for the PreM group and 70 cm² for the PostM group.

Discussion

In only a few studies, attempts have been made to determine the cutoff or target value for obesity-related metabolic disorders!,19,20 In the present study the cutoff values of IFA were $80 \,\mathrm{cm}^2$ for pre-menopausal women and $110 \,\mathrm{cm}^2$ for post-menopausal women before weight reduction, which are similar to the 100 cm2 value considered appropriate by JASSO1 in a study that did not differentiate between preand post-menopausal women. Williams et al, in a combined study of both pre- (n=133) and post-menopausal women (n=87), concluded that 110 cm² was the cutoff value for IFA above which the risk of metabolic disorders increases?0 Despres and Lamarche indicated that 130 cm² of IFA was the point at which the metabolic risks increase significantly, derived from a sample of 115 males and 72 females!9 Considering those findings, the cutoff values in the current study seem to be reasonable.

A difference of 30 cm² in the cutoff values was noted between the PreM women (80 cm²) and the PostM women (110 cm²) before weight reduction. Williams et al reported that menopause has little effect on the risks of metabolic disorders, such as HDLC, TG, SBP, DBP, and TC:HDLC ratio²⁰ although in a review by Knopp²¹ post-menopausal women were found to have elevated risks because of decreased estrogen contributing to increased low-density lipoprotein cholesterol (LDLC) and decreased HDLC concentrations. Hunter et al6 have also reported that postmenopausal women showed a greater IFA than pre-menopausal women and that menopausal status was significantly related to an increased risk for CHD risk factors (ie, LDLC, TC:HDLC ratio). Therefore, in the current study, the cutoff values were expected to differ according to the menopausal status of the participants. Because estrogen decreases the risk of CHD during the pre-menopausal period, perhaps counterbalancing some of the CHD risks brought on by excess IF;1 further assumptions were made that the cutoff value for PreM women would be the same or even greater than that of PostM women. The ROC analyses revealed a difference of 30 cm² between the cutoff values in each group, but the value of the PreM group was lower than that of the PostM group. The study from the Women's Health Initiative also showed that estrogen would not confer benefits for preventing CHD among women with estrogen plus progestin therapy relative to women given a placebo?2

There seem to be other factors in addition to estrogen affecting the risk of metabolic disease; for example, aging, which correlates to an increase in IFA^{2,6,23} and adiponectin;²⁴ may be a factor.

In previous studies, a cross-sectional design was used to determine an IFA cutoff value, 1,19,20 but because it is also important to determine a target IFA value for reducing the risk of metabolic disease, an intervention design was used in the current study. The IFA relates to the risk of obesity-related metabolic disorders; therefore, we assumed that the target values after weight reduction would remain the same as before the program, but they were lower. Although the reasons for this are unclear, we speculate that once a person is suffering from a metabolic disorder, a significant reduction in IFA may not be enough in itself to ameliorate the situation.

Study Limitations

The reasons for the relatively low sensitivities and specificities derived from IFA and metabolic disorders are unclear. Some unmeasured factors, such as diet and the genetic effect of metabolic disorders, may play a part. Furthermore, homeostasis was not maintained during and just after the weight loss. Another limitation is that the number of participants was small and that the mean body mass index or IFA was not very high, although most participants were obese. Future studies should include a larger number of extremely obese participants to verify the target values for risk of IFA after weight reduction. A significant decrease in HDLC in the PreM group was found after weight reduction, which may have been caused by the diet. Hagan et al25 reported that HDLC decreased as middle-aged women lost body weight during a 12-week diet program. The significant decrease in TC could be attributed to the fact that TC includes HDLC.

In conclusion, this study presents the cutoff values for IFA in both pre- and post-menopausal obese women, as well as the target values after weight reduction, which are useful for the diagnosis of obesity-related metabolic disorders. Before weight reduction, the cutoff values with the best equilibrium were $80\,\mathrm{cm^2}$ for pre-menopausal women and $110\,\mathrm{cm^2}$ for post-menopausal women. After weight reduction, the target values shifted to $60\,\mathrm{cm^2}$ and $70\,\mathrm{cm^2}$, respectively. Using these values, persons diagnosed with visceral fat obesity can clearly see the benefits of engaging in a diet and exercise program. Furthermore, awareness of a target value makes adherence to the program more likely.

Acknowledgments

This work was supported in part by Grants-in-Aid from the Japanese Society of Physical Fitness and Sports Medicine (1998–2000), by the Tanaka Project of the Japanese Society of Physical Fitness and Sports Medicine (1998–2000), by the Tanaka Project (1999–2002) of TARA (Tsukuba Advanced Research Alliance) at University of Tsukuba, and by the 21st century COE (Center of Excellence) program, Ministry of Education, Culture, Sports, Science and Technology (2002–2003 Nishihira Project: Promotion of health and sport scientific research). The MicroDiet was provided by the Sunny Health Co Ltd.

References

- Examination Committee of Criteria for 'Obesity Disease' in Japan, Japan Society for the Study of Obesity. New criteria for 'obesity disease' in Japan. Circ J 2002; 66: 987-992.
- 2. Nakamura T, Tokunaga K, Shimomura I, Nishida M, Yoshida S,

- Kotani K, et al. Contribution of visceral fat accumulation to the development of coronary artery disease in non-obese men. *Atherosclerosis* 1994; **107**: 239–246.
- Banno K, Shiomi T, Sasanabe R, Otake K, Hasegawa R, Maekawa M, et al. Sleep-disordered breathing in patients with idiopathic cardiomyopathy. Circ J 2004; 68: 338-342.
- Ley CH, Lees B, Stevenson JC. Sex- and menopause-associated changes in body-fat distribution. Am J Clin Nutr 1992; 55: 950-954.
- Björntorp PA, Sex differences in the regulation of energy balance with exercise. Am J Clin Nutr 1989; 49: 958-961.
- Hunter GR, Kekes-Szabo T, Treuth MS, Williams MJ, Goran M, Pichon C. Intra-abdominal adipose tissue, physical activity and cardiovascular risk in pre- and post-menopausal women. Int J Obes Relat Metab Disord 1996; 20: 860-865.
- Gower BA, Nagy TR, Goran MI, Toth MJ, Poelman ET. Fat distribution and plasma lipid-lipoprotein concentrations in pre- and post-menopausal women. *Int J Obes Relat Metab Disord* 1998; 22: 605–611.
- Rebuffe-Scrive M, Andersson B, Olbe L, Björntorp P. Metabolism of adipose tissue in intraabdominal depots of nonobese men and women. *Metabolism* 1989; 38: 453-458.
- women. Metabolism 1989; 38: 453-458.
 Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. A novel technique for the determination of body fat by computed tomography. Int J Obesity 1983; 7: 437-445.
- Yoshizumi T, Nakamura T, Yamane M, Islam AH, Menju M, Yamasaki K, et al. Abdominal fat: Standardized technique for measurement at CT. Radiology 1999; 211: 283-286.
 Igarashi K, Fujita K, Yamase T, Norita N, Okita K, Satake K, et al.
- Igarashi K, Fujita K, Yamase T, Norita N, Okita K, Satake K, et al. Sapporo Fitness Club Trial (SFCT): Design, recruitment and implementation of a randomized controlled trial to test the efficacy of exercise at a fitness club for the reduction of cardiovascular risk factors. Circ J 2004; 68: 1199-1204.
- The Examination Committee of Criteria for 'Metabolic Syndrome' in Japan. Criteria for 'metabolic syndrome' in Japan. J Jpn Soc Intern Med 2005; 94: 188-203 (in Japanese).
 Tanaka K, Nakadomo F, Watanabe K, Inagaki A, Kim HK, Matsuura
- Tanaka K, Nakadomo F, Watanabe K, Inagaki A, Kim HK, Matsuura Y. Body composition prediction equations based on bioelectrical impedance and anthropometric variables for Japanese obese women. Am J Hum Biol 1992; 4: 739-745.
- Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann NY Acad Sci 1963; 110: 113-140.
- Olson MS, Williford HN, Blessing DL, Greathouse R. The cardiovascular and metabolic effects of bench stepping exercise in females. Med Sci Sparts Exerc 1991: 23: 1311-1317
- Med Sci Sports Exerc 1991; 23: 1311-1317.
 16. Beaver WK, Wasserman K, Whipp BJ. Improved detection of lactate threshold during exercise using a log-log transformation. J Appl Physiol 1985; 59: 1936-1940.
- Borg G. Perceived exertion: A note on "history" and methods. Med Sci Sports 1973; 5: 90-93.
- Hill DW, Cureton KJ, Grisham C, Collins MA. Effect of training on the rating of perceived exertion at the ventilatory threshold. Eur J Appl Physiol 1987; 56: 206-211.
- Despres JP, Lamarche B. Effects of diet and physical activity on adiposity and body fat distribution: Implications for the prevention of cardiovascular disease. Nutr Res Rev 1993; 6: 137-159.
- Williams MJ, Hunter GR, Kekes-Szabo T, Trueth MS, Snyder S, Berland L, et al. Intra-abdominal adipose tissue cut-points related to elevated cardiovascular risk in women. Int J Obes Relat Metab Disord 1996; 20: 613-617.
- Knopp RH. Risk factors for coronary artery disease in women. Am J Cardiol 2002; 89: 28E-35E.
- Writing Group for the Women's Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women. *JAMA* 2002; 288: 321-333.
 Hernandez-Ono A, Monter-Carreola G, Zamora-Gonzalez J,
- Hernandez-Ono A, Monter-Carreola G, Zamora-Gonzalez J, Cardoso-Saldana G, Posadas-Sanchez R, Torres-Tamayo M, et al. Association of visceral fat with coronary risk factors in a population-based sample of postmenopausal women. *Int J Obes Relat Metab Disord* 2002; 26: 33-39.
- Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J 2004; 68: 975-981.
- Hagan RD, Upton SJ, Wong L, Whittam J. The effects of aerobic conditioning and/or caloric restriction in overweight men and women. Med Sci Sports Exerc 1986; 18: 87-94.

VI.予防・治療・管理

ライフスタイルへの介入によるメタボリックシンドロームの予防と治療 運動療法

メタボリックシンドローム診断における 運動療法の基本コンセプト

Exercise prescription for people with metabolic syndrome

田中喜代次1 林 容市2 中田由夫2 大藏倫博2

| Key words : 内臓脂肪、運動療法、食事療法、エネルギー消費量

はじめに

メタボリックシンドロームとは、内臓脂肪の 過剰蓄積を基盤として、血圧の上昇(正常高値) や糖・脂質代謝の障害が顕在化しつつある状態 を指す¹⁾. したがって、治療や改善のための介 入に際しては、内臓脂肪を中心とした体脂肪の 減少および血圧や種々の代謝障害の正常化が基 本目標となる.

メタボリックシンドロームの診断基準は、① 内臓脂肪型肥満を必須とするもの^{1,2)}、②インス リン抵抗性を必須とするもの³⁾、③必須条件を 作らないもの^{4,5)}、の3つに大きく分類できる。 そのうち、日本人を対象にしたものでは、内臓 脂肪型肥満がメタボリックシンドロームの源泉 として強調されている¹⁾。これらのことから、 メタボリックシンドロームの改善を目的とした 場合、食事療法(主に食事制限による摂取エネ ルギー量の減少)とともに、運動の習慣化を通 して総消費エネルギー量を増大させる組み合わ せ介入が第一選択肢としてあげられよう。

1. 運動だけで内臓脂肪を減らすことは 可能か?

肥満を解消するための運動プログラムがテレ ビや新聞、雑誌などのメディアを通じて頻繁に 発信されているが、果たして多くの一般人にと って運動だけで肥満を改善する(内臓脂肪を減 らす)ことが可能であろうか. 図1において, 自転車エルゴメータ運動(またはトレッドミル 歩行やウォーキング)と食事制限による体重減 少量(1カ月当たり)の理論値を比較した. 体重 80kgの肥満者が1回30分間,4METs強度で週 1回, 3回, 7回自転車エルゴメータ運動を行 った場合、1カ月間の減量の理論値はそれぞ $n-0.1 \,\mathrm{kg}$, $-0.2 \,\mathrm{kg}$, $-0.5 \,\mathrm{kg}$ である. 一方, 減量前の食事による1日総摂取エネルギーを 2,500kcalと仮定した場合,この量の10%(250 kcal/H), 20%(500kcal/H), 30%(750kcal/H)日)を減らしたときの1カ月間の減量の理論値 はそれぞれ-1.1kg, -2.1kg, -3.2kg である. つまり、週1~3回程度の運動では体重減少効 果は極めて小さく、計算上は毎日(週7回)の運 動であっても1日の食事量を10%減らした場 合の約半分の効果でしかない. 例えば, '週3回

¹Kiyoji Tanaka: Department of Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba 筑波大学大学院人間総合科学研究科 スポーツ医学 ²Yoichi Hayashi, Yoshio Nakata, Tomohiro Okura: Department of Health and Sport Sciences 同 体育科学

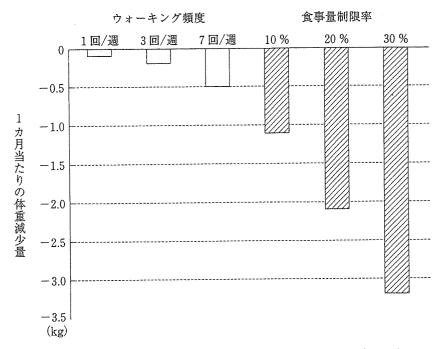


図1 ウォーキングと食事制限による体重減少量(1カ月当たり)の 理論値の比較

ウォーキングによる理論値算出に際しては、体重 $80 \, \mathrm{kg}$ の肥満者が 1 回 30 分間、 $4 \, \mathrm{METs}$ 強度で行うものと仮定(条件設定)し、週 1 回、3 回、7 回の場合について 1 カ月間で消費されるエネルギー量に基づき、体脂肪 $1 \, \mathrm{kg}$ の燃焼エネルギーを $7,000 \, \mathrm{kcal}$ として計算した。また、食事制限による理論値算出は、減量前の $1 \, \mathrm{H}$ 日総摂取エネルギーを $2,500 \, \mathrm{kcal}$ と仮定し、この量の $10 \, \%$ ($250 \, \mathrm{kcal}$ /日)、 $20 \, \%$ ($500 \, \mathrm{kcal}$ /日)、 $30 \, \%$ ($750 \, \mathrm{kcal}$ /日)を減らした場合の体重減少量を推定した。

の自転車エルゴメータ運動またはウォーキング'は臨床現場で頻繁になされる運動処方であるが、この場合の体重減少量は1日の食事量を20%減少させた場合の約1/10にすぎない.恐らく、週3回自転車エルゴメータ運動を行った程度の体重減少量では内臓脂肪の減少量も小さく、メタボリックシンドロームの根本的な改善策としての効果には疑問を呈さずにはいられない。

図2は実際に著者らが介入研究を通して収集したデータであり、運動の効果はそれほど大きくないことが理解できよう。メタボリックシンドロームの改善を企図した運動は、有酸素性運動(40~90分の低強度での運動または20~60分の中程度~やや高めの強度での運動)を週に3~7日(低強度・短時間なら7日、高め強度・長時間なら3~4日)実践することである。強度の目安は、乳酸、心拍数、血圧、二重積などから

探るのが一般的だが,多人数に効率良く運動を勧めるためには,自覚的運動強度(RPE)を利用しながら本人と指導者による協議に基づいて選定する方法も有用である.その場合,AT pointの処方ではなく,AT zoneを示すのがよい.ここでいうAT zoneとは,RPEで11('楽である')~15('きつい')くらいの範囲を指す.運動時間については,10 分 \times 3 回と30 分 \times 1 回を比べると,強度が同じ(低 \sim 中)であれば後者による効果が大きいが,前者では障害を起こす確率が低いというメリットがある.このことにこだわる必要はない.

"内臓脂肪"(腹囲,中性脂肪)や"血糖"を効率 良く減らすには、1日当たり1,200~1,800kcal 程度の食事療法を併用することが有効かつ安全 で、個人差が大きいとはいえ少量の運動だけで は限界がある."血圧"を改善するには、食塩感 受性、遺伝体質、肥満度、性格などを考慮に入

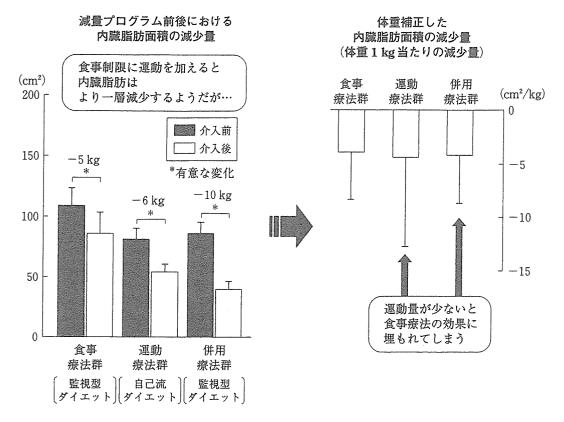


図2 減量プログラム前後における内臓脂肪面積の変化

れながら、個人に合った運動を処方することが 肝要で,薬物療法との併用が最も効果的である との報告が増えている. "HDLコレステロー ル"はランナーなどの(最大酸素摂取量の高い) スポーツ選手で最も高く, 運動不足の肥満男性 で低く、虚血性心疾患の男性で最も低い. HDL コレステロールを高めるには、 ジョギングやウ ォーキング(週に15km程度),水泳,エアロビ クス、ダンスなどの有酸素性運動を習慣化・日 常化することである. 早い人で数カ月, 遅い人 で数年後に数値が上昇してくる. しかし, 運動 量が減少し、体脂肪が増えてくると、再び低値 に戻りやすい. 運動は、有酸素性運動、レジス タンス運動,ストレッチ(または柔軟体操,ヨ ガ,ピラテスなど)とレクリエーションを上手 く組み合わせることが最も適切であろう.世代, 季節, 天候, 仲間の有無, 屋内外といった条件 に合わせて運動を楽しむ方法を習得することが 理想である.

2. 運動と減量は量-反応関係にあるのか?

Ross 6^{6} は、 $1966\sim2000$ 年の文献を対象に、'weight loss' および 'exercise' をキーワードとした MEDLINE による検索を行い、ヒットした 36 の研究についてレビューを行っている.介入期間が 16 週未満の短期的介入研究におけるエネルギー消費量 (運動量) と体重および体脂肪の変化量との関係(相関係数) は、それぞれ r=-0.84 と r=-0.76 であり、いずれも統計学的に有意(有意確率<0.001)であったことから、短期間の介入では運動量に応じて体重が減少する量-反応(dose-response)関係にあることがうかがえる.一方、介入期間が 20 週以上の比較的長期間の介入においては、体重および体脂肪ともに運動量との連動はみられなかった(図 3).

Mertens 6^n は、食事制限をせずに週当たり $1,500\sim2,000$ kcal の運動を数年間にわたって処方したところ、年平均の体重減少量は 1%(1)

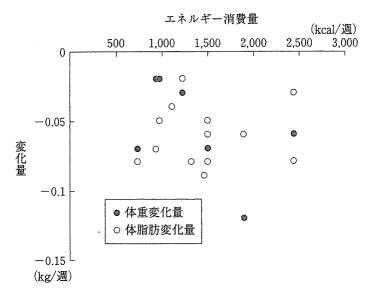


図3 1週当たりのエネルギー消費量と体重および 体脂肪変化量との関係(介入期間:20週以上) (Ross Rら(2001)®の報告に基づき著者らが作成)

kg)にも満たなかったと報告している. 彼らはこの理由として,食事によるエネルギー摂取量が介入前に比べて8%増加していたことをあげている. 日本人を対象とした著者らの取り組みにおいても,同様のことを観察している⁸. また,Leonら⁹は運動を処方することにより介入期間中の日常生活の活動量が減少することを観察しており,結果的に食事制限を伴わない運動処方は減量に成功せず,冠危険因子を改善することができなかったと述べている.

3. 減量介入に性差を考慮すべきか?

食事制限と運動による体重減少量の違いに目を向けてみよう. 1969~84年までに行われた減量に関する研究(メタアナリシス) いによると、食事制限による体重減少量は平均一10.7kgであるのに対し、運動のみだとー2.9kgでしかなかった. 一方、男性肥満者のみに絞って検討した研究いでは、食事制限ー7.8kgに対して運動ー4.6kgと大差は少なく、2つの介入方法による体重減少の違いには性差が存在することも示唆されている. 日本人を対象とした著者らの長年の介入研究でも、同様のことを観察している®. 男性が本格的に運動に取り組んだ場合、運動による総消費エネルギーが大きく増え、か

つ暴飲暴食習慣をもっていた人では食事制限の効果も大きくなる. 最近では, 食事制限と運動の併用介入によって, 女性において体重減少の累積的効果(cumulative effect)が得られることも報告されており¹²⁾, 少なくとも日本人女性を対象として内臓脂肪の減少を目的とした減量介入を行う際には, 運動だけでなく食事制限を併用することの必要性がうかがえる.

メタボリックシンドロームの改善、特に内臓脂肪の減少を目的とする場合には、女性については運動の効果を過大評価せず、食事指導(制限)と運動(主に有酸素性運動)を適切に組み合わせる方法を今後詳細に検討していく必要があるといえる.

4. 効果的な運動とは?

一般に脂質燃焼を目的とした場合、最大下(submaximal)強度で行う有酸素性運動をある一定時間継続することが推奨されているが、特に内臓脂肪の減少に関しては、やや高い強度(70~80% VO₂max)での運動実践が有効であることが推察される^{13,14)}.一過性の有酸素性運動時においては、50% VO₂max と比較して、70% VO₂max に相当する強度での運動時に、内臓脂肪に由来する脂質の燃焼効率が増大する可能性

が示唆されている¹⁵. 多段階漸増負荷やランプ 負荷という特殊なプロトコルでの運動時には、 強度が高まるにつれて脂質によるエネルギー供 給の割合が低下することは周知の事実であるが、 ある程度の時間、運動を継続するという一般的 な様式での有酸素性運動時には、高めの強度の 方が、総消費エネルギー量(kcal)は大きくなり、 脂質の分解・利用の効率が多少低下しても、高 い脂肪燃焼効率・少ない消費カロリーの運動時 と比較して、実質の脂肪消費量(g)は多くなる。 運動中に脂質や糖質が動員される割合の比較に だけ焦点を当てるのではなく、消費されるエネ ルギーの総量に着目した運動強度の設定や運動 処方が重要である.

内臓脂肪型肥満と同様に、メタボリックシン ドロームのリスク要因であるインスリン抵抗性 などの耐糖能異常は,有酸素性運動だけでな く、筋収縮を強調したレジスタンス運動によっ ても改善されることが指摘されている. 最近の 著者らの研究160では、一過性の運動においては やや高めの強度で糖代謝への効果はより増幅さ れることが明らかとなった. したがって、有酸 素性運動とレジスタンス運動の両方を上手く組 み合わせて処方することで, より大きな改善が 期待できる、また従来より、HDLコレステロー ルを高めるためには、中程度~高め(最低75% HRmax または60% VO₂max 以上)の強度で週 に12.8~16km(3日/週走るとすると1日約4.3 ~5.4 km)以上のジョギングを続けること,す なわち大きな運動量を確保することの必要性が 報告されている. ここでいう高めの強度や大き な運動量とは、アスリートの競技レベルを意味 するのではなく,一般の人々が実践可能な範囲 内の中での'高いレベル'を指しており、ACSM が推奨する有酸素性運動時の強度範囲を超える ものではない. 一般健常者だけでなく, メタボ リックシンドロームと診断された場合でも, '高めの強度'は多くの人に適応可能なレベルと いえる.

運動だけで効果を求める場合,大きな運動量 を多頻度で実践することが必要となり,コンプ ライアンスとアドヒアレンスのいずれを考える にしても、対象者にとって継続が困難となる. 冒頭で述べたように、運動のみでメタボリック シンドロームを改善しようとするのではなく、 食習慣の改善と運動習慣の定着の両者を踏まえ た日常生活自体の改善の気づき(脳のスイッチ 'オン')が肝要である.

5. 運動処方のパラダイムシフト

専門の運動指導者による導きは有効であるが、 運動実践者(クライアント)の体の中で起こって いる異常・違和感を運動指導者や医師が常に的 確に感じ取ることは困難である. できるだけで 動に伴うケガを起こさず、習慣化につなげてい くためには、周囲の者(高齢者体力つくり支援 士や健康運動指導士、理学療法士などのからだい 対話するよう、繰り返しアドバイスすることが 肝要である. 自分のからだの内なる声に耳を傾 けるといった運動処方ではまさに主観的で て、客観性に欠けるとの指摘を受けるが、安に で、随時可能で、時間的ズレがないということ を考えれば、これ以上の事故予防チェック方法 はほかにない.

また、公衆衛生分野でいわれている informed choice (多くの情報の中から個人が自分に合ったものを選択すること)を円滑に進めるための多方面からの情報提供や、自らのからだとの対話の勧めが重要である一方で、専門家の別視(蔑視、結果的に差別)に基づく不適切な運動の禁忌指令(逆支援)は避けなければならない。そのためには、専門家は有益な情報を与えつつも、それを選択するかどうかについては不必要に口を挟まないアプローチが望まれる。すなわち、個人の主体性を最優先し、'押しつけない'あるいは'過度に規制しない'、そして'大いに楽しませる'柔軟な運動処方指針の啓発が必要である。

おわりに

運動療法によってメタボリックシンドローム の改善介入を行う場合,一般に運動によって得 られる2つの効果(①一時的な急性効果,②慢 性的な持続効果),および2つの生理的変化(① 体脂肪の減少に代表される器質的変化,②分子レベルへの働きかけによる機能的変化)の両側面に関する考察が必要であろう。しかし、本稿では誌面の制約があり、直ちに臨床現場で役立つ食事療法の有効性を強調するとともに、運動療法の基本コンセプトに焦点を絞って述べた。 運動それ自体が内臓脂肪の減少にどれほど有効であるかについて解説しながら,血圧や糖・脂質代謝(メタボリックシンドローム)へ与える直接的な効果,およびメタボリックシンドロームの改善にこだわらない広義の健康支援策についても言及した.

☆ 文 ■

- 1) メタボリックシンドローム診断基準検討委員会:メタボリックシンドロームの定義と診断基準. 日内会誌 94:188-203, 2005.
- 2) International Diabetes Federation: Worldwide definition of the metabolic syndrome. Available at: http://www.idf.org/webdata/docs/IDF_Meta_syndrome_definition.pdf., accessed March 3, 2006.
- 3) World Health Organization: Definition. Diagnosis and Classification of Diabetes Mellitus and its Complications, Part 1: Diagnosis and classification of diabetes mellitus, World Health Organization, Geneva, 1999.
- 4) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285: 2486–2497, 2001.
- 5) Gale EA: The myth of the metabolic syndrome. Diabetologia 48: 1679-1683, 2005.
- 6) Ross R, Janssen I: Physical activity, total and regional obesity: dose-response considerations. Med Sci Sports Exerc 33 (Suppl 6): S521-S527, 2001.
- 7) Mertens DJ, et al: Exercise without dietary restriction as a means to long-term fat loss in the obese cardiac patient. J Sports Med Phys Fitness 38: 310-316, 1998.
- 8) 大河原一憲ほか:食事制限を用いた減量介入が睡眠呼吸障害と活力年齢に及ぼす効果について. 診断と治療 92:145-149,2004.
- 9) Leon AS, et al: Effects of 2,000 kcal per week of walking and stair climbing on physical fitness and risk factors for coronary heart disease. J Cardiopulm Rehabil 16: 183-192, 1996.
- 10) Wood PD, et al: Changes in plasma lipids and lipoproteins in overweight men during weight loss through dieting as compared with exercise. N Engl J Med 319: 1173-1179, 1988.
- 11) Miller WC, et al: A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord 21: 941-947, 1997.
- 12) Dunn CL, et al: The comparative and cumulative effects of a dietary restriction and exercise on weight loss. Int J Obes Relat Metab Disord 30: 112-121, 2006.
- 13) 大藏倫博, 田中喜代次:内臓脂肪と運動療法. 肥満研究 6: 125-129, 2000.
- 14) 佐々木誠一ほか:高い強度の運動は脂肪利用に有効か? 肥満研究 11(増刊号): 129, 2005.
- 15) Numao S, et al: Effects of obesity phenotype on fat metabolism in obese men during endurance exercise. Int J Obes (Lond) 30: 1189-1196, 2006.
- 16) Hayashi Y, et al: A single bout of exercise at higher intensity enhances glucose effectiveness in sedentary men. J Clin Endocrinol Metab 90: 4035-4040, 2005.
- 17) 田中喜代次, 牧田 茂:事故予防のためのセルフチェックの大切さ. 高齢社会における運動支援実践ガイド. 臨床スポーツ医学 **22**(臨時増刊号): 413-415, 2005.

一原三語=

肥満度と介入方法の違いが内臓脂肪型肥満者の 減量効果に及ぼす影響

魏 丞完^{*1}, 大藏 倫博^{*2,3}, 中田 由夫^{*2,3}, 大河原一窓^{*1}, 沼尾 成晴^{*1}, 片山 靖富^{*1}, 田中喜代次^{*2,3}

黎引用語:BMI,減量方法,內臟脂肪型肥满,冠危險因子

内腹脂肪型肥満者を対象として肥満度の違い(BMI25以上30未満群とBMI30以上群)および介入方法(食事制限のみのDO群と食事制限に運動を併用したDE群)の違いが内腹脂肪減少や冠危険因子の改善に与える影響を検討することを目的とした。対象者はBMI25以上および内臓脂肪面積100cm²以上の21歳から67歳までの肥満女性145名であり、BMIに応じてDO群とDE群をそれぞれDOI群とDEI群(25≤BMI<30)、DOII群とDEI群(BMI≥30)の4群に分けた。CTスキャンを用いて内腹脂肪面積(VFA)と皮下脂肪面積(SFA)を計測した。冠危険因子は安静時収縮期血圧、安静時拡張期血圧、総コレステロール、中性脂肪、高比重リボ蛋白コレステロール、使比重リボ蛋白コレステロール、中性脂肪、高比重リボ蛋白コレステロール、低比重リボ蛋白コレステロールと空腹時血糖を測定した。これらの項目は14週間の介入期間の前後に測定した。VFAの変化量については運動の有無とBMIの違いの交互作用が見られたが(p=0.01)、SFAの変化量に運動の有無とBMIの違いの交互作用は見られなかった。各冠危険因子の変化量に運動の有無とBMIの違いの交互作用が見られたのは空腹時血糖のみであった(p=0.02)。これらの結果から、BMIの高い内膜脂肪型配満者は食事制限に運動を加えることによって、より効果的に内臓脂肪の減少や血糖の改善がもたらされることが示唆された。

はじめに

世界保健機構(World Health Organization: WHO)は「成人の体重過多に対するbody mass index(BMI)による分類」をグローバルスタンダードとして、BMI25以上をPreobese、30以上をObeseとする基準を提唱した"、一方、日本肥満学会による「新しい肥満の判定と肥満症の診断基準」の中では、わが国の肥満に関する民族的・人種的特異性を考慮に入れた上で、BMI25以上30未満を肥満(1度)と判定している。また、内臓脂肪の蓄積が肥満合併症の

大きな要因であることから、BMI25以上かつcomputed tomography (CT) 画像分析による内臓脂肪面積 (visceral fat area: VFA) 100cm²以上の内臓脂肪型肥満を「肥満症」と定義している2.

内臓脂肪の減少を目的とするいくつかの介入研究^{3~51}によると、食事制限のみの群でも食事制限に有酸素性運動またはレジスタンス運動を併用した群でも体重減少に応じて内臓脂肪が減少することが報告されている。一方、食事制限は行わずに有酸素性運動を継続させたところ、運動が内臓脂肪の減少に効果があったとする報告^{6~51}となかっ

たとする報告^{は 111}の両方があり、内臓 脂肪の減少に対する運動の有用性は明 らかではない。

BMIは体脂肪量をよく反映することが知られている。先行研究。いによる と、運動による消費エネルギーが同じであっても、ベースラインの体脂肪量が多いほど体脂肪はより多く減少することが報告されている。また、日本肥満学会は腹部CTにて計測した皮下脂肪面積(subcutaneous fat area:SFA)およびVFAとBMIとの関連について、BMIとSFAには高い相関が認められているが、BMIとVFAとの相関は弱く、 特にBMI25以上の肥満者では相関がなく、大きな個人差が存在することを示している。しかしながら、BMIは身長と体重を計測するだけで値を求めることのできる簡便な指標であり、対象に適した介入方法を提案するための簡便なスクリーニングとして活用できる可能性がある。

そこで、本研究ではVFA 100cm²以上の肥満症女性を対象として、肥満度の違い(BMI25以上30未満群とBMI30以上群)および食事療法に運動を加えること(食事制限のみ群と食事制限に運動を併用する群)がVFA減少や冠危険因子の改善にいかなる影響を与えるかを検討することとした。

対象と方法

1. 対象者

対象者は地域情報誌を用いて募集 し、14週間の食事制限または食事制限 に運動実践を加えた減量プログラムを 受けた368名であり、その中から日本 肥満学会が設定する肥満の判定基準 BMI25以上とCTスキャンによるVFA 100cm²以上の内臓脂肪型肥満であるこ との条件を満たした21歳から67歳まで の女性145名をデータ解析の対象とし た. 対象者に重篤な疾患を有する者は 含まれておらず、本研究の目的および 検査内容に関する説明を口頭および文 むにより行い、研究参加への同意(署 名)を得た。なお、これらの研究手続 については筑波大学倫理委員会におい て承認を得た.

本研究の対象者145名は、食事制限のみ(diet only: DO)の群51名と有酸素性運動に食事制限を加えた(diet + exercise: DE)群94名に分けられた。月経の有無については、DO群は閉経前63%、閉経後37%であり、DE群は閉経前51%、閉経後49%であった。χ²検定の結果、DO群とDE群の間に有意

差はなかった. DO群およびDE群は BMIの初期値によってDO I 群とDE I 群(25≤BMI<30), DO II 群とDE II 群 (BMI≥30) に分けられた.

2. 測定項目および測定方法

1)身体組成

体重は0.1kg単位、身長は0.1cm単位で測定し、BMIは体重(kg)を身長(m)の二乗で除することで算出した。体脂肪の測定には、Sekisui製インピーダンス計(Bio impemeter SS103)を用い、測定された電気抵抗値からTanaka et al.150の成人肥満女性用の式により身体密度を求め、Brozek et al.160の式により体脂肪量(fat mass)、体脂肪率(%fat mass)と除脂肪量(fat-free mass)を算出した。

2) 腹部脂肪面積

VFAおよびSFAは仰臥位でCTスキャン(SCT-6800TX, Shimadzu)を用いて臍高位(およそL4-L5)を撮影し、内臓脂肪計測ソフトFat Scan(ver. 2.0, N2システム)を用いて算出した.

3) 冠危険因子

安静時収縮期血圧(systolic blood pressure: SBP)と安静時拡張期血圧 (diastolic blood pressure: DBP)は20 分以上安静にした後で計測した。12時間以上の絶食絶飲状態で採血し、総コレステロール(total cholesterol: TC)、中性脂肪(triglycerides: TG)、高比重リポ蛋白コレステロール(high-density lipoprotein-cholesterol: HDL-C)、低比重リポ蛋白コレステロール(low-density lipoprotein-cholesterol: LDL-C)、空腹時血糖(fasting plasma glucose: FPG)を測定した。

4)最大酸素摂取量

最大酸素摂取量(VO2max)および無酸素性代謝閾値(anaerobic threshold: AT)を測定するための運動負荷テストは、自転車エルゴメータ(818E, Monark)を使用し、1分ごとに摩擦負

荷を0.25kpずつ高める多段階漸増負荷 法にて行った、ペダルの回転数は 60rpmで一定とした。運動中の各呼気 ガス指標の分析には,Mijnhardt製代 謝測定装置(Oxycon Alpha)を用いた. VO:maxは症候性限界を呈した時点の 酸素摂取量と定義した. DE群に対す る運動指導における強度の目安となる ATは,漸増負荷運動時1分ごとに正 中肘皮静脈より血液を約0.5mlずつ採 取し,血中乳酸濃度の分析(YSI製乳 酸分析器1500L) により決定される乳酸 閾値(lactate threshold:LT)とした. 採血が困難であった際は、VO2に対す るVCO2の上昇開始点(V-slope法)によ り決定し、その他の呼気ガス指標とと もに, Okura & Tanaka^mによる全身持 久性体力推定式を補助的に利用した。

3. 食事指導および運動指導内容

1)食專指導

DO群とDE群ともに1食あたり400~600kcalのバランスのとれた食事を4群点数法10を用いて指導した.4群点数法は、食品に含まれている栄養素と体内での働きによって、食品を4つの群に分類し、各群から食品を選択することによって、必要な栄養素が過不反なく満たされるようにする栄養計算者である。1群は卵や乳製品、2群は砂や魚介類や豆製品、3群は緑黄色野菜淡色野菜や芋類、果物、4群は穀物や油、砂糖や調味料である。計算単位に点数で表し、80キロカロリー(kcal):1点として計算させた。

本研究は1食(400kcal = 5点)ごとに「1群:2群:3群:4群」の点数と率を「1:1:1:2」になるよう指とし、1日あたりの総摂取エネルギーと1,200kcalとした。対象者には1食ごの食事内容を記録させ、教室参加時に提出させた。食事記録をもとに摂取、ネルギー量を確認するとともに、食のとり方や栄養バランス、食習慣な

妻 1 対象者の身体的特徴,介入前後の変化と4詳問の比較

	Diet on	ly group	Diet plus exercise group		- DO I vs. DO II vs. DE I vs. DE II *
	DO I (n=28)	DO II (n=23)	DE I (n=62)	DE II (n=32)	- DOT VS. DOT VS. DET VS. DET
Age, years	51.8±8.3	49.2±8.0	52.7±6.8	48.2±9.5	DE I < DE I
Height, cm	156.2±5.1	153.0士5.8	155.5士4.5	155.6±5.8	n.s
Body weight, kg	67.0±5.2	76.0±8.4	67.0±4.7	78.0±8.0	DOI, DEI < DOI, DEI
change	-7.2±2.0°	-6.2±4.0°	-8.5±2.8°	-10.3±3.5°	DOI <dei, dei<="" doi<dei,="" td=""></dei,>
BMI, kg/m²	27.4±1.3	32.4±2.4	27.7士1.5	32.1±2.3	DOI, DEI < DOI, DEI
change	-3.0±0.9°	-2.6±1.6°	-3.5±1.1°	-4.2±1.4°	DOI <dei, dei<="" doi<dei,="" td=""></dei,>
Fat mass, %	36.2±4.2	38.4±3.1	36.6±4.9	40.5士4.5	DOI, DEI < DEI
change	5.4±3.7°	-4.4±4.2°	-6.3±4.3°	-6.7±3.2°	n.s
Fat mass, kg	24.2±3.0	29.1±3.4	24.5±3.9	31.7±5.9	DOI, DEI < DOI, DEI
change	-5.8±2.6°	-5.2±2.9°	-6.8±3.2°	一8.6±2.9°	DOI, DOII, DEI < DEII
Fat-free mass, kg	42.8±4.7	46.9±6.3	42.4±4.1	46.3士4.8	DOI, DEI < DOI, DEI
change	-1.4±2.5°	-1.0±3.5	-1.7±2.6°	-1.7±2.8°	n.s
VO₂ max, ml/kg/min	24.4士4.3	23.3±4.0	25.1士3.4	23.1±4.1	n.s
change	3.2±2.8°	2.4±2.6°	4.4±3.7°	6.1士4.3°	DOI, DOI < DEI
VFA, cm²	128.0±23.5	171.0±45.4	130.4±25.2	139.3±28.2	DOI, DEI, DEI < DOI
change	-39.1±16.2°	-31.7±21.8°	-49.8±28.5°	-48.3±25.9°	DO II < DE I
SFA, cm²	253.5±69.7	298.6±69.2	248.3±56.0	355.3±91.0	DOI <dei, dei<doi<dei<="" td=""></dei,>
change	一55.8±30.6°	-32.2±36.8°	-62.4±36.5°	-71.4±42.3°	DO II < DE I , DE II

BMI: body mass index, VFA: visceral fat area, SFA: subcutaneous fat area, n.s.: not significant.

について定期的に管理栄養士が指導した. なお、この方法を筆者らはSMART (A study on Strategy for the MAde-to-order weight Reduction in Tsukuba) Dietと称している.

2)運動指導

DE群には食事指導に加え、週1回の監視型運動プログラムまたは週3回の監視型運動プログラムを提供した。週1回の監視型運動は自宅でも実践できるように配慮したウォーキングであり、運動指導がない日は自宅付近で原則として毎日ウォーキングを30分以上実践するよう指示した。運動日誌によって確認した運動頻度は週2~60分と個人差がみられたものの、全風が継続的に運動を実践していた。アメリカスポーツ医学会が推奨する運動処方の指針(METs表)¹⁰に基づいて推定した消費エネルギー量は1回あたり約80~

120kcalと推定された.

週3回の監視型運動プログラムであるベンチステップエクササイズ²⁰¹は aerobic danceのひとつで、個人の体力に合わせて高さが関節できるベンチを用い、リズムにあわせて昇降する運動である。運動量は60分間あたり約270 kcalである。週3回の運動指導の時間は準備運動15分間、主運動60分間、整理運動15分間で合わせて90分間とした。

運動中の強度は、全身持久性体力の 向上と脂質代謝の改善を図ることを目 的として、LTから求められたAT水準 付近になるように配慮した、対象者に は、自覚的運動強度(rating of perceived exertion: RPE)で12~14("ややきつ い")あたりを保つように指導した、ま た、1週間あたりの消費エネルギー量 はウォーキングであってもベンチステ ップエクササイズであっても700~ 1,000kcalと推定された。

4. 統計処理

同一群間内の介入前後における平均 値の差の有意性については対応のある ttestを施した、また4群間の変化量 の群間差異の検討には、唇年齢を共変 量とした共分散分析、多重比較には Bonferroniの方法を用いた、VFAと SFA、冠危険因子の変化については二 元配置(対応のない因子と対応のない 因子)の分散分析を用い、運動併用の 有無とBMIの違いの交互作用を検定し た、すべての統計学的有意水準は5% とした.

結 果

対象者の身体的特徴、介入前後の変化およびその変化量について、4 群間で比較した結果を要1にまとめた。図1にVFAの初期値を共変量にし、運動の有無とBMIの違いがVFAの変化量に与える影響を示した。運動の有無

I:BMI 25以上30未満、II:BMI 30以上.

[&]quot;暦年齢を共変量とした共分散分析。

^{*}p<0.05:介入前後の有意な変化.

とBMIの違いの交互作用が見られたが、SFAの変化量においては運動の有無とBMIの違いの交互作用は見られなかった(図2).

冠危険因子の初期値と変化量を裹 2 に示した. 介入前の値で有意な群間差が見られる項目はなかった. 介入前後の変化においては、DE I 群は全ての項目において有意な改善が見られたが、DO I 群とDO II 群、DE II 群においてはHDL-CとLDL-Cが有意な改善を示さなかった. 冠危険因子の変化量において 4 群間に有意差が見られたのはHDL-CとFPGのみであった. また, 運動の有無とBMIの違いの交互作用が見られたのはFPGのみであった(図3).

考察

内臓脂肪の減少に関するいくつかの 介入研究1~5)は、食事制限、食事制 限+有酸素性運動あるいは食事制限+ レジスタンス運動を比較した結果、介 入方法の違いは内臓脂肪の変化量に影 響を与えず、体重減少に応じて内臓脂 肪が減少することを報告している. Leenen et al.²¹¹は内臓脂肪の減少は内 膣脂肪量の初期値と関連があり、内臓 脂肪を多く持っている者ほど内臓脂肪 が優先的に減少することを報告してい る、また、Okura et al²⁰は内臓脂肪型 肥満者と皮下脂肪型肥満者において, 減量が内臓脂肪と冠危険因子に及ぼす 影響について検討し、7~10kgの体重 減少に応じて皮下脂肪型肥満者より内 臓脂肪型肥満者のVFAがより大きく 減少することを明らかにしている. そ こで、本研究では対象者をBMI 25以 上かつVFA 100cm²以上の肥満症女性 に限定し、食事制限に運動を併用する ことでVFAの変化量に差が生じるか どうかを検討した、その結果、BMI 30以上の集団においては食事制限に運 動を併用することによってVFAの減

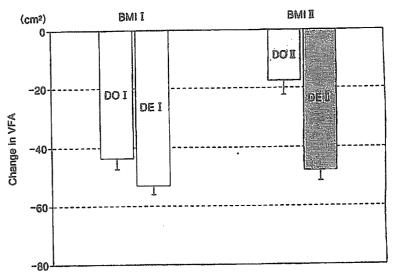


図1 運動の有無とBMIの違いによるVFA変化量の比較 VFAの初期値を共変量とした共分散分析、平均値土標準誤逆で要す。 交互作用:p=0.01、BMIの主効果:p=0.0002、介入方法の主効果:p=0.00001. VFA:visceral fat area、BMI:body mass index. 1:BMI 25以上30未満、1:BMI 30以上、

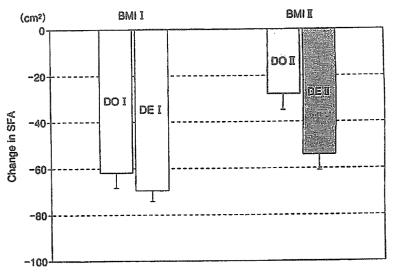


図 2 運動の有無とBMIの違いによるSFA変化量の比較 SFAの初期値を共変量とした共分散分析、平均値士標準誤差で吸す、 交互作用: p=0.13、BMIの主効果: p=0.0003、介入方法の主効果: p=0.01. SFA: subcutaneous fat area、BMI: body mass index. I:BMI 25以上30未満、II:BMI 30以上、

少量がより大きくなることが示された (図1).

運動による内臓脂肪減少効果がBMI 25以上30未満の集団では見られず、 BMI30以上の集団において見られた背 景には、骨格筋と脂肪細胞のlipoprotein lipase(LPL)活性の影響が考えられる. 脂肪組織が過剰に蓄積した状態では脂肪細胞のサイズが大きくなりが、脂肪細胞のLPL活性が亢進することが知られているが、したがって、BMIの高い集団においては脂肪分解が進みに、く、その結果としてVFAの減少が抑制されていると考えられる。しかした

50

寒っ 混合論因子の介入前後の変化と4期間の比較

	Diet only group		Diet plus e	xercise group	DOI DON DET DET
	DO I (n=28)	DO 🛚 (n=23)	DE I (n=62)	DE II (n=32)	- DOI vs. DOII vs. DEI vs. DEII '
SBP, mmHg	141.6±17.7	139.4±15.4	138.5±17.5	140.6±20.5	n.s
change	-14.4±14.0°	-8.1±12.0°	-11.8±11.9°	-13.3±10.6°	n.s
DBP, mmHg	89.1±10.6	88.9士13.2	84.7±11.0	85.4±11.2	n.s
change	-7.4±9.7°	-4.8±10.6°	-6.6±10.1°	一8.7±7.8°	n.s
TC, mmol/l	222.3±28.8	222.0±36.7	222.3±28.4	227.4士32.1	n.s
change	-14.6±24.4°	-15.8±31.2°	-20.5±23.7°	-19.4±29.7°	n.s
HDL-C, mmol/I	59.7±15.1	55.1±12.3	58.8±12.9	60.5±10.7	n.s
change	1.2士7.0	一1.2±7.4	2.2±8.2°	-2.6±8.2	DE II < DE I
LDL-C, mmol/l	139.7±29.2	138.6±35.3	138.3±27.2	141.7士27.8	n.s
change	一8.3±25.4	一8.7±29.5	-13.2±20.1°	一7.6±26.2	n.s
TG, mmol/l	114.7±52.8	141.5±65.0	126.1±65.5	125.9±51.1	n.s
change	一37.3±46.0°	一30.2±52.0°	-47.4±60.9°	-46.5±44.1°	n.s
FPG, mmol/l	105.2±23.0	96.5±11.6	105.1±26.5	113.4士34.0	n.s
change	-11.3±13.3°	一0.6±9.6	-11.8±19.0°	-16.9±26.9°	DO II < DE II

SBP: systolic blood pressure, DBP: diastolic blood pressure, TC: total cholesterol, HDL-C: high-density lipoprotein-cholesterol, LDL-C: low-density lipoprotein-cholesterol, TG: triglycerides, FPG: fasting plasma glucose, n.s.: not significant.

^{*}p<0.05:介入前後の有意な変化。

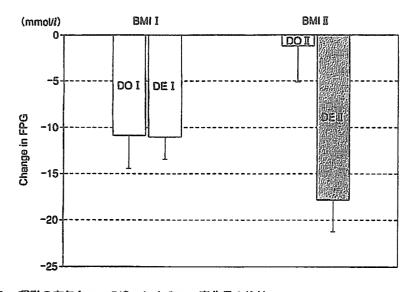


図3 運動の有無とBMIの違いによるFPG変化量の比較

暦年齢を共変量とした共分散分析、平均値士標準調差で毀す、

交互作用:p=0.02、BMIの主効果:p=0.67、介入方法の主効果:p=0.01.

FPG: fasting plasma glucose, BMI: body mass index.

I:BMI 25以上30未潤, II:BMI 30以上.

がら、DEII群においてはDOII群に比べVFAの減少抑制は見られていない。このことは、内臓脂肪組織におけるLPLのmRNA発現量が運動によって抑えられたことに起因するものと考えられる²³、また、運動を行うと骨格筋の

LPL活性が亢進されることが報告されている^{26.27}. すなわち、BMIの高い者であっても運動を行うことで骨格筋のLPL活性の亢進により脂肪分解が高まることに加えて、脂肪細胞のLPL活性が抑制されて脂肪が合成されにくくな

るという二重効果により、BMI25以上30未満の集団と同等のVFA減少につながったものと考えられる。このような運動効果は内臓脂肪において見られる特異的な効果であり、そのことはSFAについて同様の結果が見られなかったことにおいても説明することができる(図2).

先行研究²⁰⁻³¹¹によると、5~10%の 減量で冠危険因子は大幅に改善する. 本研究における体重の減少率は8~ 12%であり、介入前後で多くの冠危険 因子が有意に改善した(表2). その中 で、FPGについては、運動の有無と BMIの違いの交互作用が見られた(図 3). 血糖調節に障害をもたらす原因 のひとつとして内臓脂肪の蓄積が指摘 されている³⁰. いくつかの研究^{Alb-30}は 食事制限や食事制限と運動の併用によ る内臓脂肪の減少がインスリン抵抗性 の改善につながることを報告してい る. 本研究において, FPGの改善に 「運動の有無」と「BMIの大小」という2 要因の交互作用が見られたことは、運

I:BMI 25以上30未満、Ⅱ:BMI 30以上.

[&]quot;簡年齢を共変量とした共分散分析.

助によるインスリン抵抗性の改善効果はBMIの大小によって違いがある可能性を示唆している。本研究の結果からは、そのメカニズムの詳細を明らかにすることはできないが、このことは、運動を併用することでBMI30以上の対象者の内障脂肪が、BMI30未満の対象者に比べて有意に多く減少したという本研究の結果によって、部分的に裏付けられるかもしれない。

まとめ

本研究は、食事制限に運動を併用することによって得られる効果がBMIの 遠いによって異なるかどうかを検討した。その結果、BMI30以上の肥満症女 性はBMI25以上30未満の集団に比べて VFAが減少しにくいが、運動を併用 することによってVFAをより大きく 減少させられることが示唆された。し たがってBMIの高い内臓脂肪型肥満者 を減少させる際、食事制限だけでなく 運動を併用することが、より効果的な 内臓脂肪の減少につながり、その結果 として、冠危険因子も好転させられる と考えられる。

曾 辞

本研究は筑波大学大学院先端学際領域研究(Tsukuba Advanced Research Alliance: TARA)センター(TARA田中プロジェクト: The SMART Study),研究拠点形成費補助金(21世紀COEプログラム西平プロジェクト)の支援を受けて行ったものである.

文 献

- World Health Organization:
 Obesity: preventing and managing
 the global epidemic. Report of a WHO
 consultation on obesity. Geneva.
 World Health Organization, 1998.
- 2) 松澤佑次, 井上修二, 池田義雄ほか:新しい肥満の判定と肥満症の診

- 断基準. 肥満研究 2000, 6:18-28.
- Ross R, Rissanen J, Pedwell H, et al.: Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol 1996, 81: 2445-2455.
- 4) Janssen I, Ross R: Effects of sex on the change in visceral, subcutaneous adipose tissue and skeletal muscle in response to weight loss. Int J Obes Relat Metab Disord 1999, 23: 1035-1046
- 5) Ross R. Rissanen J: Mobilization of visceral and subcutaneous adipose tissue in response to energy restriction and exercise. Am J Clin Nutr 1994, 60: 695-703.
- 6) Mourier A, Gautier JF, De Kerviler E, et al.: Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM. Effects of branched-chain amino acid supplements. Diabetes Care 1997, 20: 385-391.
- Ross R, Dagnone D, Jones PJ, et al.: Reduction in obesity and related comorbid conditions after dietinduced weight loss or exerciseinduced weight loss in men. A randomized, controlled trial. Ann Intern Med 2000, 133: 92-103.
- 8) Schwartz RS, Shuman WP, Larson V, et al.: The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism 1991, 40: 545-551.
- 9) Bouchard C. Tremblay A. Despres JP. et al.: The response to exercise with constant energy intake in identical twins. Obes Res 1994, 2: 400-410.
- DiPietro L, Seeman TE, Stachenfeld NS, et al.: Moderate-intensity aerobic training improves glucose tolerance in aging independent of abdominal adiposity. J Am Geriatr Soc 1998, 46: 875-879.
- 11) Despres JP. Pouliot MC. Moorjani S. et al.: Loss of abdominal fat and metabolic response to exercise training in obese women. Am J Physiol

- 1991, 261: E159-E167.
- Keys A, Fidanza F, Karvonen MJ, et al.: Indices of relative weight and obesity. J Chronic Dis 1972, 25: 329-343.
- 13) Andersson B. Xu XF, Rebuffe-Scrive M. et al.: The effects of exercise, training on body composition and metabolism in men and women. Int J Obes 1991, 15: 75-81.
- 14) Boileau RA, Buskirk ER, Horstman DH, et al.: Body composition changes in obese and lean men during physical conditioning. Med Sci Sports 1971, 3: 183-189.
- 15) Tanaka K, Nakadomo F, Watanabe K, et al.: Body composition prediction equations based on bioelectrical impedance and anthropometric variables for Japanese obese women. Am J Hum Biol 1992, 4: 739-745.
- 16) Brozek J, Grande F, Anderson JT, et al.: Densitometric analysis of body composition: revision of some quantitative assumptions. Ann NY Acad Sci 1963, 110: 113-140.
- 17) Okura T. Tanaka K: Development of prediction equations for cardiorespiratory fitness using ratings of perceived exertion in Japanese men and women. Jpn J Phys Fitness Sports Med 1999, 48: 111-124.
- 18) 香川芳子編者: 食品80キロカロリー ガイドブック5訂版、東京:女子栄養 大学出版部,2002.
- 19) American College of Sports Medicine: ACSM's Guidelines for Exercise Testing and Prescription, 5th edition. Philadelphia: Williams & Wilkins, 1995, 164-165.
- 20) Hayakawa Y, Isono K, Tanaka K, et al.: Metabolic responses during bench stepping exercise and cycling exercise at perceptually equivalent exertion. J Educ Health Sci 1996, 41: 351-358.
- 21) Leenen R, van der Kooy K,
 Deurenberg P, et al.: Visceral fat
 accumulation in obese subjects:
 relation to energy expenditure and
 response to weight loss. Am J
 Physiol 1992, 263: E913-E919.

- 22) Okura T. Tanaka K, Nakanishi T, et al.: Effects of obesity phenotype on coronary heart disease risk factors in response to weight loss. Obes Res 2002, 10: 757-766.
- 23) Enzi G, Sergi G, Pavan M, et al.: Visceral obesity and diabetes. Horm Metab Res Suppl 1988, 19: 30-34.
- 24) Raison J. Basdevant A, Sitt Y, et al.: Regional differences in adipose tissue lipoprotein lipase activity in relation to body fat distribution and menopausal status in obese women. Int J Obes 1988, 12: 465-472.
- 25) Shimomura I, Tokunaga K, Kotani K, et al.: Marked reduction of acyl-CoA synthetase activity and mRNA in intra-abdominal visceral fat by physical exercise. Am J Physiol 1993. 265: E44-E50.
- 26) Simsolo RB, Ong JM, Kern PA: The

- regulation of adipose tissue and muscle lipoprotein lipase in runners by detraining. J Clin Invest 1993, 92: 2124-2130.
- 27) Kiens B, Lithell H, Mikines KJ, et al.: Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest 1989, 84: 1124-1129.
- 28) Van Gaal LF. Wauters MA. De Leeuw IH: The beneficial effects of modest weight loss on cardiovascular risk factors. Int J Obes Relat Metab Disord 1997, 21: S5-S9.
- 29) Miyazaki Y, Glass L, Triplitt C, et al.: Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol 2002, 283: E1135-E1143.
- Després J. Pouliot M. Moorjani S:
 Loss of abdominal fat and metabolic

- response to exercise training in obese women. Am J Physiol 1991, 261: E159-E167.
- 31) Purnell J, Kahn S, Albers J, et al.: Effect of weight loss with reduction of intra-abdominal fat on lipid metabolism in older men. J Clin Endocrinol Metab 2000, 85: 977-982.
- 32) Ross R, Dagnone D, Jones P, et al.: Reduction in obesity and related comorbid conditions after dietinduced weight loss or exerciseinduced weight loss in men. Ann Intern Med 2000, 133: 92-103.
- 33) Thomas E. Brynes A. McCarthy J. et al.: Preferential loss of visceral fat following aerobic exercise, measured by magnetic resonance imaging. Lipids 2000, 35: 769-776.

(受付日:2005年9月6日) 採択日:2005年12月27日)