- 対する新たな治療戦略, 転移性肝癌に対する化学療法(会議録). 肝臓 2005; 46 Suppl 2:413. - 26) Koizumi W, Kurihara M, Nakano S, et al. Phase II study of S-1, a novel oral derivative of 5-fluorouracil, in advanced gastric cancer. For the S-1 Cooperative Gastric Cancer Study Group. Oncology 2000; 58(3):191-7. - 27) Baba H, Yamamoto M, Endo K, et al. Clinical efficacy of S-1 combined with cisplatin for advanced gastric cancer. Gastric Cancer 2003; 6 Suppl 1: 45-9. - 28) Tsuji A, Morita S, Shima Y, et al. Phase II study of CDDP+S-1 combination chemotherapy for advanced and recurrent gastric cancer. Proc ASCO 2004. #4148. - 29) Yoshida K, Hirabayashi N, Takiyama W, et al. Phase I study of combination therapy with S-1 and docetaxel (TXT) for advanced or recurrent gastric cancer. Anticancer Res 2004; 24(3b): 1843-51. - 30) Boku N, Ohtsu A, Shimada Y, et al. Phase II study of a combination of irinotecan and cisplatin against metastatic gastric cancer. J Clin Oncol 1999; 17(1): 319-23. - 31) Kumada T, Arai Y, Itoh K, et al. Phase II study of combined administration of 5-fluorouracil, epirubicin and mitomycin-C by hepatic artery infusion in patients with liver metastases of gastric cancer. Oncology 1999; 57(3): 216-23. - 32) Arai Y, Sone Y, Inaba Y, et al. Hepatic arterial infusion chemotherapy for liver metastases from breast cancer. Cancer Chemother Pharmacol 1994; 33 Suppl: S142-4. - 33) Yonemura Y, Matuki N, Sakuma H, et al. Effect of intra-hepatoarterial infusion of MMC and CDDP for gastric cancer patients with liver metastases. Surg Today 1992; 22(3): 253-9. - 34) Takahashi H, Tono T, Tamagaki S, et al. Usefulness of hepatic arterial infusion chemotherapy for liver metastasis in gastric cancer. Gan To Kagaku Ryoho 2001; 28(11): 1724-7. - 35) 井隼孝司,大川智久. DSM動注化学療法が奏効し 切除し得た胃癌肝転移の2例. Radiology Frontier (1344-316X) 2004:7(2):150-2. - 36) Man C Fung, 高山史真子, 石黒 洋, ほか. 進行性・転移性膵癌に対する化学療法-30年間にわたる43ランダム化比較臨床試験の分析(1974~2002年)-. 癌と化学療法 2003; 30(8): 1101-11. - 37) Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997; 15(6): 2403-13. - 38) Reni M, Cordio S, Milandri C, et al. Related Articles, Links Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol 2005; 6(6): 369-76. - 39) Moore MJ, Goldstein D, Hamn J, et al. Erlotinib plus gemcitabine compared to gemcitabine alone in patients with adneced pancreatic cance. A phase II trial of the National Cancer Institute of Canada Clinical Trical Groups (NCIC-CTG) [abstract]. Proc ASCO 2005; 23:1. - 40) Funakoshi A, Okusaka T, Ishii H, et al. Phase II study of irinotecan (CPT-11) alone in patients (pts) with metastatic pancreatic cancer[abstract]. Proc ASCO 2004, #4102. - 41) Furuse J, Okusaka T, Funakoshi A, et al. A phase II study of S-1 in patients with metastatic pancreatic cancer [abstract]. Proc ASCO 2005. #4104. - 42) Tsuji A, Morita S, Horimi T, et al. A phase II study of 5-FU (CVI) and low-dose consecutive CDDP (LFP) therapy in advanced pancreatic cancer. Proc ASCO 2002. #628. - 43) 本間久登,新津洋司郎.切除不能膵癌に対する新たな動注化学療法.癌と化学療法2002;29(3):383-9. - 44) 三浦靖彦, 上田倫夫, 国広 理, ほか. 膵癌に対する肝動注療法. 癌と化学療法 2004;31(2):195-8. * * * 注意すべき有害事象 消:消化器毒性 血:血液毒性 腎:腎毒性 倦:倦怠感 脱:脱毛 神:神経毒性 ### レジメン一覧 ### 高知医療センターにおける実際の化学療法 1. FP療法 11. low-dose FP(LFP)療法 2. DCF療法 12. CPT-11療法 3. FOLFIRI療法 13. CPT-11/CDDP療法 4. FOLFOX4療法 5. mFOLFOX6療法 14. CPT-11/CDDP24時間持続静注療法 6. mFOLFOX7療法 15. CPT-11 24時間持続静注療法 16. weeklyPTX療法(点滴前処置) 7. PEFG療法 17. DTX療法(前処置あり) 8. S-1/CDDP療法 9. low-dose CDDP+S-1療法 18. CPT-11/LV/FU(IFL)療法 10. WHF肝動注療法 19. LV/FU(RPMI)療法 ## 1. FP療法 day 1, 2, 3, 4, 5/28 注意点 腎 血 消 | 投与 | 手順 | 投与薬剤 | 投与量 | 投与法 | |----------|------------|------------------|-------------------------------|-----------------------| | day1 | -1 | ナゼア注0.3mg 2 mL | 0.3 mg | ワンショット静脈注射 | | | | ブドウ糖注 5 %20mL | 20 mL | | | | 2 | ガスター注20mg | 20 mg | ワンショット静脈注射 | | | | 生理食塩液20mL | $20\mathrm{mL}$ | | | | 3 | ポララミン注5mg1mL | 5 mg | 点滴静注 | | | | ブドウ糖注 5 %100mL | 100 mL | 0.5時間 | | | 4 | デカドロン注8mg2mL | 12 mg | 点滴静注 | | | | ブドウ糖注 5 %100mL | $100\mathrm{mL}$ | 0.5時間 | | | 5 | ランダ注50mg100mL | 80(-100) mg/m ² | 点滴静注 | | | | 生理食塩液 1 L | 1000 mL | 2 時間 | | 1 | | | | 遮光 | | | 6 | マンニットール注20%300mL | $300\mathrm{mL}$ | 点滴静注 | | | | | | 2 時間 | | | 7 | 5-FU注250mg 5 mL | 800 (-1000) mg/m ² | 中心静脈(埋込型カテーテル) | | | | 注射用水20mL | 5-FU注と合計45 mL | バクスター シングルデイインフューザー使用 | | | | | | 22時間 | | day2 | 1 | ナゼア注0.3mg 2 mL | 0.3 mg | ワンショット静脈注射 | | | | ブドウ糖注 5 %20mL | 20 mL | | | | 2 | デカドロン注8mg2mL | 12 mg | 点滴静注 | | | | ブドウ糖注 5 %100mL | 100 mL | 0.5時間 | | | 3 | 5-FU注250mg 5 mL | 750 mg/m² | 中心静脈(埋込型カテーテル) | | | | 注射用水20mL | 5-FU注と合計49 mL | バクスター シングルデイインフューザー使用 | | L | | | | 24時間 | | day3, 4, | , 5 | | | | | | 1 | 5-FU注250mg 5 mL | $750\mathrm{mg/m^2}$ | 中心静脈(埋込型カテーテル) | | 1 | | 注射用水20mL | 5-FU注と合計49 mL | バクスター シングルデイインフューザー使用 | | | | | | 24時間 | 原法(CF療法):シスプラチン注100mg/m² 1-3時間点滴(d1), 5-FU注 1,000mg/m²/日の持続点滴 5 日間. これを4週間毎に繰り返す. day1:1,4 およびday2:1,2 は有害事象に対する前投薬(推奨). day1:2,3 はアレルギー予防,必須ではない. 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. CDDPはCIイオン存在下でないと不安定となるので生理食塩水で希釈. アミノ酸製剤等と混注しないこと. CDDP投与中は他の薬剤を一時休止が望ましい. DTXは添付の溶解液中にアルコールを含有するため注意が必要. 終了後自己抜針. day1: インフューザー総量45ml = 2 ml/h×22時間(44ml) + ポンプに残る量(1 ml)day2-5: インフューザー総量49ml=2 ml/h×24時間(48ml)+ポンプに残る量(1 ml) ### 2. DCF療法 day 1, 2, 3, 4, 5/21 # 注意点 腎 血 消 | 投与順 | | 投与薬剤 | 投与量 | 投与法 | |-------------|---|---------------------------------------|----------------------------|-----------------------| | lay1 | 1 | ナゼア注0.3mg 2 mL | 0.3 mg | ワンショット静脈注射 | | , | _ | ブドウ糖注 5 % 20mL | 20 mL | | | * | 2 | ガスター注20mg | 20 mg | ワンショット静脈注射 | | | _ | 生理食塩液20mL | 20 mL | | | | 3 | ポララミン注 5 mg 1 mL | 5 mg | 点滴静注 | | | _ | ブドウ糖注 5 %100mL | 100 mL | 0.5時間 | | | 4 | デカドロン注 8 mg 2 mL | 12 mg | 点滴静注 | | | - | ブドウ糖注 5 %100mL | 100 mL | 0.5時間 | | | 5 | ドセタキセル注80mg 2 mL<溶解液 | (付> 60(-75) mg/m² | 点滴静注 | | | Ū | 生理食塩液250mL | 250 mL | 1 時間 | | | 6 | ランダ注50mg100mL | 60 (-75) mg/m ² | 点滴静注 | | | Ü | 生理食塩液 1 L | 1000 mL | 2 時間 | | | | | | 遮光 | | | 7 | マンニットール注20%300mL | $300\mathrm{mL}$ | 点滴静注 | | | • | · · · · · · · · · · · · · · · · · · · | | 2 時間 | | | 8 | 5-FU注250mg 5 mL | $750\mathrm{mg/m^2}$ | 中心静脈(埋込型カテーテル) | | | Ŭ | | 5-FU注と合計45 mL | バクスター シングルデイインフューザー使用 | | | | 17771/14/4 | | 22時間 | | day2 | 1 | | 0.3 mg | ワンショット静脈注射 | | uu, 2 | _ | ブドウ糖注 5 % 20mL | 20 mL | | | | 2 | デカドロン注 8 mg 2 mL | 12 mg | 点滴静注 | | | _ | ブドウ糖注 5 %100mL | 100 mL | 0.5時間 | | | 3 | 5-FU注250mg 5 mL | $750\mathrm{mg/m^2}$ | 中心静脈(埋込型カテーテル) | | | Ū | 注射用水20mL | 5-FU注と合計49 mL | バクスター シングルデイインフューザー使用 | | | | Jan. 1944 A | | 24時間 | | dav3, 4, 5 | 1 | 5-FU注250mg 5 mL | $750\mathrm{mg/m^2}$ | 中心静脈(埋込型カテーテル) | | aa, 0, 1, 0 | - | 注射用水20mL 5 | 5-FU注と合計49 mL | バクスター シングルデイインフューザー使用 | | | | Imposed & Vising a superior | | 24時間 | 原法(TCF療法):ドセタキセル注75mg/m² 1 時間点滴(d1), シスプラチン注75mg/m² 1-3時間点滴(d1), 5-FU 750mg/m²/日の持続点滴 5 日間. これを 3 週間毎に繰り返す. day1:1,4 およびday2:1,2 は有害事象に対する前投薬(推奨). day1:2,3 はアレルギー予防,必須ではない. 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. CDDPはCIイオン存在下でないと不安定となるので生理食塩水で希釈. アミノ酸製剤等と混注しないこと、CDDP投与中は他の薬剤を一時休止が望ましい. DTXは添付の溶解液中にアルコールを含有するため注意が必要. 終了後自己抜針. day1:インフューザー総量45ml = 2 ml/h×22時間(44ml) + ポンプに残る量(1 ml) - day2-5:インフューザー総量49ml = 2 ml /h×24時間(48ml) +ポンプに残る量(1 ml) # 3. FOLFIRI療法 day 1,2/14 # 注意点 消 血 脱 |
投与順 | 投与薬剤 | 投与量 | 投与法 | |------------|---|---|--| | day1 1 2 3 | ナゼア注0.3mg 2 mL
ブドウ糖注 5 %20mL
デカドロン注 8 mg 2 mL
ブドウ糖注 5 %100mL
アイソボリン注25mg
ブドウ糖注 5 %250mL
トポテシン注100mg 5 mL
生理食塩液250mL
アイソボリンと同時滴下(30分早く終了する | 0.3 mg
20 mL
8 mg
100 mL
200 mg/m ²
250 mL
150 mg/m ²
250 mL | ワンショット静脈注射
点滴静注
0.5時間
点滴静注
2 時間
点滴静注
1.5時間 | | 5 | 5-FU注250mg 5 mL | 400 mg/m ² | 点滴静注 | |---|-----------------|------------------------------|-----------------------------| | | 生理食塩液50mL | 50 mL | 0.1時間 | | 6 | 5-FU注250mg 5 mL | $2400(-3000) \text{ mg/m}^2$ | 中心静脈(埋込型カテーテル) | | | 注射用水20mL | 5-FU注と合計93 mL | バクスター LV2もしくは2day infusor使用 | | | | | 22時間 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. ナゼア, デカドロンは有害事象対策(推奨). インフューザー使用時 時間で更新,少量の場合残量破棄,残量が多量の場合主治医に連絡. 終了後自己抜針. インフューザー総量 $93ml = 2 ml/h \times 46$ 時間(92ml) + ポンプに残る量(1 ml) / 5-FU注250mg 5 mL 400mg/m² 生理食塩液50mL 50mL は生理食塩水を省きワンショット静注も可. ### 4. FOLFOX4療法 day 1, 2/14 注意点 血 神 消 | 投与順 | 頁 | 投与薬剤 | 投与量 | 投与法 | |------|---|------------------|----------------------|-----------------------| | day1 | 1 | ナゼア注0.3mg 2 mL | 0.3 mg | ワンショット静脈注射 | | | | ブドウ糖注 5 %20mL | 20 mL | | | | 2 | デカドロン注8mg2mL | 8 mg | 点滴静注 | | | | ブドウ糖注 5 %100mL | $100\mathrm{mL}$ | 0.5時間 | | | 3 | アイソボリン注25mg | $100\mathrm{mg/m^2}$ | 点滴静注 | | | | ブドウ糖注 5 %250mL | 250 mL | 2 時間 | | | 4 | エルプラット注射用100mg | $85\mathrm{mg/m^2}$ | 点滴静注 | | | | ブドウ糖注 5 %250mL | 250 mL | 2 時間 | | | | 3.アイソボリンと同時滴下 | | | | | 5 | 5-FU注250mg 5 mL | $400\mathrm{mg/m^2}$ | 点滴静注 | | | | 生理食塩液50mL | 50 mL | 0.1時間 | | | 6 | 5-FU注250mg 5 mL | $600\mathrm{mg/m^2}$ | 中心静脈(埋込型カテーテル) | | | | 注射用水20mL | 5-FU注と合計45 mL | バクスター シングルデイインフューザー使用 | | L | | | | 22時間 | | day2 | 1 | アイソボリン注25mg | $100\mathrm{mg/m^2}$ | 点滴静注 | | | | ブドウ糖注 5 %250mL | 250 mL | 2 時間 | | | 2 | 5-FU注250mg 5 mL | $400\mathrm{mg/m^2}$ | 点滴静注 | | | | 生理食塩液50mL | 50 mL | 0.1時間 | | | 3 | 5-FU注 250mg 5 mL | $600\mathrm{mg/m^2}$ | 中心静脈(埋込型カテーテル) | | | | 注射用水20mL | 5-FU注と合計45 mL | バクスター シングルデイインフューザー使用 | | | | | | 22時間 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. ナゼア, デカドロンは有害事象対策(推奨). インフューザー使用時 時間で更新,少量の場合残量破棄,残量が多量の場合主治医に連絡. 終了後自己抜針. インフューザー総量 $45ml=2 ml/h \times 22$ 時間(44ml)+ポンプに残る量(1 ml) / 5-FU注250mg 5 mL 400mg/m² 生理食塩液50mL 50mL は生理食塩水を省きワンショット静注も可. # 5. mFOLFOX6療法(FOLFOX6 LOHP100mg/m²) day 1/14 注意点 血 神 消 | 投与順 |
頁 | 投与薬剤 | 投与量 | 投与法 | | |------|---|------------------------------------|---------------------|---------------|--| | day1 | 1 | ナゼア注0.3mg 2 mL
ブドウ糖注 5 % 20mL | 0.3 mg
20 mL | ワンショット静脈注射 | | | | 2 | デカドロン注 8 mg 2 mL
ブドウ糖注 5 %100mL | 8 mg
100 mL | 点滴静注
0.5時間 | | | | 3 | アイソボリン注25mg
ブドウ糖注 5 %250mL | 200 mg/m²
250 mL | 点滴静注
2 時間 | | | ブドウ糖注 | ト注射用 100mg
5 %250mL
ジリンと同時滴下 | 85(-100) mg/m ²
250 mL | 点滴静注
2 時間 | |--|------------------------------------|---|---| | 交換サイク
5 5-FU注250n
生理食塩液
6 5-FU注250n
注射用水20 | ov
ng 5 mL
50mL
ng 5 mL | 2 時間
400 mg/m²
50 mL
2400 (-3000) mg/m²
5-FU注と合計93 mL | 点滴静注
0.1時間
中心静脈 (埋込型カテーテル)
バクスター LV2 もしくは2day infusor 使用
22時間 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. ナゼア, デカドロンは有害事象対策(推奨). インフューザー使用時 時間で更新,少量の場合残量破棄,残量が多量の場合主治医に連絡. インフューザー総量93ml=2 ml/h×46時間(92ml)+ポンプに残る量(1 ml) (5-FU注250mg 5 mL 400mg/m² 生理食塩液50mL 50mL 13 50mL は生理食塩水を省きワンショット静注も可. # 6. mFOLFOX7療法(FOLFOX7 LOHP130mg/m²) ## 注意点 血 神 消 | 投与师 | 順 | 投与薬剤 | 投与量 | 投与法 | |------|---|--|--|---| | day1 | - | ナゼア注0.3mg 2 mL
ブドウ糖注 5 %20mL
デカドロン注 8 mg 2 mL
ブドウ糖注 5 %100mL
アイソボリン注25mg
ブドウ糖注 5 %250mL
エルプラット注射用100mg
ブドウ糖注 5 %250mL
ストプラットに引用100mg
ブドウ糖注 5 %250mL
3. アイソボリンと同時滴下 | $0.3 \mathrm{mg}$ $20 \mathrm{mL}$ $8 \mathrm{mg}$ $100 \mathrm{mL}$ $200 \mathrm{mg/m^2}$ $250 \mathrm{mL}$ $100 (-130) \mathrm{mg/m^2}$ $250 \mathrm{mL}$ | ワンショット静脈注射
点滴静注
0.5時間
点滴静注
2時間
点滴静注
2時間 | | | 5 | 5. アイフホリンと同時間 「
交換サイクル
5-FU注250mg 5 mL
注射用水20mL | 2 時間
(2400-)3000 mg/m²
5-FU注と合計93 mL | 中心静脈 (埋込型カテーテル)
バクスター LV2 もしくは2day infusor 使用
22時間 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. ナゼア, デカドロンは有害事象対策(推奨). インフューザー使用時 時間で更新,少量の場合残量破棄,残量が多量の場合主治医に連絡. 終了後自己抜針. インフューザー総量93ml=2 ml/h×46時間(92ml)+ポンプに残る量(1 ml) FOLFOX6の5-FU注のワンショット静脈注射を無くし持続投与の5-FU注を3000mg/m²に増量(Tournigandら) ### 7. PEFG療法 day 1, 8, 15, 22/28(ポンプを用いた抗癌剤投与はday 1-28/28で行われる) # 注意点 血 腎 消 倦 | 投与 | 順 | 投与薬剤 | 投与量 | 投与法 | |------|-----|--|---|---| | day1 | 1 2 | ナゼア注0.3mg 2 mL
ブドウ糖注 5 %20mL
デカドロン注 8 mg 2 mL
ブドウ糖注 5 %100mL
ランダ注50mg100mL
生理食塩液500mL | 0.3 mg
20 mL
8 mg
100 mL
40 mg/m²
400 mL | ワンショット静脈注射
点滴静注
0.5時間
点滴静注
2 時間
遮光 | | · | _ | ファルモルビシン注10mg
生理食塩液50mL
ジェムザール注1000mg
生理食塩液500mL | 40 mg/m²
50 mL
600 mg/m²
500 mL | 点滴静注
0.1時間
点滴静注
1時間 | | | 6 | 5-FU注250mg 5 mL | $1400(200\times7) \text{ mg/m}^2$ | 中心静脈持続静注(埋込型カテーテル) | |--------|----|-----------------|-----------------------------------|---| | | | 注射用水100mL | 5-FU注と合計84 mL | 168時間 | | L | | | | _バクスター7day infuser使用 | | day8 | 1 | ナゼア注0.3mg 2 mL | 0.3 mg | ワンショット静脈注射 | | | | ブドウ糖注 5 %20mL | 20 mL | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 2 | ジェムザール注1000mg | $600\mathrm{mg/m^2}$ | 点滴静注 | | | | 生理食塩液500mL | 500 mL | 1 時間 | | | 3 | 5-FU注250mg 5 mL | $1400(20\times7) \text{ mg/m}^2$ | 中心静脈持続静注(埋込型カテーテル) | | | | 注射用水100mL | 5-FU注と合計85 mL | 168時間 | | L | | | | _バクスター7day infuser使用 | | day15, | 22 | | | | | | 1 | 5-FU注250mg 5 mL | $1400(20\times7) \text{ mg/m}^2$ | 中心静脈持続静注(埋込型カテーテル) | | | | 注射用水100mL | 5-FU注と合計85 mL | 168時間 | | | | | | バクスター 7day infuser使用 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. CDDPはCIイオン存在下でないと不安定となるので生理食塩水で希釈. アミノ酸製剤等と混注しないこと、CDDP投与中は他の薬剤を一時休止が望ましい. ナゼア, デカドロンは有害事象対策(推奨). ### 8. S-1/CDDP療法 day 8, 9/35(S-1はday 1-21/35 内服併用) ## 注意点 血 腎 消 | 投与 | 順 | 投与薬剤 | 投与量 | | |---------|---|---------------------|---------------------|------------------| | day8 | 1 | ブドウ糖注 5 %20mL | 20 mL | ワンショット静脈注射 | | | | ナゼア注0.3mg 2 mL | $0.3\mathrm{mg}$ | 1,00 /01/01/2007 | | | 2 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | | | デカドロン注8mg2mL | 8 mg | 2 時間 | | | 3 | 生理食塩液 1 L | 500 mL | 点滴静注 | | | | ランダ注50mg100mL | $70\mathrm{mg/m^2}$ | 2 時間 | | | | 1日1回 | <u> </u> | 遮光 | | | 4 | マンニットール注20%300mL | $300\mathrm{mL}$ | 点滴静注 | | | | 1日1回 | | 2 時間 | | | | ランダ終了後 | • | | | | 5 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | | | プリンペラ10mg | 10 mg | 2 時間 | | | 6 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | | | | | 2 時間 | | day9 | 1 | ブドウ糖注 5 %20mL | 20 mL | | | | | ナゼア注0.3mg 2 mL | $0.3\mathrm{mg}$ | | | | 2 | ヴィーンF注500mL | 500 mL | 点滴静注 | | | | デカドロン注8mg2mL | 8 mg | 2 時間 | | | 3 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | | | | | 2 時間 | | | 4 | ヴィーンF注500mL | 500 mL | 点滴静注 | | | | | | 2 時間 | | 内服 | | | | | | day1-21 | 1 | TS-1 (20mg or 25mg) | 80-120 mg | 分2 内服 | | | | _ | 6 | 8時20時 | TS-1をday1-21内服併用 TS-1の量 体表面積 <1.25m² TS-1(20mg) 4Cap 80mg 分2 内服 8 時 20時 1.25m² ≤ 体表面積 <1.50m² TS-1(25mg) 4Cap 100mg 分2 内服 8 時 20時 1.50m²≤ 体表面積 TS-1 (20mg) 6Cap 120mg 分2 内服 8 時 20時 CDDPはCIイオン存在下でないと不安定となるので生理食塩水で希釈. アミノ酸製剤等と混注しないこと、TS-1が内服されていることを確認すること(1回量, 1日量, 服薬回数など)、TS-1手帳(日記)の利用を勧める. day 9は必須ではない. # 9. low-dose CDDP+S-1療法 day 1, 4, 8, 11, 15, 18, 22, 25/42(S-1はday 1-28/42 内服併用) ## 注意点 消 血 腎 | 投与順 | 投与薬剤 | 投与量 | 投与法 | |-----|---------------------------------------|---|--------------------------------| | 1 | ランダ注10mg20mL
_生理食塩液100mL
_ TS-1 | 6-10 mg/m²
100 <u>m</u> L
100 mg 分2 | 点滴静注
0.5時間
内服
8 時 20時 | | | TS-1をday1-28内服併用 | | | CDDPはClイオン存在下でないと不安定となるので生理食塩水で希釈. アミノ酸製剤等と混注しないこと. ### 10. WHF肝動注療法 day 1, 8, 15(, 22)/28 注意点 消 倦 | 投与順 | | 投与量 | 投与法 | |-----|-----------------|----------|-----------------------------| | 1 | 5-FU注250mg 5 mL | 1500 mg | 肝動注(埋込型カテーテル)
動脈注射(肝動脈) | | | 生理食塩液250mL | . 220 mL | 5 時間
バクスター インフューザーLV50使用 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. 週1回, 増悪を確認するまで継続. 休薬する際は3週1休で行うことが多い. # 11. low-dose FP(LFP)療法 day 1, 4, 8, 11, 15, 18, 22, 25/35(ポンプを用いた抗癌剤投与はday 1-28/35で行われる) # 注意点 消 血 | 1-1-1-1-1 | .,, | | | |-------------|---|------------------------------|--| | 投与順 | 投与薬剤 | 投与量 | 投与法 | | day1, 8, 15 | 5, 22
5-FU注250mg 5 mL | $1200\mathrm{mg/m^2}$ | 中心静脈持続静注(埋込型カテーテル)
168時間 | | 2 | 注射用水100mL
ランダ注10mg20mL
生理食塩液100mL | 5-FU注と合計85 mL
6 mg/m²
 | バクスター 7 day infuser使用
点滴静注
0.5時間 | | day4, 11, | 18, 25
ランダ注10mg20mL
生理食塩液100mL | 6 mg/m²
100 mL | 点滴静注
0.5時間 | 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. CDDPはClイオン存在下でないと不安定となるので生理食塩水で希釈. アミノ酸製剤等と混注しないこと、CDDP投与中は他の薬剤を一時休止が望ましい。 インフューザー総量85ml=0.5ml/h×168時間(84ml)+ポンプに残る量(1 ml) ## 12. CPT-11療法 day 1/14 # 注意点 血 消 倦 | 投与順 | 投与薬剤 | 投与量 | 投与法 | |--------|-----------------------------------|----------------------|---------------| | dav1 1 | ブドウ糖注 5 % 20mL | 20 mL | ワンショット静脈注射 | | dayı ı | ナゼア注0.3mg 2 mL | 0.3 mg | 点滴静注 | | 2 | ヴィーン F 注500mL
デカドロン注 8 mg 2 mL | 500 mL
8 mg | 2時間 | | 3 | ブドウ糖注 5 % 500mL | 500 mL | 点滴静注
1.5時間 | | | トポテシン注100mg | $150\mathrm{mg/m^2}$ | 1.04(19) | 1-2は有害事象に対する前投薬(推奨). 開始日より4-5日間CPT-11副作用対策必要. # 13. CPT-11/CDDP療法 day 1(, 2,)15/28 注意点 血 腎 消 倦 | 投与順 | 投与薬剤 | 投与量 | | |----------|------------------|----------------------|-------------------| | day1 1 | ブドウ糖注 5 %20mL | 20 mL | | | | ナゼア注0.3mg 2 mL | 20 mL
0.3 mg | ワンショット静脈注射 | | 2 | ヴィーン F 注500mL | 500 mL | For Note the N. | | | デカドロン注 8 mg 2 mL | 8 mg | 点滴静注 | | 3 | ブドウ糖注 5 % 500mL | 500 mL | 2 時間 | | | トポテシン注100mg 5 mL | $70\mathrm{mg/m^2}$ | 点滴静注 | | 4 | 生理食塩液 1 L | 500 mL | 1.5時間 | | | ランダ注50mg100mL | 80 mg/m ² | 点滴静注 | | | 1日1回 | oo mg/m² | 2 時間 | | | トポテシン終了後 | | 遮光 | | 5 | マンニットール注20%300mL | 300 mL | -E- 25°c +0.22- | | | 1日1回 | 300 IIIL | 点滴静注 | | | ランダ終了後 | | 2 時間 | | 6 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | | 1日1回 | ooo mg | | | 7 | ヴィーン F 注500mL | 500 mL | 2 時間
点滴静注 | | L | _ 1 日 1 回 | 000 IM2 | | | day2 1 | ブドウ糖注 5 % 20mL | | 2 時間 | | | ナゼア注0.3mg 2 mL | 0.3 mg | プレンヨッド 財脈 仕別 | | 2 | ヴィーンF注500mL | 500 mL | 点滴静注 | | | デカドロン注8mg2mL | 8 mg | 2時間 | | 3 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | | 1日1回 | | 2時間 | | 4 | ヴィーン F 注500mL | 500 mL | 点滴静注 | | <u> </u> | _ 1 旦 1 回 | | 2時間 | | day15 1 | ブドウ糖注 5 % 20mL | 20 mL | 4 空回 | | | ナゼア注 0.3mg 2 mL | 0.3 mg | ア・マーコーア 日本 別代(工名) | | 2 | ヴィーンF注500mL | 500 mL | 点滴静注 | | _ | デカドロン注 8 mg 2 mL | 8 mg | 2 時間 | | 3 | ブドウ糖注 5 % 500mL | 500 mL | 点滴静注 | | | トポテシン注100mg | $70\mathrm{mg/m^2}$ | 1.5時間 | 1-2は有害事象に対する前投薬(推奨). 開始日より45日間制吐剤内服およびCPT-11副作用対策必要. day2は必須ではない. # 14. CPT-11/CDDP 24時間持続静注療法 day 1, 8, 15/21 注意点 血 倦 | 投与順 | 投与薬剤 | | | |-----|---|----------------------------------|------| | 2 | デカドロン注 8 mg 2 mL
ブドウ糖注 5 %100mL
トポテシン(カンプト)注40mg 2 mL
ランダ注 10mg20mL
生理食塩液50mL | 8 mg
100 mL
60 mg
10 mg | 点滴静注 | | | トポテシン(カンプト)注,ラ | ンダ注と全量49mL | 24時間 | 1は前投薬(必ずしも必須でない). 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. CDDPはCPT-11との混注では活性が落ちないが、デカドロンとの混注では活性が低下するので混注しない、インフューザー総量 $49ml = 2 \ ml/h \times 24$ 時間 $(48ml) + ポンプに残る量<math>(1 \ ml)$ # 15. CPT-11 24時間持続静注療法 day 1, 8, 15/21 注意点 倦 血 | 投与順 投与薬剤 投与量 | 投与法 | |---|--| | | | | 1 デカドロン注 8 mg 2 mL 8 mg ブドウ糖注 5 %100mL 100 mL 2 トポテシン(カンプト)注40mg 2 mL 40(-80) mg 生理食塩液50mL トポテシン(カンプト)注と全量49 mL | 点滴静注
0.5時間
中心静脈(埋込型カテーテル)
バクスター シングルデイインフューザー使用
24時間 | 1は前投薬(必ずしも必須でない). 在宅化学療法加算1500点+携帯型ポンプ加算2500点算定可. インフューザー総量49ml=2
ml/h×24時間(48ml)+ポンプに残る量(1 ml) # 16. weeklyPTX療法(点滴前処置) day 1, 8, 15/21 注意点 血 脱 神 | 投与順 | 投与薬剤 | 投与量 | 投与法 | |-----|--|-----------------------------------|---------------------------| | 1 | ナゼア注0.3mg 2 mL | 0.3 mg
20 mL | 静注 | | 2 | ブドウ糖注 5 % 20mL
ガスター注20mg | 20 mg
20 mL | 静注 | | 3 | ブドウ糖注 5 %20mL
ポララミン注 5 mg 1 mL | 5 mg
100 mL | 点滴静注
0.5時間 | | 4 | ブドウ糖注 5 %100mL
デカドロン注 8 mg 2 mL | 8 mg
100 mL | 点滴静注
0.5時間 | | 5 | ブドウ糖注 5 %100mL
パクリタキセル注30mg 5 mL
生理食塩液 250mL | 60-80 mg/m ²
250 mL | 点滴静注
専用点滴set使用
1 時間 | 1-4はアレルギー反応などに対する前投薬(2-4は必須). PTXは通常の点滴セットの場合,可塑剤が溶け出すので専用点滴セット使用のこと. PTXは薬液中にアルコールを含有するため注意が必要. # 17. DTX療法(前処置あり) day 1/21 注意点 血 脱 神 | 任意点 | 皿 况 作 | | 15 5-11 | |-----|--|--------------------------------------|---------------| | 投与順 | | 投与量 | | | | ナゼア注 0.3mg 2 mL
ブドウ糖注 5 %20mL | 0.3 mg
20 mL | 静注 | | 2 | 1日1回
ガスター注20mg
生理食塩液20mL | 20 mg
20 mL | 静注 | | 3 | 1日1回
ポララミン注5mg1mL
ブドウ糖注5%100mL | 5 mg
100 mL | 点滴静注
0.5時間 | | 4 | 1日1回
デカドロン注8mg2mL
ブドウ糖注5%100mL | 8 mg
100 mL | 点滴静注
0.5時間 | | 5 | 1日1回
ドセタキセル注80mg 2 mL<溶解液付>
生理食塩液250mL
1日1回 | $60\mathrm{mg/m^2}$ $250\mathrm{mL}$ | 点滴静注
1時間 | 1-4はアレルギー反応などに対する前投薬(必ずしも必須ではない). DTXは添付の溶解液中にアルコールを含有するため注意が必要. # 18. CPT-11/LV/FU(IFL)療法 day 1, $8/2\dot{1}$ 注意点 血 脱 消 倦 | 投与順 | 投与薬剤 | 投与量 | | |-----|--|---------------------------------------|------------------------| | 1 | ナゼア注0.3mg 2 mL
ブドウ糖注 5 %20mL | 0.3 mg
20 mL | 静注 | | 2 | デカドロン注 8 mg 2 mL
ブドウ糖注 5 %100mL | 8 mg
100 mL | 点滴静注 | | 3 | アイソボリン注25mg
生理食塩液50mL
1日1回 | 10 mg/m ²
50 mL | 0.5時間
点滴静注
0.1時間 | | 4 | 5-FU注250mg 5 mL
生理食塩液50mL
1 日 1 回 | 500 mg/m²
50 mL | 点滴静注
0.1時間 | | 5 | トポテシン(カンプト)注100mg 5 mL
生理食塩液250mL
1日1回 | $100\mathrm{mg/m^2}$ $250\mathrm{mL}$ | 点滴静注
1.5時間 | 1-2は前投薬(必ずしも必須ではない). 骨髄抑制, 下痢などの有害事象に注意が必要. 3,4はワンショット静注も可. # 19. LV/FU(RPMI)療法 day 1, 8, 15, 22, 29, 36/56 注意点 消 倦 | 投与順 | 投与薬剤 | 投与量 | | |-----|---|---|--| | 2 3 | ナゼア注0.3mg 2 mL
ブドウ糖注 5 %20mL
アイソボリン注 25mg
KN補液3B注500mL
5-FU注250mg 5 mL
生理食塩液50mL | $0.3\mathrm{mg}$ $20\mathrm{mL}$ $250\mathrm{mg/m^2}$ $500\mathrm{mL}$ $500\text{-}600\mathrm{mg/m^2}$ $50\mathrm{m}$ | 静注
点滴静注
2 時間
アイソボリン開始 1 時間後点滴静注 | 1は前投薬(必ずしも必須でない). 5-FU $\left(egin{adjuvantbmatrix} { m adjuvantbmatrix} & 500 { m mg/m^2} \\ { m 進行再発} & 600 { m mg/m^2} \\ \end{pmatrix}$ で使用されることが多い。 3は生理食塩水を省きワンショット静注も可. # BMC Cancer Research article **Open Acces** # A phase II study of LFP therapy (5-FU (5-fluorourasil) continuous infusion (CVI) and Low-dose consecutive (Cisplatin) CDDP) in advanced biliary tract carcinoma Kazuma Kobayashi*^{1,6}, Akihito Tsuji⁴, Sojiro Morita², Tadashi Horimi³, Tetsuhiko Shirasaka⁵ and Takashi Kanematsu⁶ Address: ¹Internal medicine, Clinical Oncology Group, Kochi Municipal Central Hospital, Kochi, Japan, ²Radiology, Clinical Oncology Group, Kochi Municipal Central Hospital, Kochi, Japan, ³Surgery, Clinical Oncology Group, Kochi Municipal Central Hospital, Kochi, Japan, ⁴Department of Clinical Oncology, Kochi Health Science Center, Kochi, Japan, ⁵Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan and 6Department of Transplantation and Digestive Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan Email: Kazuma Kobayashi* - bakehasky@eagle.ocn.ne.jp; Akihito Tsuji - a-tsuji@r4.dion.ne.jp; Sojiro Morita - sojiro@mxp.mesh.ne.jp; Tadashi Horimi - horimi@kcan.ne.jp; Tetsuhiko Shirasaka - t-shirasaka@taiho.co.jp; Takashi Kanematsu - kanematu@net:nagasaki-u.ac.jp * Corresponding author Published: 06 May 2006 BMC Cancer 2006, 6:121 doi:10.1186/1471-2407-6-121 Received: 02 October 2005 Accepted: 06 May 2006 This article is available from: http://www.biomedcentral.com/1471-2407/6/121 © 2006 Kobayashi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. #### **Abstract** Background: Unresectable biliary tract carcinoma is known to demonstrate a poor prognosis. We conducted a single arm phase II study of LFP therapy (5-FU (5-fluorourasil) continuous infusion (CVI) and Low-dose consecutive (Cisplatin) CDDP) for advanced biliary tract malignancies basically on an outpatient basis. Methods: Between February 1996 and September 2003, 42 patients were enrolled in this trial. LFP therapy: By using a total implanted CV-catheter system, 5-FU (160 mg/m²/day) was continuously infused over 24 hours for 7 consecutive days and CDDP (6 mg/m²/day) was infused for 30 minutes twice a week as one cycle. The administration schedule consisted of 4 cycles as one course. RESIST criteria (Response evaluation criteria for solid tumors) and NCI-CTC (National Cancer Institute-Common Toxicity Criteria) (ver.3.0) were used for evaluation of this therapy. The median survival time (MST) and median time to treatment failure (TTF) were calculated by the Kaplan-Meier method. Results: Patients characteristics were: mean age 66.5(47-79): male 24 (54%): BDca (bile duct carcinoma) 27 GBca (Gallbladder carcinoma) 15: locally advanced 26, postoperative recurrence 16. The most common toxicity was anemia (26.2%). Neither any treatment related death nor grade 4 toxicity occurred. The median number of courses of LFP Therapy which patients could receive was two (I-I4). All the patients are evaluable for effects with an over all response rates of 42.9% (95% confidence interval C.I.: 27.7-59.0) (0 CR, 18 PR, 13 NC, 11 PD). There was no significant difference regarding the anti tumor effects against both malignant neoplasms. Figure 2 Shows the BDca a longer MST and TTF than did GBca (234 vs 150, 117 vs 85, respectively), but neither difference was statistically significant. The estimated MST and median TTF were 225 and 107 days, respectively. The BDca had a longer MST and TTF than GBca (234 vs 150, 117 vs 85, respectively), but neither difference was statistically significant. Conclusion: LFP therapy appears to be useful modality for the clinical management of advanced biliary tract malignancy. Page 1 of 10 ### **Background** Biliary tract cancers are rare in North America, with approximately 8,000 new cases diagnosed in 2003 [1]. However, bile duct carcinoma (BDca) and gallbladder carcinoma (GBca) are not rare in northern Japan [2], Taiwan [3], and South Korea [4]. In Japan, these malignancies are the sixth leading cause of cancer deaths, and in 1999, there were 8,557 deaths from BDca and 6,340 deaths from GBca [5]. As an surgical resection of the primary tumor and the areas of local extension remains the most effective therapy [6], even for non-curative operations [7]. However, in over 75% of the patients whose disease is locally advanced or already metastatic cases, the median survival time for patients receiving only the best possible supportive care is only about 6 months [1]. Furthermore, there is a high rate of both local and systemic recurrence, even after a curative resection [1,6]. As a result, an effective chemotherapy for biliary malignancy has been eagerly awaited. However, systemic single-agent chemotherapy has so far shown a poor efficacy [6,8], though many efforts has been done [9]. For example, the response rate of 5-fluorourasil (5-FU), cisplatin (CDDP), was 10-13%, and 8%, respectively [4], while new chemotherapeutic agents CPT-11, Gemsitabine, showed the poor response rate of 12.5% and 8%, respectively [3,4,10]. As a result, an effective combination chemotherapy has been eagerly anticipated. We spotlighted the combination of the two old anti-cancer agents, 5-FU, and CDDP. In Japan, FP therapy combination of 5-FU continuous venous infusion (CVI) and low-dose consecutive CDDP (LFP) Therapy has been widely used since early 1990s for gastrointestinal advanced cancer [11,12]. Because of its low toxicity and relatively high response rate [13], LFP therapy has been widely used for the treatment of various unresectable advanced solid tumors, such as gastric cancer [14], hepatocellular carcinoma [15], pancreatic cancer [12], colon and head and neck [11]. Recent findings in experimental models have shown an additive or synergistic antitumor effects of LFP therapy. We observed that CDDP inhibited metionine transport into tumor cells, both in vitro and in vivo, with a synergic interaction by CDDP functioning as a modulator of 5-FU [11,12]. This synergistic effect was also associated with the induction of apoptosis [16] and the p53 pathway [17,18]. Based on these findings, we conducted a single arm phase II study of LFP therapy in patients with advanced BDca and GBca. ## Methods #### Eligibility criteria This study protocol was approved by the Kochi Municipal Central Hospital, Japan and written informed consent was obtained from all the patients. The patients were required to have unresectable locally advanced or metastatic disease of the biliary-tract or gallbladder advanced carcinoma with measurable lesions on a computed tomography (CT) scan. Other eligibility criteria included an age 18 years or more, Eastern Cooperative Oncology Group (ECOG) performance status of 2 or less, estimated life expectancy of 12 weeks or more, adequate bone marrow function (leukocyte count > 3,500/µl, neutrophil count > $1,500/\mu l$, and platelet count > $100,000/\mu l$), bilirubin < 5.0 mg/dl, transaminases and alkaline phosphatase < 6 times upper limit of normal, and normal renal
function tests (creatine level < 1.5 mg/dl, or creatinine clearance > 60 ml/min). No previous chemotherapy was permitted within 2 weeks. Radiotherapy and stenting to decompress the biliary tract was permitted. Patients with other clinically significant laboratory abnormalities, uncontrolled infection, concurrent severe medical problems unrelated to malignancy that would expose the patient to extreme risk, patients receiving another investigational drug within 30 days prior to study or receiving concurrent hormonal therapy, immunotherapy and those pregnant or lactating were excluded from the study. The study was conducted according to the Good Clinical Practices and the Declaration of Helsinki as amended in Hong Kong (1989). ### Treatment plans All patients were admitted to the hospital for about 10 days for a pretreatment evaluation, the first cycle treatment, and observation for adverse effects. If the degree of toxicity was within Grade 0–2, a second cycle of treatment or more were continued on an outpatient basis. A pretreatment evaluation included complete medical history, physical examination, evaluation of performance status, urinalysis, chest radiograph, and diagnostic studies assessment such as CT scan. When the patient meets the eligibility criteria, central venous catheter system with a heparin coated catheter (Anthron PU catheter; TORAYTM and a port (Celcite brachial; TORAYTM or Vital port mini; COOKTM) is implanted according to the method of Hata et al [19] prior to treatment. The treatment plan involved the administration of 5-FU (160 mg/m²/day) was continuously infused over 24 hours using a disposable infusion pump (7-day Infuser; Baxter™) and CDDP (3-6 mg/m²/day) diluted with normal serine was infused for half an hour. Hydration was not needed. These doses were determined based on our experience of the previous LFP therapy for hepatocellular carcinoma [15]. The administration schedule consisted of 5-FU for 7 consecutive days and CDDP twice a week (day 1 and day 4) for each of four weeks as one treatment course. The treatment schedule and CV catheter system was Page 2 of 10 depicted on figure 1. Unless an exacerbation of the symptoms was observed, multiple courses of treatment were administered. When more than a grade 3 adverse effect was observed, a CDDP infusion was omitted and observed. If this omission was ineffective, 5-FU was also omitted. In case of hemoglobin < 8.0 g/dl, platelet count < $50,000/\mu l$ neutrophil count < $1,000/\mu l$, blood transfusion of concentrated red blood cells (RBCs) or platelets, or granulocyte-stimulating factor (G-CSF) was applied. We do not increase the dose of the anti-cancer agent during the chemotherapy protocol, even if the toxicity is low. ## Toxicity and response evaluation Complete blood counts twice a week and biochemical examinations were weekly carried out. Toxicity was evaluated based on the National Cancer Institute Common Toxicity Criteria (NCI-CTC) ver.3. The response was clas- sified based on the Response Evaluation Criteria in Solid Tumors Guidelines (RECIST criteria) [20], taking into account the measurement of the longest diameter only for all target lesions: complete response (CR)-the disappearance of all target lesions; partial response (PR)-at least a 30% decrease in the sum of the longest diameter of target lesions, taking as reference the baseline sum longest diameter; progressive disease (PD) -at least a 20% increase in the sum of the longest diameter of target lesions, taking as referenve the smallest sum longest diameter recorded since the treatment started or the appearance of one or more new lesions; no change (NC)-neither sufficient shrinkage to quality for partial response nor sufficient increase to qualify for progressive disease, taking as reference the smallest sum longest diameter since the treatment started. Patients with a CR, a PR, an NC, or a PD required a confirmatory disease assessment at least one Figure 1. Schedule for treatment and infusional method Figure 1 Schedule for treatment and infusional method. A schematic drawing of the chemotherapy schedule (a), and the Central Venous catheter system consists of PAS port (b), implantation technique (c) and portable infusion pump (d). Page 3 of 10 (page number not for citation purposes) Figure 2 Survival and Treatment failure. Kaplan-Meier curves of Overall Survival (upper column) and Time to treatment failure (TTF) (lower column) are shown. month later. Target lesions were evaluated by a plain and enhanced CT scan and plain chest X-ray for each course. #### Statistical analyses We used the Stat View J 5.0 software package (Abacus Concepts, Stat View. Abacus Concepts, Inc., Berkeley, CA, 1992–1998) for the statistical analysis. The time to Treatment Failure and the overall Survival Cumulative were obtained by the Kaplan-Meier method. The disease-free survival was compared by the Log rank test among the groups. Prognostic variables were evaluated by Cox's multivariate proportional hazard model. We defined the risk factors for LFP therapy for biliary tract malignancies in our study as significant factors based on both the Cox's and Kaplan-Meier's. A p value of less than 0.05 was considered to be statistically significant. #### Results ### Patient characteristics From February 1996 to December 2003, 42 patients were enrolled into the present study, and all were evaluable for efficacy and toxicity analyses. They consisted of 24 males and 18 females. The mean age was 66.5(47–79). The number of patients with BDca and GBca were 27 and 15, respectively. Twenty-six patients who were initially diagnosed to have biliary tract malignancies were not eligible for surgery because of locally advanced disease and/or metastasis (locally advanced). Another 16 patients had local recurrence and/or distant metastasis after surgery (postoperative recurrence). Disease extension was such that 11 patients (BDca: 7, GBca: 4), had only primary or local recurrence patients had only metastatic disease (BDca: 9, GBca: 5), another 17 patients (BDca: 11, GBca: 6) had both diseases. Four patients had previously undergone Page 4 of 10 Table I: Patient Characteristics | Variables | Startification | Over all | BDca | GBca | |-----------------------|---|---------------------------|----------------------------|-------------------------| | Spieces of cancer | | 42 | 27 | 1.5 | | Sex | (male/female) | (24/18) | (17/10) | . 15 | | Age | · | 66.5 ± 7.5 | 64.8 ± 8.2 | (7/8)
69.5 ± 4.7 | | ECOG PS | (0/1/2) | (36/4/2) | (22/4/1) | (14/0/1) | | Disease Status | (unresectable/postoperative recurrence) | (26/16) | (15/12) | (11/4) | | Disease extension | locally advanced (primary) | 26 | 15 | (11/1) | | • | local recurrence | 7 | 7 | 0 | | | _liver_metastasis_ | 9 | _4_ | <u>-5.</u> | | | lung metastasis | 4 | 3 | ī | | | lymphnode metastasis | - 11 | 4 | 7 | | Tumor marker | miscellaneous metastasis | 5 | 5 | 0 | | ramor marker | carcinoembryonic antigen (CEA) | 16.7 ± 60.7 | 6.4 ± 17.2 | 36.7 ± 100.5 | | Previous chemotherapy | CA19-9
(yes/no) | 3035.5 ± 9507.6
(4/38) | 4495.3 ± 11688.8
(3/24) | 407.9 ± 587.;
(1/14) | Abbreveations BDca: bile duct carcinoma, GBca: Gallbladder carcinoma, ECOG PS: Eastern Cooperative Oncology Group performance status chemotherapy, including such treatments as CDDP + VP-16, 5-FU + mitomycin C + farmorubicin, adriamycin + 5-FU. Two of 4 patients experienced surgery before these chemotherapy (i.e. postoperative recurrence). Seven of BDca patients had palliative radiotherapy. Three of these seven underwent surgery before radiation (i.e. postoperative recurrence). There were some differences between BDca and GBca on age, and serum tumor marker levels (CEA and CA19-9), but neither was statistically significant. The patient characteristics are enumerated in Table 1. # Response and time-to-event measures The overall response rate (RR) was 42.9% (95% confidence interval C.I.: 27.7–59.0) with CR 0, PR 18, NC 13, PD 11, and clinical benefit was 73.8% (95% C.I.: 58.0–86.2). Patients with a PR, an NC or a PD required a confirmatory disease assessment at least two months later. One GBca patient who got PR, could receive curative resection. The RR of primary lesion or locally advanced lesion was 50.0% (95% C.I.: 30.6-69.4), and the RR of Table 2: Anti tumor effect | Over all | | | | | | | | |----------|----|----|----|----|--------------------------------------|---|--| | | CR | PR | NC | PD | Response Rate (%)95%C.I. CR+PR/TOTAL | Clinical Response (%)95%C.I. CR+PR+NC/TOTAL | | | Over all | 0 | 18 | 13 | 11 | 42.9 (27.7–59.0) | 77.0 (50.0 04.0) | | | BDca | 0 | 11 | 10 | 6 | 40.7 (22.4–61.2) | 73.8 (58.0–86.2) | | | GBca | 0 | 7 | 3 | 5 | 46.7 (21.1–73.5) | 77.8 (57.8–91.4)
66.7 (38.4–88.2) | | | | | | | | Primary or local recurrence | | | | | CR | PR | NC | PD | Response Rate (%)95%C.I. CR+PR/TOTAL | Clinical Response (%)95%C.I. CR+PR+NC/TOTAL | | | Over all | 0 | 14 | 8 | 6 | 50.0 (30.6–69.4) | · | | | BDca | 0 | 9 | 6 | 3 | 50.0 (26.0–74.0) | 78.6 (59.0–91.7) | | | GBca | 0 | 5 | 2 | 3 | 50.0 (18.6–81.4) | 83.3 (58.6–96.5) | | | | | | | | | 70.0 (34.7–93.5) | | | | | | | | Metastatic lesion | | | | | CR | PR | NC | PD | Response Rate (%)95%C.I. CR+PR/TOTAL | Clinical Response (%)95%C.I. CR+PR+NC/TOTAL | | | Over all | 0 | 10 | 12 | 9 | 32.3 (16.7–51.4) | | | | BDca | 0 | 6 | 9 | 5 | 30.0 (11.8–54.3) | 71.0 (52.0–85.8) | | | GBca | 0 | 4 | 3 | 4 | 36.4 (10.8–69.3) | 75.0 (50.9–91.4)
66.7 (30.7–89.2) | | Abbreveations BDca: bile duct carcinoma, GBca: Gallbladder carcinoma Page 5 of 10 (page number not for citation purposes) Table 3: Toxicity | Hematological Toxicity | Grl | Gr2 | Gr3 | Gr4 | ≧Gr3 (%) | Over all (%) | |----------------------------------|-----|-----|-----|-----|----------|--------------| | anemia | 0 | 11 | 0 | 0 | 0 (0) | 11 (26.2) | | leukopenia | 0 | l | 0 | 0 | 1 (0) | l (2.3) |
| thrombocytopenia | 0 | 2 | 3 | 0 | 3 (7.1) | 5 (11.9) | | Non-hematological Toxicity | Grl | Gr2 | Gr3 | Gr4 | ≧Gr3 (%) | Over all (%) | | nausea | 3 | 4 | 1 | 0 | 1 (2.3) | 8 (19.0) | | vomiting | 1 | 1 | 3 | 0 | 1 (2.3) | 5 (11.9) | | appetite loss | 0 | 0 | 6 | 0 | 6 (14.3) | 6 (14.3) | | oral mucositis | 0 | 4 | 0 | 0 | 0 (0) | 4 (9.5) | | taste disturbance | 0 | I | 0 | 0 | 1 (2.3) | 1 (2.3) | | upper GI tract bleeding | 0 | ı | 0 | 0 | 0 (0) | 1 (2.3) | | diarrhea | Ī | 0 | 0 | 0 | 0 (0) | 1 (2.3) | | general fatigue | 0 | ı | . 1 | 0 | 1 (2.3) | 2 (4.7) | | jaundice | Ō | 0 | 4 | 0 | 4 (9.5) | 4 (9.5) | | serum AST/ALT level elevation | 0 | 4 | 1 | 0 | 1 (2.3) | 1 (2.3) | | Serum creatinine level elevation | 0 | 6 | 0 | 0 | 0 (0) | 6 (14.3) | metastatic lesions was 32.3%. Various RRs were demonstrated in Table 2. The responses of meatastatic lesions were as such; liver (CR:0, PR:6, NC:0, PD:3), lung (CR:0, PR:1 NC:3, PD:0), lymph node (CR:0, PR:3, NC: 6, PD2), miscellaneous (CR:0, PR: 2, NC: 2, PD: 1). There was no significant difference in terms of anti tumor effects against both malignant neoplasms. The overall MST was 225 days. The median TTF was 107 days. Figure 2 Shows the BDca a longer MST and TTF than did GBca (234 vs 150, 117 vs 85, respectively), but neither difference was statistically significant. ### Toxicity As shown in Table 3, neither any treatment related death nor grade 4 toxicity occurred. Overall, the most common toxicity was anemia occurring in 26.2% of patients followed by nausea (19.0%). The most frequent grade 3 toxicity was appetite loss (14.3%). The occurrence of ascites and jaundice may be partly because of the outcome of the disease progression. ## Prognostic factors related survival and TTF An analysis of a Cox proportional hazard model showed that no significant factor was found prognostic factors for either the overall survival or TTF (Table 4). However, the patients with LFP courses ≥ 2 had both a longer overall survival and TTF than those with LFP courses < 2 as depicted in Figure 3. The distribution of the patients with LFP courses ≥ 2 was (PR/NC/PD = 16/8/3), while that of those with LFP courses ≤ 2 was (PR/NC/PD = 2/5/8). Table 4: Prognostic factors for over all survival and TTF | | Over all survival Time to treatment Failure | | | | | | | | |--|---|---------|---------------|--------------|---------|-------------|--|--| | Stratification | Hazard ratio | p-value | 95% C.I. | Hazard ratio | p-value | 95% C.I. | | | | Sex (male/female) | 0.123 | 0.0128 | 0.024-0.640 | 0.225 | 0.0095 | 0.0730.695 | | | | Age (≧69/<69) | 0.634 | 0.6082 | 0.111-3.692 | 2.380 | 0.2269 | 0.583-9.713 | | | | ECOG PS (PS0/PS1/PS2) | 0.016 | 0.0015 | 0.001-0.259 | 0.230 | 0.0007 | 0.001-0.152 | | | | Species of tumor (BDca/GBca) | 0.095 | 0.0198 | 0.013-0.688 | 0.001 | 0.0411 | 0.08560.94 | | | | Disease status (locally advanced/postoperative recurrence) | 0.121 | 0.0179 | 0.021-0.695 | 0.802 | 0.7388 | 0.001-0.152 | | | | Radiation (yes/no) | 8.369 | 0.1491 | 0.467-150.112 | 0.603 | 0.4586 | 0.158-2.299 | | | | Previous chemotherapy (yes/no) | 0.143 | 0.0255 | 0.016-1.241 | 0.495 | 0.4086 | 0.094-2.62 | | | | Initial CEA level (≧1 UL/<1 UL) | 1.098 | 0.9053 | 0.234-5.160 | 2.453 | 0.1267 | 0.775-7.76 | | | | Interval decreasing CEA level (yes/no) | 0.224 | 0.2859 | 0.014-3.499 | 1.734 | 0.5968 | 0.260-11.56 | | | | Initial CA19-9 level (≧5 UL/<5 UL) | 0.078 | 0.0255 | 0.014-3.499 | 1.734 | 0.5968 | 0.260-11.56 | | | | Interval decreasing CA19-9 level(yes/no) | 1.449 | 0.7667 | 0.125-16.774 | 0.326 | 0.2600 | 0.047-2.29 | | | (Cox proportional hazard model) Abbreveations BDca: bile duct carcinoma, GBca: Gallbladder carcinoma, ECOG PS: Eastern Cooperative Oncology Group performance status, CEA: carcinoembryonic antigen, UL: upper limit Page 6 of 10 Figure 3. Relation between number of LFP courses and Over all survival and TTF Figure 3 Relation between number of LFP courses and Over all survival and TTF. Differences by accomplished LFP (5-FU (5-fluoroursil) continuous infusion and Low-Dose Consecutive Cisplatin(CDDP)) courses are depicted regarding the overall Survival (upper column) and Time to treatment failure (TTF)(lower column). ### Cost benefit The difference between the inpatient-basis and the outpatient-basis or home treatment of this therapy in respect to cost is shown in Table 5. This was calculated based on the assumption that one patient received one-month treatment of this LFP therapy covered by Japanese National Health Insurance. The cost for outpatient-basis/home LFP therapy was approximately equivalent to 996 U.S. dollars which was about one-sixth less than the cost on an inpatient-basis. # Discussion In the present study, we achieved an RR of 42.9% (95% C.I.: 27.7–59.0) with a median over all survival of 225 days and median TTF of 107 days. No grade 4 toxicity or treatment related death occurred. The cause of treatment failure of the other 37 patients was an aggravation of general condition due to primary disease, and not due to any adverse effect. LFP therapy showed a good compliance and the adverse effects were either tolerable or controllable. The overall response rate of our study is relatively high for this type of tumor. However, our LFP method has achieved more than a 50% overall response rate in other tumors such as esophageal, gastric or colon cancers. Biliary tract cancer may be more malignant than other types of cancer. One cycle of conventional LFP therapy consists of CDDP infusion consecutive five days per week and 24 hr continuous infusion of 5-FU consecutively 7 days per week [14]. Page 7 of 10 (page number not for citation purposes) Table 5: Cost-benefit | able 5: Cost-Delient | , the state | | | | | |---|---|--|--|--|--| | Outpatient-basis or home | Inpatient-basis Basic admission fee 472,900 yen Local infusion technical fee (addition to minute infusion) 46,200 yen | | | | | | At home malignant tumor
Administration fee 25,000 yen | | | | | | | Portable infuser pump using fee 15,000 yen Medication CDDP 20,000 yen 5-FU 15,000 yen Tumor marker 5,000 yen Other laboratory test 8,400 yen Imaging diagnosis 15,000 yen (antiemeric drug 16,000 yen) Total 103,600 (119,600) yen | Diet 63,600 yen Medication CDDP 20,000 yen 5-FU 15,000 yen Tumor marker 5,000 yen Other laboratory test 8,400 yen Imaging diagnosis 15,000 yen (antiemeric drug 16,000 yen) Total 646,300 (662,300) yen | | | | | (One month treatment covered by Japanese National Health Insurance, A U.S. dollar is approximately equivalent to 104 Japanese yen) Therefore, the patients were obliged to receive inpatientbasis treatment, which led to their inconvenience and a heavy burden due to the high admission fee. Regarding the five consecutive days of CDDP infusion, our preliminary study showed that CDDP infusion twice a week was sufficient to maintain the blood concentration of CDDP in order to achieve synergistic effect [15]. This fact and the application of a CV catheter system with PAS or vital port and portable infusion pump thus enable the patients to receive outpatient-basis treatment which is equivalent to the inpatient treatment in quality. As for central venous catheter, Knox reported six catheter infection cases occurred in 27 patients [6], but no complications related to the catheter system occurred in our study. Our good results were due to the easy technique of implantation associated with the catheter system [19]. In our hospital from July 1994 to December 2002, infection related to the CV-catheter system occurred in only 44 cases of total 1,350 implanted patients (3.4%). We herein tried to compare our regimen with other combination chemotherapies [2,4-6,21-23] are summarized in Table 6. Our combination chemotherapy is thus considered to be effective enough to be recommended the biliary tract malignancy since our study achieved a low toxicity and high efficacy with a relatively higher RR and longer MST in comparison to these regimens. Kim's regimen [4] is also interesting since oral capesitabine was used. However, our results showed higher response rate and lower toxicity than Kim's. Table 6: Current Combination Chemotherapy for Biliary tract cancer | able 6: Current Author (published year) | Number of
Patients | Species
of cancer | Regimen | RR (%) | MST
(days) | mTTF
(days) | Adverse effects (≧Gr3) | Treatment related death | |--|-----------------------|----------------------|-------------------------------------|--------|---------------|-----------------------------------|------------------------------|-------------------------| | 151111(2007) | GBca | CEF(CDDP/5-FU/ | 33.3 | 177* | - | hematological toxicity
(52.3%) | none | | | | 25 | GBca | FAM(5-FU/Doxorubicin/
Mitomycin) | 7.1 | | - | hematological toxicity (20%) | none | | | | DD | Gemsitabine/CDDP | 50 | 270 | 150 | thrombocytopenia (75%) | none | | Lee (2004) | 4 | BDca
GB | Gemsitabine/CDDP | 36.6 | 140 | 126 | nausea/vomiting (16%) | 2 | | Doval(2004) | 30 | GBca | Gemsitabine/CDDP | 64 | 294 | 196 | anemia (45%) | none | | Malik(2003)
Knox (2004) | 11
27 | GBca
BDca/ | Gemsitabine/5-FU | 33 | 159 | 111 | hematological toxicity (11%) | none | | , | | CBca | 1 | 7.5 | 444 | 141 | diarrhea (30%) | 1 | | Malik(2003) | 30 | CBca | Leucovorin/5-FU | | 273 | 111 | leucopenia (20%) | none | | Kim (2003) | 42 | BDca/
CBca | Capesitabine/CDDP | 21.4
| 2/3 | 111 | 100007 3.112 (2.17) | | ^{(*} The result was overall survival of combined CEF and FAM) BDca: bile duct carcinoma, GBca: Gallbladder carcinoma, CDDP: Cisplatin, 5-FU: 5-fluorourasil, RR: response rate, MST: median survival time, mTTF: median time to treatment failure One of the problems of our study was that the prognosis of the patients receiving less than two courses of LFP was remarkably poor as shown in Figure 3. Of these patients only one could receive second-line chemotherapy with CDDP/CPT-11. It is important to predict whether LFP therapy is effective or not. Fortunately, an effective method for predicting LFP therapy effectiveness for gastrointestinal cancers by detecting p53 has been reported [16-18]. This method may be applicable for biliary tract malignancy. The present study used 5-FU continuous venous infusion (CVI) as an effector. If an oral drug which can help maintain a high blood concentration of 5-FU equivalent to or higher than that for the CVI-method exist, then the patients with biliary tract malignancy can avoid the need to use the catheter system but while still achieving an improved anti-tumor effect thus leading to an advanced quality of life. S-1 invented by one of the authors (T.S) [11] can thus be one of the candidates for this aim. S-1 is a novel oral fluoropyrimidine that consists of tegafur, which is a prodrug of 5-FU, 5-chloro-2, 4-dihydroxypyrimidine, which inhibits dihydropyrimidine dehydrogenase activity and potassium oxonate, which reduces gastrointestinal toxicity [11,24]. This feature helps to maintain a high blood concentration of 5-FU and less toxicity of digestive tract [11,24]. The result of 101 advanced gastric cancer patients with S-1 was reported to be 44.6% RR with 244 days of MST [25,26]. Furthermore, using the synergistic effect of LFP, the combination chemotherapy of CDDP and S-1 has also been performed for gastric cancer or pancreatic cancer at some institutes [13,25,27-30]. Many reports have so far described promising results. The application of low-dose CDDP and S-1 for biliary malignancies at our institute is now under consideration. Our study of LFP is thus considered to support the use of lowdose CDDP and S-1 regimen for BDca and GBca. ### Conclusion In conclusion, this outpatient-basis LFP therapy is considered to be appropriate as a first-line treatment for either advanced or recurrent biliary tract cancer and it promises to help improve the quality of life of cancer patients while also facilitating the clinical management of such patients. ### Competing interests The authors declares that they have no competing inter- ### **Authors' contributions** KK carried out this study, and drafted this manuscript. AT conceived the design of present study. SM participated in assessing radiological findings. TH participated in its design and coordination. TS participated in the pharmacological basis of the study. TK participated in the coordination of this study and instructed the collaborators of this manuscript. ### Acknowledgements We appreciated Ms Ito Kawamura for gathering and preparing data for this study. And also we thanked Dr Brian Quinn for grammatical check for our manuscripts. This study could be performed as ordinary clinical practice, therefore the cost of this study was covered by National or other insurance. Any special funds were not needed. ### References - Bhargava R; Jani CR, Savarese DMF, O'donell JL, Stuart KE, Lim CMR: Gemcitabine and Irinotecan in Locally Advanced or Metasttic Biliary Cancer: Preliminary Report. Oncology 2003, - Malik IA, Aziz Z, Zaidi SHM, Sethuraman G: Gemsitabine and Cisplatin Is a Highly Effective Combination Chemotherapy in Patients With Advanced Cancer of the Gallbladder. Am J Clin Oncol 2003, 26:174-177. - Lin MH, Chen JS, Chen HHW, Su WC: A Phase II Trial of Gem-sitabine in the Treatment of Advanced Bile Duct and Periampullary Carcinomas. Chemotherapy 2003, 49:154-158. - Kim TW, Chang HM, Kang HJ, Lee JR, Ryu MH, Ahn JH, Kim JH, Lee JS, Kang YK: Phase II study of capesitabine plus cisplatin as first-line chemotherapy in advanced biliary cancer. Ann Oncol 2003, 14:1115-1120. - Ishii H, Furuse J, Yonemoto N, Nagase M, Yoshino M, Tosiya Sato: Chemotherapy in the Treatment of Advanced Gallbladder Cancer. Oncology 2004, 66:138-142. - Knox JJ, Hedley D, Oza A, Siu LL, Pond GR, Moore MJ: Gemsitabine with continuous infusional5-fluorourasil in concurrent advanced biliary cancers: a review of the Princess Margaret Hospital experience. Ann Oncol 2004, 15:770-774. - Ishikawa T, Horimi T, Shima Y, Okabayashi T, Nishioka Y, Hamada M, Ishikawa J, Tsuji A, Takamatsu M, Morita S: Evaluation of aggressive surgical treatment for advanced carcinoma of the gallbladder. J Hepatobilliary Pancreat Surg 2003, 10:233-238. - Hejna M, Zielinski CC: Nonsurgical management of gallbladder cancer: cytotoxic treatment and radiotherapy. Expert Rev Anticancer Ther 2001, 1:291-300. - Todoroki T: Chemotherapy for Gallbladder Carcinoma-A - Surgeon's Perspective. Hepato-Gastroenterology 2000, 47:948-955. Alberts SR, Fishkin PA, Burgart LJ, Cera PJ, Mahoney MR, Morton RF, Johnson PA, Nair S, Goldberg RM: CPT-11 for Bile-Duct and Gallbladder Carcinoma. A Phase II North Central Cancer Treatment Group (NCCTG) Study. Int J Gastrointestinal Cancer 2002, 32:107-11. - Shirasaka T, Yamamitsu S, Tsuji A, Taguchi T: Conceptual changes in cancer chemotherapy: from an oral fluoropyrimidine prodrug, UFT, to a novel oral fluoropyrimidine prodrug, S-I, and low-dose FP therapy in Japan. Invest New Drugs 2000, - Hirata K, Mukaiya M, Yamamitsu S, Oikawa I, Takashima T, Katsuramaki T, Sasaki K, Denno R, Shirasaka T: Biochemical modulation therapy for pancreatic cancer. J Hepatobiliary Pancreat Surg 1998, - Tanaka B, Mitachi Y, Tsuji A, Yamamitsu S, Hirata K, Shirasaka T. Hirakawa K: Combination Phase I trial of a Novel Oral Fluorurasil Derivative S-I with Low-Dose Cisplatin for Unresectable and Recurrent Gastric Cancer (JFMC27-9902). Clin Cancer Res 2004, 10:1664-1669. - Enjoji A, the Nagasaki Digestive Organ Cancer Chemotherapy Study-Group Japan: Combination chemotherapy of 5-fluorourasil and low-dose cisplatin in advanced and recurrent gastric cancer: a multicenter retrospective study in Nagasaki, Japan. Anticancer Res 2002, 22:1135-1139. - Tanioka H, Tsuji A, Morita S, Horimi T, Takamatsu M, Shirasaka T, Mizushima T, Ochi K, Kiura K, Tanimoto M: Combination Chemotherapy with Continuous 5-Fluorourasil and Low-dose Cisplatin Infusion for Advanced Hepatocellular Carcinoma. . Anticancer Res 2003, **23:**1891-1898. Page 9 of 10 Mori S, Kunieda K, Sugiyama Y, Saji S: Prediction of 5-fluorourasil and cisplatin synergism for advanced gastrointestinal cancers using a collagen gel droplet embedded culture. Surg Today 2003, 33:577-583. 17. Matsuhashi N, Saio M, Matsuo A, Sugiyama Y, Saji S: Expression of p53 protein as a predictor of the response to 5-fluorouracil and cisplatin chemotherapy in human gastrointestinal cancer cell lines evaluated with apoptosis by use of thin layer col- lagen gel. Int J Oncol 2004, 24:807-813. Nakata B, Chung KH-YS, Ogawa M, Ogawa Y, Yanagawa K, Muguruma K, Inoue T, Yamashita Y, Onoda N, Maeda K, Sawada T, Sowa M: p53 protein overexpression as a predictor of the response to chemotherapy in gastric cancer. Surg Today 28:595-598. Hata Y, Morita S, Morita Y, Awatani T, Takasaki M, Horimi T, Zen Ozawa: Peripheral Insertion of a Central Venous Access Device Under Fluoroscopic Guidance Using a Peripherally Accessed System (PAS) Port in the Forearm. Cardiovasc Intervent Radiol 1998, 21:230-233. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweji J, Glabbeke MV, Oosterom ATV, Christian MC, Gwyther SG: New Guidelines to Evaluate the Response to Treatment in Solid Tumors. J Natl Cancer Inst 2000, 92:205-216. 21. Lee MA, Woo IS, Kang JH, Hong YS, Lee KS: Gemsitabine and Cisplatin Combination Chemotherapy in Intrahepatic Cholangiocarcinoma as Second-line Treatment: Report of Four Cases. Jpn J Clin Oncol 2004, 34:547-550. Malik IA, Aziz Z: Prospective Evaluation of Efficacy and Toxicity of 5-FU and Folinic Acid (Mayo Clinic Regimen) in Patients With Advanced Cancer of the Gallbladder. Am J Clin Oncol 2003, 26:124-126. Doyal DC, Sekhon JS, Gupta SK, Fuloria J, Shukla VK, Gupta S, Awasthy BS: A Phase II study of gemsitabine and cisplatin in chemotherapy-naive, unresectable gallbladder cancer. Br J Cancer 2004, **90**:1516-1520. Hirata K, Horikoshi N, Aiba K, Okazaki M, Denno R, Sasaki K, Nakano Y, Ishizuka H, Yamada Y, Uno S, Taguchi T, Shirasaka T: Pharmakokinetic Study of S-I, a Novel Oral Fluorourasil Antitumor Drug. Clin Cancer Res 1999, 5:2000-2005. Koizumi W, Tanabe S, Saigenji K, Ohtsu A, Boku N, Nagasima F, Shirano K, Matsumura Y, Goto M: Phase I/II study of S-I combined with cisplatin in patients with advanced gastric cancer. Br | Cancer 2003, 89:2207-2212. Maehara Y: S-I in gastric cancer; a comprehensive review. Gastric Cancer 2003, 6:2-8. Hyodo I, Nishina T, Moriwaki T, Endo S, Terao T, Hirao K, Nasu J, Hirasaki S, Endo H, Masumoto T, Tajiri H, Kurita A: **A** phase I study of S-1 combined with weekly cisplatin for metastatic gastric cancer in an outpatient setting. Eur J Cancer 2003, 39:2328-2333. Baba H, Yamamoto M, Endo K, Ikeda Y, Toh Y, Kohnoe S: Clinical efficacy of S-I combined with cisplatin for advanced gastric cancer. Gastric Cancer 2003, 6:45-49. Tsujitani S, Fukuda K, Nobuyuki Kaibara N: Combination chemotherapy of S-I and low-dose cisplatin for advanced gastric cancer. Gastric Cancer 2003, 6:50-57. Hayashi K, Imaizumi T, Kazumi Uchida, Kuramochi H, Takasaki K: High response rates in patients with pancreatic cancer using the novel oral fluoropyrimidine S-1. Oncology Reports 2002, 9:1355-1361. ### Pre-publication history The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1471-2407/6/121/pre pub ## Publish with Bio Med Central and every scientist can read
your work free of charge "BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime.* Sir Paul Nurse, Cancer Research UK Your research papers will be: - available free of charge to the entire biomedical community - · peer reviewed and published immediately upon acceptance - cited in PubMed and archived on PubMed Central - yours you keep the copyright Submit your manuscript here: http://www.biomedcentral.com/info/publishing_adv.asp Page 10 of 10