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(Iressa, ZD1839), an Epidermal Growth Factor Receptor
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Abstract

Purpose: We aimed to identify candidate proteins for tumor markers to predict the response to
gefitinib treatment.

Experimental Design: We did two-dimensional difference gel electrophoresis to create the
protein expression profile of lung adenocarcinoma tissues from patients who showed a different
response to gefitinib treatment.We used a support vector machine algorithm to select the proteins
that best distinguished 31 responders from 16 nonresponders. The prediction performance of the
selected spots was validated by an external sample set, including six responders and eight non-
responders. The results were validated using specific antibodies.

Results: We selected nine proteins that distinguish responders from nonresponders. The predic-
tive performance of the nine proteins was validated examining an additional six responders and
eight nonresponders, resulting in positive and negative predictive values of 100% (six of six) and
87.5% (seven of eight), respectively. The differential expression of one of the nine proteins, heart-
type fatty acid — binding protein, was successfully validated by ELISA. We also identified 12
proteins as a signature to distinguish tumors based on their epidermal growth factor receptor gene
mutation status.

Conclusions: Study of these proteins may contribute to the development of personalized

therapy for lung cancer patients.

Non - small cell lung carcinoma (NSCLC) accounts for ~85%
of lung cancer cases {1). Biomarker(s) that predict the response
to gefitinib (Iressa; AstraZeneca, Macdlesfield, United King-
dom), an epidermal growth factor receptor (EGFR) tyrosine
kinase inhibitor, may help to improve the choice of therapeutic
strategy in patients with NSCLC. Gefitinib improves NSCLC-
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related symptoms and quality of life in some patients with
advanced NSCLC who do not respond to platinum-based
chemotherapy. However, the response rate for gefitinib remains
<20% in patients with NSCLC (2-4), and treatment with
gefitinib is associated with serious adverse effects, such as severe
acute interstitial pneumonia in 5.4% of the patients who
received the treatment (5, 6). Thus, it is imperative to select
appropriate patients for treatment with gefitinib and exclude
patients in whom gefitinib is unlikely to exhibit any clinical
benefit. Women, patients who have never smoked, patients
with adenocarcinoma, and East Asians are major subgroups
of responders (3, 4, 6-8). Recently, gain-of-function somatic
mutation in the tyrosine kinase domain of the EGFR has been
correlated with the response to gefitinib (9, 10). However,
other studies have revealed that correction of the phenotype
arising from EGFR mutation may not account for all of the
clinical benefits of gefitinib (11, 12), and both preclinical and
clinical studies have reported that the efficacy of gefitinib is
independent of EGFR expression level (11, 13~15). Although
molecular features of the EGFR gene, including mutation and
high copy number, (16, 17) are associated with response to
gefitinib, other molecular markers in the tumor, such as HER2
overexpression (18), Akt phosphorylation (19), and other
EGFR downstream molecules (20), also correlate with response.
These observations suggest a role for unknown, but important,
factors in gefitinib sensitivity. Identification and elucidation
of such factors will improve existing therapeutic protocols
and contribute to further understanding of the mechanisms of
gefitinib sensitivity.
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To identify the gene products correlated with the efficacy
of gefitinib, genome-wide screening was done recently for
NSCLC. A global mRNA expression study using DNA micro-
arrays and biopsy samples identified 51 genes associated with
the sensitivity to gefitinib and established a numerical scoring
system to predict the response (21). This expression study
also led to the establishment of ELISA assays for the identified
gene products in serum. Preclinical studies involving mRNA
profiling of NSCLC xenografts resulted in the identification
of a set of genes that were differentially expressed between
tumors that were sensitive and insensitive to gefitinib treatment
(22, 23). These studies will lead to the identification of novel
biomarkers to predict the response to gefitinib treatment.
However, mRNA expression does not necessarily cormrelate with
protein level, and posttranslational modifications, such as
phosphorylation, cannot be predicted from the amount of RNA
or from the DNA sequence (24). With this background,
comprehensive expression studies at the protein level, an
approach called proteomics, have been conducted in patients
with lung cancer to develop biomarkers that predict clinical
outcomes (25). However, no global protein expression study
has yet been done on the mechanism of response to gefitinib.

To identify the proteomic signature for sensitivity to gefitinib
and to use that signature as a tumor marker to predict the
response to gefitinib, we analyzed global protein expression
levels in lung adenocarcinoma tissues for whom we have
detailed information on EGFR gene status. The surgical
specimens were obtained at the time of surgery from patients
who subsequently had recurrence and received gefitinib
monotherapy. We then used two-dimensional difference gel
electrophoresis (2D-DIGE) covering ~2,000 proteins to
identify a set of proteins of which expression was associated
with sensitivity to gefitinib and with EGFR mutation. The
predictive performance of the protein set was validated with an
independent data set and compared with that of EGFR
mutation.

Materials and Methods

Patients and tissue samples. We examined tumor tissues from
patients who relapsed after surgery and received gefitinib monotherapy.
Two hundred seventy-nine patients who received gefitinib at the
National Cancer Center Hospital from July 2002 to December 2004
were evaluated for inclusion in this study. Ninety-two patients relapsed
after surgical resection of primary NSCLC and started to receive
monotherapy with gefitinib 250 mg/d for 14 days (n = 92). We used
tumor tissues obtained at the time of surgery and stored in vapor
nitrogen. Fifteen patients were excluded from our study for the
following reasons: frozen tissues were not available (n = 10) and
tumor histology showed squamous cell carcinoma (n = 4) or
pleomorphic carcinoma (n = 1). The histologic features of the tissues
were reviewed by two board-certified pathologists (Y.M and K.T.) and
diagnosis was based on the latest WHO dlassification of lung
adenocarcinoma (8, 26 -28). The tumor responses were classified into
complete response (CR), partial response (PR), and progressive disease
(PD) using standard bidimensional measurements (29). In this study,
patients without a marked reduction of tumor size were subdivided into
minor response (MR) and stable disease (SD) groups. MR was defined
as a 25% decrease in the sum of the products of perpendicular
diameters of all measurable lesions at any point during gefitinib
treatment. SD was defined as a <25% decrease in tumor size after
treatment. The dlinical information is summarized in Table 1, and
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further information, including EGFR mutation status, is summarized in
Supplementary Table S1. Consent was obtained from all patients and
the protocol was approved by the institutional review board of the
National Cancer Center.

To identify the proteins associated with response to gefitinib, we
compared the protein expression profiles of responders (CR and PR)
and nonresponders (PD). Of 77 samples available, the effects of
gefitinib treatment were not examined for six cases because the
treatment was not completed. These six samples were excluded from
this study. We constructed two sample sets in the following way
(Table 2): a training sample set comprising 31 responders (2 CRs + 29
PRs) and 16 nonresponders (16 PDs) and a test set comprising six
responders (6 PRs) and 8 nonresponders (8 PDs) from whom samples
were obtained between June and December 2004 (Table 2). As no
significant differences were observed between CRs and PRs (Supple-
mentary Fig. $1A), we grouped CRs and PRs together in the responder
group.

Protein extraction and protein expression profiling. The frozen tumor
tissues were crushed to frozen powder with a Multi-Beads Shocker
(Yasui-kikai, Osaka, Japan) under cooling with liquid nitrogen. The
frozen powder was then treated with urea lysis buffer (7 mol/L urea,
2 mol/L thiourea, 3% CHAPS, 1% Triton X-100) for 30 min on ice.
After centrifugation at 15,000 rpm for 30 min, the supernatant was
recovered as cellular protein for the protein expression study.

Protein samples were labeled with CyDye DIGE Fluor saturation dye
(GE Healthcare Amersham Biosciences, Uppsala, Sweden) according to

Table 1. Patient characteristics

No. patients %
Gender
Female 33 43
Male 44 57
Age (y)
Median {range) 62.2 (32-80) —

Histologic type
Adenocarcinoma 100

Papillary/acinar/ 30/16/9/6 49/26/15/10
bronchioloalveolar/solid

Smoking history*

Never smokers 37 48

Former smokers i2 16

Current smokers 28 36
ECOG performance status’

0/1/2/3 24/39/9/5 31/51/12/6
Prior chemotherapy

Yes 30 39

No 47 61
Response to gefinitib

CR/PR/MR/SD/PD/NE 2/35/2/8/24/6 3/45/3/10/31/8
EGFR gene status

Mutation LB58R 18 23.4

DEL® i8 23.4

G719% 2 2.6

Wild-type 35 45.4

Unknown 4 5.2

Abbbreviation: NE, not evaluated.

*Never-smokers: those who had never had a smoking habit;
former smokers: those who had stopped smoking at least 1 yr
before diagnosis; and current smokers: active smokers at
diagnosis of NSCLC or those who had stopped smoking less than
1 yr before diagnosis.

tECOG performance status was monitored according to the
previous report (44).

tDeletional mutations in exon 19.

§G719S and G719C.
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Table 2. Training and test sets to develop the classifier for the response to gefitinib

Training set Test set
Responders, Nonresponders, P Responders, Nonresponders, P
= 31 (%) n =16 (%) n =6 (%) n = 8 (%)
Age
Mean + SD 64.0 £ 8.9 60.5 + 12.0 0.330 57.5 £ 12.8 62.8 + 6.1 0.386
Gender
Male 17 (55) 9 (56) 0.927 3 (50) 5 (62.5) 0.640
Female 14 (45) 7 (44) 3 (50) 3(37.5)
Smoking history
Never smokers 17 (55) 9 (56) 0.286 4 (67) 4 (50) 0.054
Former smokers 7 (22.5) 1(6) 2 (33) 0(0)
Current smokers 7 (22.5) 6 (38) 0 (0) 4 (50)
EGFR gene status
Mutation 27 (87) 1(6) <0.001 4 (66) 0 (0) 0.006
Wild type 3(10) 13 (81) 1(17) 8 (100)
Unknown 1(3) 2(13) 1(17) 0 (0)
Prior chemotherapy
(+) 12 (39) 5 (31) 0.614 6 (100) 0(22) <0.001
(-) 19 (61) 11 (69) 0 (0) 8 (100)
Performance status
0 11 (35.5) 6 (37.5) 0.945 2 (33) 1(12.5) 0.347
1 11 (35.5) 10 (62.5) 4 (67) 7 (87.5)
2 6 (19) 0 (0) 0 (0) 0(0)
3 3 (10) 0 (0) 0(0) 0 (0)

our previous report (30). We prepared an internal control consisting of
a mixture of small portions of all protein samples obtained before May
2004 (31). The internal control sample and the individual experimental
samples were labeled with Cy3 and Cy5 CyDye DIGE Fluor saturation
dyes, respectively. Five micrograms of Cy3- or Cy5-labeled protein were
mixed and coseparated by two-dimensional PAGE. The first-dimension
separation was achieved on an Immobiline pH gradient gel (isoelectric
point range, 4-7; 24 c¢m length) with a Multiphor II (GE Healthcare
Amersham Biosciences). The second-dimension separation was done
with an EttanDalt II (GE Healthcare Amersham Biosciences) with a 9%
to 15% gradient polyacrylamide gel. After electrophoresis, the gels were
scanned at appropriate wavelengths for Cy3 and Cy5 (Supplementary
Fig. S2A). The ratio between Cy5 and Cy3 intensity was calculated for
all protein spots in identical gels by the use of DeCyder software (GE
Healthcare Amersham Biosciences; ref. 31). The standardized spot
intensities were then logarithmically transformed and subjected to a
data-mining package (Impressionist; GeneData, Basel, Switzerland).
We ran triplicate gels for each sample and calculated the averaged
standardized spot intensity.

To assess the reproducibility of the proteomic data with the internal
control in our analyses, we generated triplicate protein profiles from
identical samples (case 9; Supplementary Table $1) and compared the
standardized intensity of the paired spots (Supplementary Fig. S2B).
Scattergrams with 1,980, 1,646, and 1,873 spots showed that the
intensities of 1,916 (93.7%), 1599 (94.7%), and 1,770 (94.5%)
spots, respectively, were scattered within a 2-fold difference, and the
correlation values were also high (r values > 0.93; Supplementary
Fig. S2B).

Data analysis. A bioinformatic approach based on a support vector
machine (SVM) algorithm and a leave-one-out cross-validation was
used to identify proteins of which expression was associated with tumor
characteristics, including therapeutic response to gefitinib and the
presence of EGFR mutation (32).

Protein identification. Proteins corresponding to the protein spots
of interest were identified by mass spectrometry (30). The proteins
were recovered in a gel plug by using an automated spot collector
(SpotPicker; GE Healthcare Amersham Biosciences) and digested with
sequence grade trypsin (Promega, Madison, WI; ref. 30). Trypsin digests
were applied to liquid chromatography coupled with tandem mass
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spectrometry (LTQ, Thermo, Waltham, MA). A database search against
Swiss-Prot was done with Mascot software. Patients with a Mascot score
of 35 or more were used for protein identification. When multiple
proteins were identified in a single spot, the proteins with the highest
number of peptides were considered as those corresponding to the spot.

Mutations in the EGFR geme. EGFR mutations in the samples
obtained between July 2002 and May 2004 were examined as
described in our previous report (8). Analysis of samples obtained
between June 2004 and December 2004 was done by high-resolution
melting analysis with a LightCycler HR-1 system (Idaho Technology
Inc., Salt Lake City, UT).

ELISA. The expression level of heart-type fatty acid-binding
protein (H-FABP) in protein samples from 55 lung adenocarcinoma
patients (2 CRs, 28 PRs, 6 SDs, 1 MR, and 18 PDs) was measured in a
clinical laboratory (SRL, Tokyo, Japan) with a commercially available
ELISA kit (MARKIT-M H-FABP, Dainippon Pharmaceutical, Tokyo,
Japan) according to the manufacturer’s instructions (Supplementary
Table S1). All these 55 samples were included in a 2D-DIGE analysis
set in this study.

Results

Proteomic signature for the response to gefitinib. We first
selected 1,685 protein spots that appeared in at least 80% of the
images of Cy3-labeled internal control. We further selected 87
protein spots that showed different intensities between
responder and nonresponder groups (P < 0.05, Wilcoxon test).
Although potentially resulting in a loss of information, this
trimiming process decreased the possibility that the classifier
would be significantly influenced by irrelevant expression data.
We selected protein sets for which expression was associated
with response to gefitinib by using a SVM algorithm. Accuracy,
plotted as a function of spot number, was constant until the
number of spots decreased to less than nine, showing that
accurate classification did not require all protein spots
(Fig. 1A). The location on the two-dimensional map is shown
for the selected nine spots (Fig. 1B; Supplementary Fig. S3).

Clin Cancer Res 2007;13(3) February 1, 2007
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Mass spectrometry revealed that these nine spots corresponded
to nine gene products (Table 3). Overall similarity of the selected
spots is shown in Supplementary Fig. S1B and C. As the res-
ponder group in the training set consisted mainly of PRs, the
obtained proteomic signature would presumably be more
reflective of PR than CR.

The classification performance of the selected nine protein
spots was validated by unsupervised classification. Hierarchical
clustering showed that all tumor samples in the training set,
except for cases 5, 20, and 37, were grouped according to their
sensitivity to gefitinib based on the expression pattern of the
nine proteins {Fig. 1C). In principal component analysis, all 47
samples seemed to be separated into two groups, although the
border between these groups was not clear (Fig. 1D). Although
hierarchical clustering and principal component analysis are
crude methods of validation of classification, the results
obtained using them were consistent.

To validate the predictive performance of the nine protein
spots, we investigated a newly enrolled test sample set that was
completely independent of the learning set. Based on the
expression level of the nine protein spots, the distance of each
sample from the hyperplane created by the SVM algorithm,
defined as the SVM value, was calculated. The samples with a
positive SVM value were grouped as responders and the
samples with a negative SVM value were grouped as non-
responders. As a consequence, all training set samples were
correctly classified in accordance with their dinical response to
gefitinib (Fig. 2). All responders (six PRs) and seven of eight
nonresponders (eight PDs) in the test set were also correctly
classified. The expression pattern of the nine protein spots
in the nonresponder patient {case 75) was more similar to that
of the responder group, for unknown reasons. We also
validated the results using the samples from patients who
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showed MR and SD. We found that the two patients showing
MR were categorized as responders and that among the eight
patients showing three SDs were classified into the responder
group and five SDs into the nonresponder group. We did a leave-
one-out cross validation for all 47 samples in the training set and
the test set using nine protein spots with 1,000 times random
permutation. All but two cases, cases 37 and 75, were correctly
classified according to their status of response to the treatment.
The overall misclassification error rate was 3.3%. Consequently,
the model predicted the response to gefitinib in 13 of the 14
(92.8%) newly enrolled samples from the responders and
nonresponders and may be useful for disease monitoring.

Proteomic signature for EGFR gene mutation. We studied the
spots on the prediction for EGFR mutation. We set a training
sample set, including 58 samples (34 mutation-positive
samples and 24 mutation-negative samples; Supplementary
Table S2). We found that the 12 protein spots showed the high
correlation with the EGFR mutation (Supplementary Data;
Supplementary Figs. S4-6). The classification and prediction
performance of the selected 12 protein spots was successfully
validated using the external validation sample set, including
four mutation-positive samples and 11 mutation-negative sam-
ples (Supplementary Fig. $7). Only one protein, sulfate modifying
factor 2, was shared between the signatures for the response and
for the mutation (Table 3; Supplementary Table 53).

Expression of H-FABP measured by ELISA. We validated the
differential expression of the identified proteins by the use of a
widely available clinical assay. The expression level of H-FABP
in the same tumor samples as those used in 2D-DIGE was
measured with a commercially available ELISA kit intended for
serum assays {Fig. 3). H-FABP expression measured by ELISA
was highly correlated with that measured by 2D-DIGE (Pearson
correlation, 0.76295; P < 0.0001). The ELISA study also showed
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that the expression level of H-FABP was significantly different
between the responder (PR and CR) and nonresponder (PD)
groups {P = 0.0031, Mann-Whitney U test) and also between
the patients with MR or SD and the nonresponder group (P =
0.0047, Mann-Whitney U test). These results indicate that up-
regulation of H-FABP in tumor tissues can be monitored by
routine clinical methods.

Discussion

We identified 87 protein spots of which the intensity was
statistically significantly different between samples from the

responder (CR and PR) and nonresponder (PD) groups in the
training set. Application of a data-mining procedure allowed
identification of a set of nine protein spots that accurately
distinguished between responders and nonresponders. The
different expression levels of these nine protein spots allowed
classification of 13 of 14 of our test PR and PD cases in
accordance with their clinical response to gefitinib. These
protein spots classified cases showing a MR to gefitinib (MR)
into the responder group. The intermediate cases, SD, were
categorized into both responder and nonresponder groups. The
usefulness of our findings will be validated in a larger clinical
data set.

Table 3. List of proteins for the response to gefitinib
Spots Rank Accession Identtified MW  pI* Ion charge MZ Mass! 87 Miss** Mascot Peptide
no.* no.’ protein’ (DA)* state (+) (obs)? ions sequence
score’’
384 5 Q96RP9  Ig mu chain C region 49,557 6.35 2 810.3 1,617.7 0.91 0 74 QVGSGVTTDQVQAEAK
i 2 640.1 1,277.5 0.63 0 47  YAATSQVLLPSK
671 1 P01876 1g -1 chain C region 37,655 6.08 2 91%.2 1,836.0 0.32 o] 68 QEPSQGTTTFAVTSILR
2 771.8 1,540.7 0.91 o 54 DASGVTFTWTPSSGK
1090 7 QI9UNH7 SNX 6 46,649 5.81 2 636.5 1,270.5 0.55 0 73 NLVELAELELK
2 577.0 1,152.2 -0.33 0 39 SLVDYENANK
1182 8 P50453  Cytoplasmic 42,404 5.61 2 816.4 1,629.8 0.95 0 82  IEELLPGSSIDAETR
antiproteinase 3
2 626.6 1,249.4 1.66 0 75  AFQSLLTEVNK
2 591.0 1,179.5 0.47 0 63  LVLVNAIYFK
2 757.5 1,513.6 —0.56 0 47 LQEDYDMESVLR
+Oxidation (M)
1292 6 P40121  Macrophage capping 38,518 5.88 2 633.8 1,264.4 1.18 0 85 VSDATGQMNLTK
protein
2 676.8 1,351.4 0.05 0 79  YQEGGVESAFHK
2 932.1 1,861.1 1.11 0 50 MQYAPNTQVEILPQGR
+Oxidation (M)
2 659.8 1,317.3 0.23 0 41  EGNPEEDLTADK
1711 3 Q8NBJ7  Sulfatase modifying 33,857 7.78 2 792.5 1,581.7 1.32 0 112  MGNTPDSASDNLGFR
factor 2
2 779.9 1,557.6 0.15 0 95 GASWIDTADGSANHR
2 740.0 1,477.6 0.36 o] 83 LPTEEEWEFAAR
2 613.2 1,224.4 -0.02 0 66 FLMGTNSPDSR
2 629.9 1,256.5 1.27 0 55 SVLWWLPVEK
2 818.0 1,633.8 0.12 1 55 RLPTEEEWEFAAR
2 837.7 1,672.9 0.48 0 47  LEHPVLHVSWNDAR
2091 9 P09211  Glutathione 23,225 5.44 2 647.5 1,292.5 0.44 0 36 MLLADQGQSWK
S-transferase P +Oxidation (M)
2182 4 P02794  Ferritin heavy chain 21,094 5.30 2 823.4 1,643.8 1.04 0 91  MGAPESGLAEYLFDK
+Oxidation (M)
2 648.3 1,284.5 0.03 0 53  NVNQSLLELHK
2478 2 P05413 Fatty acid - binding 14,727 6.34 2 735.2 1,467.5 0.81 0 103 LGVEFDETTADDR
protein, heart
2 798.7 1,595.7 -0.32 1 73 LGVEFDETTADDRK
2 603.3 1,204.3 0.26 0 70  WDGQETTLVR
2 455.0 907.0 1.04 0 67 SLGVGFATR
2 774.7 1,546.8 0.56 0 61  QVASMTKPTTIIEK
2 438.0 873.0 0.88 0 54  NGDILTLK
1 889.6 889.0 —0.41 0 45  SIVTLDGGK
Abbreviation: pl, isoelectric point.
*Spot numbers refer to those in Fig. 1B (Supplementary Fig. S3).
t Accession nos. of proteins were derived from Swiss-Prot and National Center for Biotechnology Information nonredundant databases.
+Theoretical molecular weight and isoelectric point were obtained from Swiss-Prot and the ExPASy database (http://au.expasy.org).
SExperimental m/z value.
IRelative molecular mass calculated from the peptide sequence.
iDifference (error) between the experimental and calculated masses.
**Number of missed cleavage sites.
1 Mascot ions score (http://www.matrixscience.com/search_form_select.htmi).
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Fig. 2. Predictive performance of the nine spots was validated by examining the
SVM value of each sample in the group.

We identified the proteins whose expression was correlated
with response to gefitinib and found associations with the EGFR
signal pathway and with the biology of lung cancer. Sorting
nexin (SNX) 6 is a member of a SNX family that functions in the
intracellular trafficking of plasma membrane receptors (33).
SNXs form complexes with other SNXs and with plasma
membrane receptors. In complexes with SNX1, SNX2, and
SNX4, SNX6 interacts with the intercellular portion of the EGFR
as well as with transforming growth factor-p receptor, insulin
receptor, leptin receptor, and platelet-derived growth factor
receptor {34). By binding to the kinase domain of the
transforming growth factor-g receptor, SNX6 perturbs trans-
forming growth factor-p signal transduction (34). The other
SNX family, SNX1, decreases the expression of EGFR by
activating the endosome-to-lysosome pathway with enterophi-
lin-1 (35), although the functions of the complex of SNX6 and
EGFR have not yet been reported. The functional association
of SNX6 with oncogene product Pim-1, which has been impli-
cated in the development of hematopoietic (36), gastric (37),
and prostatic (38) malignancies, suggests the involvement of
SNX6 in cancer biology. Kakiuchi et al. (21) reported that
another SNX family member, SNX13, was correlated with the
response to gefitinib in patients with NSCLC. These reports
suggest that SNX6 might play an important role in signal
transduction pathways that affect the phenotypes of lung cancer.

We tried to identify the proteins whose expression was
associated with EGFR mutation. Because gefitinib is a specific
inhibitor of EGFR and mutation of EGFR is considered to be a
predictive marker for gefitinib sensitivity, we had expected
some similarity between the set of proteins predicting
sensitivity to gefitinib and the set of proteins reflecting EGFR
mutation status. However, only sulfate modifying factor 2 was
common to the two sets. Search of the PubMed database
revealed no association of sulfate modifying factor 2 with the
EGFR pathway and no evidence for its involvement in
resistance to chemotherapy. Similarly, the other proteins corre-
lated with EGFR mutation status had no obvious involvement
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in the EGFR pathway. Functional studies on these proteins will
contribute to further understanding of EGF signaling in cells
and to discovery of novel therapeutic targets in lung cancer.

2D-DIGE is a high-performance proteomic technology and
a powerful tool to develop candidate biomarkers. However,
2D-DIGE requires expensive fluorescent dyes and well-trained
operators to run the gels. Thus, routine dinical studies with
multiple large-format two-dimensional gels and a 2D-DIGE
protocol are unlikely to be practical. Application of our results
requires a simple and cost-effective method that can be used
routinely in the dlinic. In addition, as we need to examine the
expression of multiple proteins, a practical tool for simulta-
neously measuring the amount of the other proteins is
required. With that in mind, we validated measurement of
the differential expression of H-FABP by the use of a commer-
cially available ELISA kit (MARLIT-M H-FABP) that is routinely
used in hospitals for the early diagnosis of acute myocardial
infarction using serum samples. The expression level of H-FABP
in tumor tissues as monitored by the ELISA assay was highly
correlated with that by 2D-DIGE, and a significant difference
in H-FABP expression was observed between responders {CR +
PR), minor responders (MR + SD), and nonresponders (PD).
Thus, our results can provide a simple and direct method to
predict the response to gefitinib.

H-FABP functions in intracellular lipid transport, storage,
and metabolism. As H-FABP is highly expressed in heart and
released into plasma after myocardial injury, it has been used
as a plasma marker for early diagnosis of acute myocardial
infarction and stroke. However, many lines of evidence also
suggest an association of H-FABP with cancer biology. Higher
expression of H-FABP was observed in a more tumorigenic
small-cell lung cancer cell line (39) compared with its
counterpart. Increased expression of H-FABP is associated with
tumor aggressiveness, metastasis, and poor prognosis of gastric
cancer (40). In contrast, H-FABP is known to have growth-
inhibitory activity in breast cancer cells (41), and breast cancer
does not express H-FABP because of gene silencing by hyper-
methylation (42). These observations suggest complexity in
the way that H-FABP is involved in the progression of cancer.
Recently, Loeffler-Ragg et al. (43) reported that another FABP
family member, E-FABP, is up-regulated in gefitinib-resistant
colon cancer cell lines compared with gefitinib-sensitive cell

30+ P=0.0031

254 P=0.0047

H-FABP (ng/ml)

PR+CR MR+SD PD

Fig. 3. ELISA assay for H-FABP. The differential expression level of H-FABP was
validated by ELISA assay.
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lines. Further study on the contribution of the FABP family to
cancer phenotypes, including resistance to chemotherapy, will
provide novel insights into cancer biology.

In conclusion, our proteomic study has identified proteins
whose expression can predict the response to gefitinib in
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We examined the proteomic background of esophageal cancer. We used laser microdissection to
obtain tumor tissues from 72 esophageal squamous cell carcinoma cases and adjacent normal
tissues in 57 of these cases. The 2D-DIGE generated quantitative expression profiles with 1730
protein spots. Based on the intensity of the protein spots, unsupervised classification dis-
tinguished the tumor tissues from their normal counterparts, and subdivided the tumor tissues
according to their histological differentiation. We identified 498 protein spots with altered
intensity in the tumor tissues, which protein identification by LC-MS/MS showed to correspond
to 217 gene products. We also found 41 protein spots that were associated with nodal metastasis,
and identified 33 proteins corresponding to the spots, including cancer-associated proteins such
as alpha-actinin 4, hnRNP K, periplakin, squamous cell carcinoma antigen 1 and NudC. The
identified cancer-associated proteins have been previously reported to be individually involved in
a range of cancer types, and our study observed them collectively in a single type of malignancy,
esophageal cancer. As the identified proteins are involved in important biological processes such
as cytoskeletal/structural organization, transportation, chaperon, oxidoreduction, transcription
and signal transduction, they may function in a coordinate manner in carcinogenesis and tumor
progression of esophageal cancer.
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1 Introduction

Esophageal cancer is the eighth most common cancer {1] and
the sixth leading cause of cancer death worldwide [2]. Despite
the use of modem surgical techniques in combination with
radio- and chemotherapy, early recurrence is common and
the overall 5-year survival rate remains below approximately
40% [3-5]. Poor prognosis of esophageal cancer is atributed
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to extensive local invasion and frequent regional lymph node
metastasis even at initial diagnosis, however, the mechanisms
of esophageal cancer progression remain largely obscure.
Previous investigations reported that aberrant regulation of
PGP9.5 [6], epidermal growth factor receptor [7], p21 [8] and
stromelysin [9] is associated with short postoperative survival.
However, as multiple genetic and epigenetic events have been
observed in cancer progression, the development of complex
malignant phenotypes is unlikely to be solely attributable to
any single gene. Thus, comprehensive and integrative studies
that will link the individual molecular aberrations observed is
required to broaden our understanding of esophageal carci-
nogenesis and subsequently lead to the development of better
treatment options for esophageal cancer patients.

Global mRNA expression studies conducted using array-
based methodologies identified the gene clusters responsible
for the carcinogenesis and progression of esophageal cancer
[10-12]. However, practical biomarkers for novel therapeutic
strategies and genes to act as molecular targets have not been
identified yet, indicating some of the limitations of this
approach. The proteins contained in the cells are the func-
tional translations of the genome and directly control the
malignant phenotypes of tumor cells. However, studying DNA
sequences and measuring the amount of RNA do not predict
post-translational aberrations resulting from phosphoryla-
tion, glycosylation or proteolysis that occur in cancer progres-
sion. In addition, global comparison between transcriptome
and proteome revealed that the expression level of mRNAs is
not always parallel with that of corresponding proteins [13-15].
Previous studies using proteomic approaches detected pro-
teins that were aberrantly regulated in esophageal cancer tis-
sues [16-18). In this study, we were able to detect candidate
biomarkers for early diagnosis and monitoring cancer pro-
gression by improving the existing proteomics strategies.

In this report, we used laser microdissection to recover
tumor cells and the matched neighboring normal epithelial
cells from the surgical specimens of 72 esophageal cancer
cases, and subjected the recovered cells to proteomic analysis
using 2D-DIGE. The 2D-DIGE has previously been applied
to laser-microdissected esophageal tumor tissues [19, 20].
However, the fluorescent dyes used to label the proteins had
low sensitivity, equivalent to that of silver staining, and the
number of samples examined in these studies was not suffi-
cient to allow meaningful bioinformatics analyses. Here, we
used highly sensitive fluorescent dyes for 2D-DIGE, inte-
grated proteomic and clinico-pathological information using
bioinformatics methods on a large clinical sample set, and
found protein clusters associated with carcinogenesis, histo-
logical differentiation and lymph node metastasis of eso-
phageal cancer. We identified the proteins included in the
clusters by MS, and validated the proteomic results using
specific antibodies. The functional classification and chro-
mosomal localization of the identified proteins were also
examined. This is the first detailed, comprehensive and
quantitative proteomic study on esophageal cancer using a
large clinical sample set.

©® 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2 Materials and methods
2.1 Patients

Tumor cells and their adjacent normal mucosal cells were
collected from 72 of 185 cases of esophageal squamous cell
carcinoma, which were surgically resected in 1998 and 1999
at the National Cancer Center Hospital. Two or three tissue
fragments, less than 10 mm?® in volume, were grossly
obtained from the 72 cases. Matched normal mucosal tissues
were also obtained from 57 of these cases. The resected tis-
sues were snap-frozen in liquid nitrogen and stored at -80°C
until use. All 72 enrolled cases were newly diagnosed as
squamous cell carcinoma of the esophagus. The patients did
not receive anticancer treatment prior to surgery and the
cases were followed up for at least five years after surgery.
The summary of the clinicopathological data of the cases
analyzed'is shown in Table 1, while individual case informa-

Table 1. Clinicopathological data of 72 esophageal cancer cases

analyzed
Gender
Male 62
Female 10
Age (mean = SD) 61.9x7.2
Location
Cervical 4
Upper thoracic 8
Middle thoracic 40
Lower thoracic 18
Abdominal 2
Histological differentiation
Well differentiated 16
Moderately differentiated 29
Poorly differentiated 27
Prognosis (5-year survival)
No evidence of disease 30
Dead of disease 39
Dead of another disease 3

Table 2. TNM classification of 72 esophageal tumors analyzed®

Lymph node metastasis

Positive Negative Total
Depth of invasion
pT1 2 0 2
pT2 6 1 7
pT3 41 12 53
pT4 6 4 10
55 17 72

StageHA:13 StagellB:8 Stagelll:51

a} Tumors were staged according to the WHO Tumor-Node-
Metastasis classification scheme [21].

www.proteomics-journal.com
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tion is available in Supplementary Table 1. The tumors were
staged based on WHO guidelines [21] and the results are
summarized in Table 2. This study was approved by the eth-
ics committee of the National Cancer Center and written
informed consent was obtained from the patients.

Based on the WHO classification scheme for esophageal
tumors {22}, tumors in this study were well differentiated in
16 (22%) cases, moderately differentiated in 29 (40%), and
poorly differentiated in 27 (38%) (Table 1) [22]. Based on the
same scheme, the depth of invasion was variable, although
most cases were pT3 stage (n = 53, 74%). Lymph node invol-
vement was observed in 55 cases (76%) (Table 2). Tumors
with distant metastases were not included in this study. As
histological differentiation is a significant variable in pre-
dicting overall survival [23] and proteins affecting differ-
entiation may be prognostic biomarker candidates, particular
emphasis was placed on data analysis in relation to the
degree of tumor differentiation.

2.2 Laser microdissection and protein extraction

We specifically recovered tumor cell populations to the
exclusion of non-cancerous cells using laser microdissection
for the subsequent proteomic study as in our previous report
[24]. In brief, the frozen tissues were embedded in OCT

Proteomics 2006, 6, 6300-6316

compound (Sakura Finetechnical, Tokyo, Japan), 8-pm thick
sections were prepared using a cryostat (Leica CM 30508,
Leica Microsystems, Wetzlar, Germany) and stained with
hematoxylin and eosin to confirm the pathological diag-
nosis. Eight-micron thick neighboring sections were
mounted on a thin supporting polyethylene membrane pre-
treated with a tissue-adhesive solution (0.1% poly-L-lysine,
Sigma Aldrich, St. Louis, MO). The sectioned tissues were
routinely stained with Mayer Hematoxylin; all staining pro-
cedures were performed on ice. Mayer Hematoxylin-stained
sections were subjected to laser microdissection (Leica Laser
Microdissection version 3.1.0.0, Leica Microsysiems). Tumor
cells were recovered from non-necrotic tissues using a
pulsed ultraviolet laser beam, avoiding sample contamina-
tion with infiltrating inflammatory cells, stromal cells and
vascular components (Fig. 1). Corresponding morphologi-
cally normal esophageal epithelium samples, located at least
5 cm away from the cancerous tissues, were also obtained
from 57 of the 72 patients. Hematoxylin and eosin-stained
sections were examined to confirm the diagnosis and fol-
lowing sections were stained only with hematoxylin for the
proteomic study, as eosin staining has been found to hinder
2D-DIGE [24]. Protein corresponding to 1 mm? of micro-
dissected area, recorded during microdissection, was recov-
ered from hematoxylin-stained tissues for each 2D-DIGE gel.

Hematoxylin / Laser microdissection

Hematoxy
e

n & Eosin

Well
differentiated &
cancer

differentiated 2
cancer

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 1. Representative histol-
ogy of normal esophageal epi-
thelium and esophageal tumor
with well, moderate, and poor
differentiation. Tissue sections
were stained with hematoxylin
and eosin for histological obser-
vation and hematoxylin alone
for the proteomic study. The
microscopic appearance of the
tissues before and after laser
microdissection is  demon-
strated.
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2.3 Preparation of fluorescence-labeled protein
samples

The microdissected tissues were immediately treated with
urea lysis buffer, consisting of 6 M urea, 2 M thiourea, 3%
CHAPS and 1% Triton X-100. The total area of micro-
dissected tissue was 1 mm? per 2D-DIGE gel [24]. Protein
labeling was carried out as in our previous report [25]. In
brief, microdissected tissues with an area of 3 mm® were
incubated with 50 uL of the urea lysis buffer with 40 mM
Tris-HCl (pH 8.0). The protein samples were then reduced
with 8 nmol tris-(2-carboxyethyl) phosphine hydrochloride
(TCEP; Sigma Aldrich) at 37°C for 60 min and were fluores-
cence labeled by incubation with 12 nmol of Cy5 (CyDye
DIGE Fluor saturation dye, GE Healthcare Biosciences,
Uppsala, Sweden) at 37°C for 30 min. The labeling reaction
was terminated by addition of urea lysis buffer containing
DTT and Pharmalyte (pH 47, GE Healthcare Biosciences)
so that their final concentrations were 65 mM and 2.0%,
respectively.

We created an internal control sample by mixing a small
portion of an individual protein samples. The protein con-
centration was measured with a Protein Assay Kit (Bio-Rad
Laboratories, Hercules, CA). Five micrograms of the internal
control sample was incubated with 2 nmol TCEP at 37°C for
60 min and labeled with 3 nmol of Cy3 dye (CyDye DIGE
Fluor saturation dye, GE Healthcare Biosciences) at 37°C for
30 min. After terminating the labeling reaction, individual
Cy5-labeled samples corresponding to 1 mm? of laser
microdissected area were mixed with 5 pg of Cy3-labeled
internal control sample and urea lysis buffer containing
35 mM DTT and 1.0% Pharmalyte (GE Healthcare Bio-
sciences) was added to a final volume of 420 pL per sample.

2.4 2D-PAGE and image acquisition

Protein expression profiles were created as in our previous
report, with some modifications {25]. In brief, for first di-
mension separation, IPG gels (p] range 4 to 7, 24 cm length)
were rehydrated with a mixture of the Cy3-labeled internal
control sample with the Cy5-labeled individual samples at
room temperature overnight. IEF was performed using
Multiphor II (GE Healthcare Amersham Biosciences) at
20°C. Following equilibration in a buffer containing 6 M
urea, 2% SDS, 50 mM Tris-HCl pH 8.8, 30% glycerol and
32 mM DTT, IPG gels were transferred, in baiches of 12,
onto 12.5% homogenous polyacrylamide gels and embedded
in agarose between low-fluorescent glass plates. Proteins
were then subjected to a second dimension separation at
17 W for 15 h at 20°C on a 40-cm long SDS-PAGE gel using
a vertical electrophoresis apparatus equipped with a cooling
system (Bio-Craft, Tokyo, Japan). For preparative purposes,
200 pg of proteins were first labeled with a single fluorescent
dye (CyDye DIGE Fluor saturation dye) and subjected to 2D-
PAGE. Gels were scanned at the appropriate wavelengths for
Cy3 and Cy5 with Typhoon Trio (GE Healthcare Biosciences)

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhelm
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to obtain the images of labeled proteins. Spot detection,
quantification, and standardization of spot intensities were
carried out using the DeCyder 5.0 software (GE Healthcare
Biosciences).

Figure 2A demonstrates the protocol of the 2D-DIGE
experiments. Both Cy3- and Cy5-images were generated
from single gels by laser scan. All Cy3-images contained all
spots that were detected on the Cy5-images because they
represented the common internal control sample, which was
a mixture of all individual samples. Thus, the gel-to-gel var-
iations were canceled, because the Cy5 to Cy3-intensity ratio
was standardized for every spot and every gel.

To assess the reproducibility of our 2D-DIGE system, we
examined the similarity of the protein expression profiles of
identical tissue samples (Fig. 2B). Microdissection was per-
formed twice from the same tumor tissue of case No. 50
(Supplementary Table 1) and protein samples were inde-
pendently prepared. Protein expression profiles were created
from duplicate gels for each protein sample using 2D-DIGE.

A Individual Internal control
sample sample

i i
Cy 5 label Cy 3 label

\Mix/
I

2D-PAGE

Standardized intensity (exp.2)

" 2 fld difference : 211672 spots
5 fold difference : 3672 spots

B T "
Standardized intensity (exp.1)

Figure 2. (A) The 2D-DIGE protocol is illustrated. Each individual
sample and a pooled reference sample were labeled with Cy5
and Cy3, respectively, mixed, and separated on a 2D-PAGE gel.
Gels were scanned with laser, and a set each of Cy3- and Cy5-
images was obtained from each gel. {B) The reproducibility of 2D-
DIGE for the quantitative study was evaluated by comparing two
independent separations of the same protein sample. Spots were
plotted based on their expression level. More than 98% spots
were scattered within twofold differences and the correlation
value was high (r = 0.9406).

www.proteomics-journal.com
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A pair wise comparison revealed that more than 98% spots
were scattered within twofold differences and the correlation
value was high (r = 0.9406). Visual inspection of the gel im-
ages revealed that the protein spots that showed higher than
twofold differences between the profiles were shadowed by
the streaking of the other spots or located near the end of the
gel (data not shown). Such spots were filtered out during the
bioinformatics analyses.

2.5 Data analysis

As previously [25], we used bioinformatics to link quantita-
tive proteomic data with clinicopathological parameters in
order to identify the fraction of the proteome most relevant to
esophageal cancer progression. In brief, standardized spot
intensities were exported to Expressionist (GeneData, Basel,
Switzerland), a data mining program. The standardized spot
intensities were averaged between the duplicate gels and an-
alyzed using scatter plotting, self-organizing map (SOM) 26,
27), hierarchical clustering and principal component analy-
sis. Survival curves were calculated by the Kaplan-Meier
method [28] and differences in survival probabilities were
examined with the log-rank test.

2.6 Protein identification by MS

In-gel digestion and MS protein identification were descri-
bed as in our previous report [29]. In brief, the target pro-
tein spots were recovered from the gels using an auto-
mated spot recovering machine, ProHunter (AsOne,
Osaka, Japan) into a 96-well PCR plate. Gel plugs were
washed with methanol, ammonium bicarbonate, and ACN
three times, dried and treated with TPCK-treated trypsine
overnight. The peptides were exiracted from the gel by
treating the gel with ACN.

The tryptic peptides resulting from the in-gel digestion
were subjected to analysis by nano-scale microcapillary RP
LC-ESI MS/MS. Paradigm MS4 HPLC dual solvent delivery
system (Michrom BioResource., Auburn, CA) for micro-flow
HPLC, an HTS PAL auto sampler (CTC Analytics, Zwingen,
Switzerland) and a Finnigan LTQ linear IT mass spectrome-
ter (Thermo Electron, San Jose, CA) equipped with a nano-
ESI (NSI) source (AMR, Tokyo, Japan) were used for protein
identification as described [30]. Digested peptide mixtures
were separated on a microcapillary RP Magic C18 column
(3 pm, 200 A, 50x 0.2 mm i.d; Michrom). Peptides were
eluted through 10 to 80% linear gradient buffer B (10% water
and 0.1% formic acid in ACN v/v) in buffer A (2% ACN and
0.1% formic acid in water v/v) over 10 min. The effluent
solvent from the HPLC was placed into the mass specirom-
eter through an NSI needle at a flow rate of 1.0-1.2 pL/min
(FortisTip; OmniSeparo-TJ, Hyogo, Japan). The voltage was
1.8 kV and the capillary was heated to 200°C. No sheath or
auxiliary gas was used. The mass spectrometer was operated
in a data-dependent acquisition mode in which MS acquisi-
tion with a mass range of m/z 450-1800 would automatically
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switch to MS/MS acquisition under the automated control of
the Xcalibur software (version 2.0, Thermo Electron). The
full MS scan was acquired by the following MS/MS experi-
ments with an isolation width of m/z 2.0; the activation
amplitude parameter was set at 35%, on the three most
abundant ions detected in the survey scan. Data were
acquired with dynamic mass-exclusion windows that had a
30-s exclusion duration and exclusion mass widths of -1.0
and +2.0 Da.

Raw data were converted to dta format (peak list file)
using ExtractMS version 2.11 (ThermoElectron), the soft-
ware supplied with the instrument, with peptide mass range
setat 450 to 600 Da and MS/MS minimum peak list set at 25,
prior to launching MASCOT searches. MASCOT (version
2.1, Matrix Science, London, UK) searches were performed
against Homo sapiens subsets of the sequences in the Swiss-
Prot (12867 sequences in the Sprot. 47.8 fasta file) and NCBI
(131447 sequences in the NCBInr. 20050422 fasta file) non-
redundant protein sequence databases. The following search
parameters were used in all MASCOT searches: tolerance of
two missed trypsin cleavages, variable modification on the
methionine residue (oxidation, +16 Da), and a maximum
error tolerance of £2.0 Da in the MS data and 1.0 Da in the
MS/MS data. Protein hits with more than two significant
matched peptides with the distinct sequences (p <0.05,
which with our search parameters equals a MASCOT ions
score of 35 or more for the Swiss-Prot database and 42 or
more for the NCBI database) were statistically considered to
estimate the confidence of protein identifications. In addi-
tion, the MS/MS spectra of the identified peptides were
manually inspected.

2.7 Western blotting

Proteins were separated by SDS-PAGE on a 10-20% poly-
acrylamide gradient gel and transferred onto an NC mem-
brane. The differential expression of the identified proteins
was monitored using antibodies against cytokeratin 14
(1:500, Neo Markers, Frernont, CA), periplakin (1:200, Santa
Cruz Biotechnology, Santa Cruz, CA), annexin I (1:5000, BD
Bioscience, San Jose, CA), squamous cell carcinoma antigen
1/2 (SCCA1/2) (1:200, Santa Cruz Biotechnology), calgula-
nulin B (1:200, Santa Cruz Biotechnology), HSP60 (1:5000,
BD Biosciences), and beta-actin (1:1000, Abcam, Cambridge,
CB, UK) as controls. The secondary antibodies against
mouse IgG, rabbit IgG (both GE Healthcare Biosciences)
and goat IgG (Santa Cruz) were used for the antibodies
against cytokeratin 14, annexin I, HSP60 and beta-actin;
against SCCA1/2 and calgulanulin B; and against periplakin,
respectively. Antibody-antigen complexes were visualized
with an ECL system (GE Healthcare Biosciences) using LAS
1000 (Fuji Film, Tokyo, Japan). The intensity of the protein
bands was quantified and the relative intensity for the exam-
ined proteins was calculated by standardizing the intensity of
the beta-actin bands on the same membrane.
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2.8 Chromosomal location of the genes
corresponding to the identified proteins

The chromosome location of the identified proteins was
studied by searching the NCBI database using a database
search software, Annotation Tracker (GE Healthcare Bio-
sciences).

3 Results

3.1 Hierarchical clustering analysis of tumor samples
based on their protein expression profiles

Seventy-two tumor tissues and 57 normal tissues were clas-
sified by hierarchical clustering analysis according to their
protein expression profiles (Fig. 3). Protein spots that
appeared in at least 80% of the Cy3-images were used for the
analysis. The numbers of spots analyzed per sample ranged
between 1414 and 1730. Based on the overall similarity of
protein expression, the samples were divided into two groups:
tumor tissues (Tree I) and normal epithelial tissues (Tree 1)
{Fig. 3). The tumor samples in Tree I were further grouped
reflecting their histological differentiation; all but one well-
differentiated tumors were located in one branch together
with the moderately differentiated tumors, and all poorly dif
ferentiated tumors were distinguished from the well-differ-
entiated tumors. The presence or absence of lymph node
metastases did not appear to be associated with the proteomic
classification of tumors (Tree I) or normal epithelial tissues
(Tree II); both were grouped independently of their lymph
node metastasis status. The anatomic site was not associated
with the proteomic profile classification either. Enlarged trees
with the patient ID and the number of spots in the individual
samples are demonstrated in Supplementary Figs 1 and 2,
respectively. These observations suggested that the proteomic
profiles most dominantly reflected the malignant transfor-
mation, and secondly the histological differentiation.

The protein spots were also clustered according to their
expression level across the 129 samples (72 tumor tissues
and 57 normal counterparts). Of 1730 protein spots identi-
fied, the protein spots in categories A (544 spots, 31%) and C
(705 spots, 41%) showed decreased or increased intensity,
respectively, in many of the tumor tissues compared with
their normal tissues. There did not seem to be any obvious or
consistent differences between the protein expression levels
of the normal and the tumor tissues in category B (481 spots,
28%). Selection of spots with different signal intensity levels
was later achieved, however, taking into account statistical
significance.

3.2 Comparison of the protein expression profiles
We examined the similarity of the protein expression profiles

of the 129 laser-microdissected tissue samples. Pair wise
correlation coefficiencies across all samples were performed
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Figure 3. Unsupervised hierarchical clustering classified 129
laser microdissected tissue samples based on the fluorescence
intensity of 1730 identified protein spots. The histological differ-
entiation of the samples was demonstrated by the colored nodes
as indicted in the panel. Note that the two dominant trees (Tree |
and I} accurately partition the tumor tissues and normal tissues,
respectively. Tree | is subdivided into branches correlating with
histological differentiation. The tumor location or the presence or
absence of lymph node metastases did not appear to be asso-
ciated with the proteomic classification of tumors {Tree I) or nor-
mal epithelial tissues (Tree il). Proteins were categorized accord-
ing to their preferential expression in the normal and tumor tis-
sues. Protein spots in category A (544 spots) and C (705 spots)
showed increased or decreased intensity in tumor samples. Pro-
tein spots in category B (481 spots) did not show consistent dif-
ferences between normal and tumor tissues. Patient ID for the
samples are demonstrated in Supplementary Fig. 1.

and the results are summarized in the correlation maitrix
(Fig. 4A). The correlation matrix demonstrated that samples
in the same category, either normal epithelial tissues or
tumor tissues, had similar protein expression profiles. By
visual inspection, normal epithelial tissues showed more
homogeneous protein expression profiles compared with
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Figure 4. (A) Correlation matrix summarizing the overall similarity of the expression profiles of unselected protein spots for all sample pairs..
The red and green colors indicate that the protein expression in the paired samples had high and low similarity, respectively. Samples in the

same category, either normal epithelial tissues or tumor tissues, had similar protein expression profiles. (B) Principal component analysis

grouped the tissue samples based on unselected protein spots. The normal tissues and the status of histological differentiation of tumor

tissues are color-coded as indicated in the panel. Normal epithelial tissues were distinguished from tumor tissues, and well-differentiated

tumors from poorly differentiated ones. The distances between the normal epithelial tissue samples were smaller than the distances among

the tumor tissue samples, suggesting that the protein expression profiles of the normal tissues may be more homogeneous than the profiles

of the tumor tissues. The patient ID and the number of spots used in the study are shown in Supplementary Fig. 2.

tumor tissues. Indeed, the average correlation coefficiency
between the normal tissues was higher than that between the
tumor tissues (0.54 and 0.43, respectively). In contrast, the
average correlation coefficiency of pairs of normal and tumor
tissues was low (r = —0.088). The differences in the protein
expression profiles between the tumor tissues with different
histological differentiation, and those with and without
lymph node metastases were less obvious in this study.

The similarity of protein expression profiles was also
examined by non-hierarchical classification. Principal com-
ponent analysis defines the directions of maximum variance
between the samples and represents the samples in a multi-
dimensional space constructed by the resulting dimensions.
The 129 samples were represented in the 3-D space made by
the first three major directions generated (Fig. 4B). In the
principal component analysis, the normal epithelial tissues
were distinguished from the tumor tissues, and the tumor
tissues with well-differentiated histology were separated
from those with poorly differentiated histology. In addition,
the distances between the normal epithelial tissue samples
were smaller than those among the tumor samples, sug-
gesting that the protein expression profiles of the normal
tissues may be more homogeneous than those of the tumor
tissues. The tumor tissues were not divided according to the
status of lymph node metastasis or the anatomical site of
origin in the multidimensional space (data not shown).

Taken together, the greatest differences were, predictably,
observed between the proteomic profile of normal and tumor
cells. Histological differentiation appeared to be the second
most dominant factor affecting the proteome. Although dif-
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ferences in the lymph node metastasis status affected patient
survival significantly, they were not reflected in the overall
proteomic profile or individual proteomic characteristics of
the cases examined in this study.

3.3 Proteins differentially expressed between tissue
groups

Hierarchical clustering analysis suggested the presence of
protein spots whose intensity seemed to be different between
normal epithelial tissues and tumor tissues (Fig. 3). To
identify the proteins associated with carcinogenesis and his-
tological differentiation, we compared protein expression
levels between sample groups. We selected spots that corre-
sponded to proteins whose average expression level showed
more than twofold differences between sample groups that
were statistically significant (Wilcoxon test, p-value <0.01).
The comparison between normal and tumor tissue groups
resulted in the identification of 338 such proteins, while the
comparison of the protein expression profiles of normal tis-
sues with those of highly-, moderately- and poorly differ-
entiated tumors resulted in the selection of 326, 316, and 389
spots, respectively. Many protein spots appeared repeatedly
in the comparisons, and as a total, 498 distinct proteins were
selected. The number of proteins differentially expressed,
including the overlapping ones, is summarized in Supple-
mentary Fig. 3. Of the 498 spots, 221 had more and 227 had
less intensity in the tumor tissues compared with normal
tissues.
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The relations between the fold differences and the num-
ber of spots is summarized in Fig. 5A. Regarding the spots
whose intensity was increased in the tumor tissue samples,
the differences were mostly less than threefold. In contrast,
many of the spots with lower intensity in the tumor tissues
showed more than threefold difference compared with the
normal tissues.

The pair wise similarity of the expression profiles of the
498 selected protein spots was examined in all samples, and
the results are summarized in Fig. 5B. The normal and
tumor tissues shared similar expression patterns with each
other as a whole, the average r value being 0.65 and 0.49,
respectively. In contrast, the average r value was only —0.14
in the pair of normal and tumor tissues, clearly showing that
the expression pattern of the 498 selected protein spots is
significantly different between normal and tumor tissues.

Similarly, principal component analysis based on the
expression profiles of the 498 spots also distinguished be-
tween the normal and tumor tissues in the mult-
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dimensional space (Fig. 5C). Within tumor tissues, the well-
differentiated tissues were separated from the poorly differ-
entiated ones.

3.4 Self-organizing map of laser-microdissected
tissues using 498 selected protein spots

We constructed a self-organizing map that demonstrated
that the average spot intensity of the up- or down-regulated
proteins, which were categorized in cluster A and B, respec-
tively, was constant in all tumor tissues without obvious cor-
relation with histological differentiation (Figs. 6A and B,
upper panel). However, visual inspection of the heat-map
suggested that the intensity of some of the 498 spots corre-
lates with histological differentiation (Fig. 6A and B, lower
panel). To further examine this point, we created separate
self-organizing maps for the 221 and 277 spots with
increased and decreased intensity, respectively (Fig. 6C and
D, upper panel). We found that the up-regulated protein
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Figure 5. (A) The number of spots showing sig-
nificantly different degrees of intensity between
the normal and tumor tissues. The x-axis repre-
sents the fold differences and the y-axis shows
the number of spots. The red-coded bars indi-
cate the frequency of the protein spots, which
had increased intensity in tumor tissues. The
green bars show the frequency of the spots with
higher intensity in the normal tissues. (B) The
overall similarity of tissue samples was mon-
itored on the basis of the intensity of 498 select-
ed protein spots, showing significant intensity
differences between the normal and tumor tis-
sues. {(C) Principal component analysis dis-
tinguished sample groups on the basis of the
expression of 498 selected spots.
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spots were divided into two subgroups. Seventy-two spots in
cluster C showed notably higher expression levels in the well-
differentiated tumor tissues compared with moderately and
poorly differentiated ones (Fig. 6C, upper panel). The
expression levels of the 72 spots in the individual samples are
demonstrated in the heat-map panels (Fig. 6C, lower left
panel). In contrast, the average level of the 149 spots in clus-
ter D was constant in the tumor tissues irrespective of histo-
logical differentiation (Fig. 6C, upper panel and lower right
panel). Proteins down-regulated in tumors were also divided
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Poorly differentiated tumors

P regulated proteins in tumors are

shown in clusters C and D in the
upper panel of (C), and in clus-
ters E and F in the upper panel of
(D), respectively. Individual spot
intensity of the individual sam-
ples is demonstrated as heat-
maps in the lower panels of (C)
and (D). Rows in the heat-maps
represent protein spots, while
columns represent individual
samples. Tissue types are color-
coded. The averaged expression
levels of the proteins in cluster A
and B show constant up- and
down-regulation in  tumors
without obvious correlation
with histological differentiation
(A and B). The subclusters, clus-
ters C and F, show the histology-
dependent regulation.

into two clusters, clusters E and F, reflecting the correlation
between expression level and histological differentiation.
Spot intensity in cluster E was consistently lower in all
tumors. Spot intensity in cluster F was higher in well- and
moderately differentiated tumors (Fig. 6D, upper panel).
Spot intensity in the individual samples is demonstrated in
the heat-map panels (Fig. 6D, lower right panel). The locali-
zation of the spots in clusters C, D, E and F on representative
2-D gels is shown in Supplementary Figs. 4, 5, 6 and 7,
respectively.
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The 3-D views of selected spots belonging to clusters C,
D, E, and F and varying based on tissue histology are shown

in Fig. 7. The 3-D images derived from the Cy5-images. As

the intensity of the CyS-image was standardized based on
that of the Cy3-image in the identical gel before statistical
analysis, this 3-D view does not always reflect the results of
the expression study precisely. However, the different inten-
sities of the spots across the samples were obvious even in
the Cy5-images.

3.5 Proteins associated with lymph node metastasis

We examined whether the number of lymph node metas-
tases is associated with patient outcome in our sample set. A
previous study correlated nodal metastasis with dismal
prognosis in esophageal cancer [31]. The frequency of lymph
node metastases in this study is summarized in Table 3, and
the data concerning the individual patients are described in
Supplementary Table 1. Kaplan-Meier analysis showed that
the patients without lymph node metastasis had a signifi-
cantly higher survival rate compared with the patients with
more than five lymph node metastases (p = 0.003, Fig. 8). In
contrast, patients with one to five lymph node metastases did
not show significant differences in terms of survival rate
compared with patients without lymph node metastases
(Fig. 8). Thus, we assumed that the spots that had distinct
intensity between the tumors without nodal metastases and
those with more than five lymph node metastases would
correspond to proteins that may be tumor marker candidates
to predict patient survival, and we examined these differ-
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ences in more detail. We found 41 such protein spots that
had significantly different intensity between the two groups
(Wilcoxon test, p <0.01). The localization of these spots on a
representative 2-D gel is shown in Supplementary Fig. 8.
The 41 spots corresponded to 32 up- and 9 down-regulated
proteins in the lymph node positive groups. Expression pat-
terns of selected spots in all tumors are shown in Fig. 9A. By
visual inspection, the intensity of the 32 spots corresponding
to up-regulated proteins appeared to correlate with the
number of lymph node metastases as a whole (cluster G,
Fig. 9A). In contrast, the intensity of the 9 spots correspond-
ing to down-regulated proteins was consistent among
tumors with four or less lymph node metastases (cluster H,
Figs. 9A and B). In principal component analysis, tumor tis-
sues were distinguished from normal tissues on the basis of
the expression pattern of the 41 protein spots (Fig. 9C), sug-
gesting that the expression pattern of these proteins changes
during the course of carcinogenesis.

3.6 Protein identification by VIS and confirmation of
the identification using specific antibodies

MS protein identification revealed that the 498 spots show-
ing different intensity between normal and cancer tissues
corresponded to proteins generated from 217 distinct genes,
and the 41 spots associated with nodal metastasis corre-
sponded to the protein products of 33 distinct genes. The
results of identification and data supporting the protein
identification are shown in Supplementary Tables 2 and 3.
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Figure 7. Screen shots using the DeCy-
der software in BVA mode showing 3-D
views of the Cy5-images of representa-
tive protein spots in clusters C, D, E and
F. Cluster names correspond to those in
Fig. 6. The spot numbers correspond to
those in Supplementary Figs. 4-7 and
Supplementary Tables 2 and 3. The pro-
teins corresponding to the spots were
later identified by MS and are demon-
strated in the left side of the panels.
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Table 3. Frequency of lymph node metastasis in the esophageal
cancer cases studied

Number of lymph node metastases Number of patients

0 17
1 14
2 9
3 9
4or5 8
More than 5 15

We validated the resulis of 2D-DIGE using specific anti-
bodies. We selected the proteins that showed a representative
expression pattern for each cluster. The proteins were sepa-
rated by SDS-PAGE, itransferred onto a membrane and
incubated with specific antibodies. The intensity of each
band was quantified and standardized by that of beta-actin in
the same membrane (Fig. 10). A number of different protein
spots for cytokeratin 14 were observed in clusters C and D,
and cytokeratin 14 expression in Western blotting was simi-
lar to that in cluster C (Fig. 10A). This observation may
reflect the fact that a higher number of cytokeratin 14 spots
with similar molecular weight was present in cluster C (12
spots) than cluster D (2 spots) (Supplementary Table 2).
Western blotting showed that periplakin, annexin I and
SCCA1/2 expressions were lower in tumor tissues
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Figure 8. Survival curves of esophageal cancer patients in our
sample set, subgrouped according to the number of lymph node
metastases present. Survival of the patients with more than five
lymph node metastases was significantly shorter than that of
patients without lymph node metastases. Survival curves were
calculated by the Kaplan—-Meier method and statistical differ-
ences were calculated by log-rank test.

(Fig. 10A). These results were consistent with those obtained
by 2D-DIGE,; these proteins were included in cluster E, in
which proteins were consistently down-regulated in tumor
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Figure 9. Protein spots associated with lymph
node metastasis. Average profile of the 41 pro-
tein spots the intensity of which was statistically
significantly different between tumors without
lymph node metastases and those with more
than five lymph node metastases are demon-
strated (A). Spots with increased or decreased
intensity in the tumor tissues compared with the
normal tissues are separately demonstrated as
clusters G and H, respectively. The intensity of
the 41 protein spots in the individual samples is
shown in the heat-map (B). Principal component
analysis grouped all tissue samples according to
the expression level of the 41 protein spots (C).
The localization of the protein spots on a repre-
sentative 2-D gel is shown in Supplementary
Fig. 8.
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Figure 10. Western blotting results for

(Cluster E/F) i

selected proteins for each cluster vali-

dated the 2D-DIGE results. The intensity

of each band was quantified and stan-
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same membrane {upper panel). The
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tissues irrespective of histological differentiation. Both
clusters E and F included two calgulanulin B spots. In
Western Dblotting, although the expression of calgulanulin
B was lower in tumor tissues, a correlation between its
expression level and histological differentiation was not
obvious, probably because Western blotting detected the
total amount of calgulanulin B, including expression of
its variant which was averaged in the analysis (Fig. 10A).
HSP 60 was selected as a representative protein from
cluster G; the Western blotting results revealed that the
expression of HSP 60 was higher in tumor tissues almost
in parallel with the number of lymph node metastases,
again being consistent with the resulis of 2D-DIGE
(Fig. 10B).
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Fig. 3. Western blotting successfully
validated the results of 2D-DIGE.

3.7 Functional characterization of the proteins
identified and chromosomal localization of the
corresponding genes

We classified the identified proteins based on their function
according to their classification in Gene Ontology and the
literature curation (Fig. 11). The proteins frequently
observed in clusters A and B were categorized as cytoskele-
tal/structural proteins, transporters, chaperones/heat shock
proteins, proteins in the signal transduction pathway, and
proteins involved in proteolysis. The transporter proteins
appeared more frequently in cluster A than in cluster B.
Proteins involved in proteolysis processes were preferentially
down-regulated in the tumor tissues.
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