Cancer Research

44As3Luc
No.4687

HSC44Luc
No.4684

B

44As3lLuc
No.4687
39days

HSC44Luc
No.4684
43days

Relative Flux (%)

s0LX

0L X

10000

8000 f

44As53Luc

6000

4000 -

2000 HSC44Luc —

o w
0 10 20 30 40 50

Days after implantation

Figure 4, Quantitatlve photon counilng analysls of progresslon process of peritoneal disseminated metastasls of the highly melastatic and tha parent cell lines.

A, detection of progresslon process of petiloneal dlsseminated metastasls. 5, photon counting analysls of the perifoneat disseminations after orthotople implantation
(vellow arrow, site) of the cells. €, quaniitatlve anaiysis of progresslon process of pertoneal disseminated metastasls of 44As3Luc (@) and HSC44Lluc (A} cell lines
(n = 5). This expariment was repeated thrice, and simllar results were observed each fime.

of the survival period (17), A similar evaluation was conducted in
the present study using 44As3Luc cells. Figure 5 (top) shows a
Lypical example of the photon counting analysis, whereas Figure &
(boitom) shows the time course of the changes in the number of
photons, Following three doses of CPT-11 (200 mg/kg/mouse), the
tumor gradually decreased in size, reaching z level close to the limit
of detection on the 20th day. During the 5th and 6th week, the
tumer began to show slow growth in the stomach followed during
the 8th/9th week by peritoneal invasion and the onset of cancerous
peritonitis accompanied by ascites formation and death of the
animals. The survival period was markedly longer in the drug-
treated group compared with that in the saline-treated controls.
Plotting of the number of photons measured (average of five
animals) against time yielded a tumor growth curve, thus allowing
quantitative evaluation of drug-induced suppression of the
progression of peritoneal dissemination (Fig, 5, bottom).

As stated above, the 44As3Luc cells began to proliferate again
during the 5th/6th week after implantation in the CPT-11
treatment group. We therefore gave three additional doses
beginning on day 28 (after the onset of reproliferation). Figure 5
(top) shows a typical example of the bioluminescence signal in

such a case, The additional doses of CPT-11 (400 mg/kg/mouse)
markedly suppressed the proliferation of the 44As3Luc cells until
around day 60; however, proliferation again began to be detected
thereafter. By around day 80, the tumor started to grow more
rapidly and spread, causing moribund animals ta appear by around
day 90, The survival period of the animals was markedly prolonged
by the additional drug doses. Figure 5 (boitom)} shows the time
course of changes in the number of photons {average of five
animals). Quantitative comparison of the praliferation and spread
of the tumor cells was possible between the drug treatment group
and the control group and between two drug treatment groups,
thus allowing objective evaluation of the responses to treatment.

Discussion

Before the present study, very little was known about how
scirrhous gastric carcinoma cells invaded and proliferated within
the primary lesion, how they exfoliated and thus became free, how
they colonized and proliferated within the peritoneal cavity, or how
they advanced to the stage of cancerous peritonitis. Herein, we
investigated the course of proliferation and spread of gastric cancer
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cells by sacrificing the animals at different points of time after
orthotopic implantation of the highly metastatic tumor cell line
44As3 (17) and conducted anatomic and histopathologic examina-
tions in the sacrificed animals. In this experiment, the sequence of
findings seems to endorse the previous contention that gastric
cancer cells invade deeper layers of the gastric wall to reach the
serosa and then exfoliate, thereby being released into the
peritoneal cavity, resulting in peritoneal dissemination.

The growth of tumors in the gastric wall and the subsequent
progression to cancerous peritonitis are difficult to monitor
extracorporeally unlike s.c. tumors. For monitoring the progression
of tumor dissemination, the only possible method was to implant
the tumor cells into groups of mice and sacrifice the animals at
different points of time for autopsy and observation; quantitative
comparison was still not possible by this method (10-12, 18-25).
All of these problems were resolved in the present study by
introduction of the luciferase gene into tumor cells with a high
metastasizing potential and subsequent iz vivo photon counting
analysis. In the first step, we confirmed that the results of the
conventional method of evaluation in relation to proliferation of
our gastric carcinoma cells were consistent with the results of our

photon counting analysis, We then conducted an experiment on 2
model of peritoneal dissemination. Using the in vivo photon
counting technique, it was possible to observe the same animals
successively, beginning from the growth of the tumor at the site of
implantation to peritoneal dissemination and, finally, the forma-
tion of ascites. Furthermore, it was possible to observe the
pracesses of dissemination progression on a real-time basis,
allowing quantitative analysis and comparisen of the course of
proliferation and progression within the living body after
implantation of a cell line with high metastasizing potential and
its parent cell line based on changes in the photon number.
Needless to say, it is important to develop a screening model for
exploring substances effective against tumors and ultimately
developing clinically useful anticencer agents. We previously
reported that an animal model of peritoneal dissemination
established using the highly metastatic cell lines (44As3, 58Asl,
and 58As9) established by our group satisfied all of the require-
ments of @ model for drug screening (17, 44). However, before this
model can be applied as a universally valid drug evaluation system,
the following problems must be resolved: (@) methods for appro-
priate observation and objective evaluation are urgently needed,
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(b) excellent operative skill is indispensable for orthotopic implant-
ation with high reproducibility, and (¢) large numbers of animals
are needed, With the establishment of this experimental system,
the conventional problems associated with the evaluation of
peritoneal dissemination have been overcome and highly reliable
data are now obtainable, Therefore, a stage has been reached where
this model of peritoneal dissemination can also be applied as a
system for evaluation of the effects of drugs. Furthermore, because
photon counting analysis allows noninvasive evaluation of the fate
of cancer cells in vivo on a real-time basis, the pain experienced by
experimental animals may be reduced, such that this technigue
would also be useful from the viewpoint of animal welfare (45).
We have used the bioluminescence signal from the luciferase
reporter gene in our peritoneal metastasis model. Luciferase genes
in our tumor cells can function stably over significant periods in
turnors and in their metastases. To date, several other peritoneal
metastasis models of human stomach cancer in animals have been
reported (28, 31). For example, Hasegawa et al. (28) used green
fluorescent protein (GFP) retroviral-infected human stomach
cancer. In this nude mouse model, tumor cells were peritoneally
injected and GFP transduction allowed visualization of the
subsequent metastatic process. A major advantage of GFP labeling
is that imaging requires no preparative procedures and hence
allows for direct visualization in living tissue (26, 27, 29, 32, 34).
In contrast, photon counting technique requires exogencus

injection of luciferin substrate, which can stress the animals, and
in addition, the intensity of the luciferase signal may sometimes be
variable and unstable (46). Furthermore, Ray et al. (32) reported
that red fluorescent protein imaging is ~ 1,000 times stronger than
that of luciferase in vivo. Therefore, for monitoring the tumeor
metastasis process at the single-cell level, fluorescence imaging
may be the more practical methed. In fact, fluorescence-based
orthotopic metastatic models have been used to study mechanisms
and for drug discovery (14, 30, 33, 35).

In conclusion, cur photon counting analysis involving a highly
metastatic cell line, 44As3Luc, seems to be a useful model for
studies, such as those designed to clarify the mechanism of
peritoneal dissemination progression in intractable scirthous
gastric carcinoma, and for the development of new agents effective
against such tumors,
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Summary

Drug resistance is a major obstacle to the successful chemotherapy. Several ATP-binding cassette (ABC) trans-
porters including ABCBI, ABCC! and ABCG2 have been known to be important mediators of chemoresistance.
Using oligonucleotide microarrays (HG-U133 Plus 2.0; Affymetrix), we analyzed the ABC transporier gene
expression profiles in breast cancer patients who underwent sequential weekly paclitaxel/FEC (5-fluorouracil,
epirubicin and cyclophosphamide) neoadjuvant chemotherapy. We compared the ABC transporter expression
profile between two classes of pretreatment tumor samples divided by the patients’ pathological response to neo-
adjuvant chemotherapy (residual disease [RD] versus pathologic complete response [pCR]) ABCB3, ABCC7 and
ABCEF?2 showed significantly high expression in the pCR. Several ABC transporters including ABCCS, ABCAI2,
ABCAl ABCCIl3, ABCB6 and ABCCII showed significantly increased expression in the RD (p<0.05). We
evaluated the feasibility of developing a multigene predictor model of pathologic response to neoadjuvant che-
motherapy using gene expression profiles of ABC transporters. The prediction error was evaluated by leave-one-out
cross-validation (LOOCV). A muitigene predictor model with the ABC transporters differentially expressed be-
tween the two classes (p < 0.003) showed an average 92.8% of predictive accuracy (95% ClI, 38.0-97.4%) with a
93.2% (95% CI, 85.2-100%) positive predictive value for pCR, a 93.6% (95% CI, 87.8-99.4%) negative predictive
value, a sensitivity of 88.1%(95% CI, 76.8-99.4%), and a specificity of 5.9% (91.1% CI, 87.8-100%). Our results
suggest that several ABC transporters in human breast cancer cells may affect the clinical response to neoadjuvant
chemotherapy, and transcriptional profiling of these genes may be useful to predict the pathologic response to
sequential weekly paclitaxel/FEC in breast cancer patients.

Introduction (MDRI-P-gp) [1.2], ABCC1 (MRP{) [3], and ABCG2

(MXR) [4] are particularly well known as mediators

Resistance to chemotherapy is a significant obstacle to
appropriate treatment of cancer patients. Various cel-
lular pathways may play a role in drug resistance and
ATP-binding cassette (ABC) transporters are one of the
most well known mediators leading to drug resistance
and treatment failure. To date 49 ABC transporter genes
have been identified and classified into seven groups,
ABCA, ABCE, ABCC, ABCD, ABCE, ABCF, and
ABCG (database of ABC transporters available at
http://nutrigene.4t.com/humanabe.htm).

Extensive studijes have been conducted on the indi-
vidual proteins or genes of ABC transporier members
regarding their role in chemoresistance. ABCBI

leading to resistance to several chemotherapeutic agents
including paclitaxel [5], topoisomerase inhibitors [6],
anthracyclin [7] and tyrosine kinase inhibitors [8).

" Although little has been known about most of ABC

transporter members, other members of this family
sharing sequence and structural homology may play
roles in absorption, distribution, and excretion of
chemotherapeutic agents and probably influence the
response to chemotherapy.

Recently, using ABC transporter gene expression
profiling, studies on the relationship of drug resistance
and ABC transporter were performed in cancer cell lines
[9,10].
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The characterization of the comprehensive expres-
sion of these genes in relation to the clinical response to
chemotherapy may be useful to determine on an indi-
vidual basis the patient’s underlying risk and choose the
optimal therapeutic regimen to which the individual
cancer patient is most likely to respond. We studied the
relationship between ABC transporter gene expression
and the responsiveness to chemotherapy in early breast
cancer patients who underwent sequential weekly pac-
litaxel/FEC (5-flucrouracil, epirubicin and cyclophos-
phamide) neoadjuvant chemotherapy and evaluated the
feasibility of developing a multigene predictor model of
pathologic response using differentially expressed ABC
transporters on the basis of microarray data,

Materials and methods
Patient and sample preparation

This study was performed at the National Cancer Cen-
ter Hospital, Tokyo, Japan. This study was approved by
the institutional review boards of the National Cancer
Center. Twenty-one pretreatment samples were ob-
tained from breast cancer patients who underwent
neoadjuvant chemotherapy from 2002 to 2004. All pa-
tients underwent pretreatment core needle biopsy {CNB)
of the primary tumor tissue before starting neoadjuvant
chemotherapy. The core needle biopsy was done using
14-16 gauge needles.

The patients received 4 cycles of FEC (5-Fluorouracil
500 mg/m?, Epirubicin 100 mg/m? and Cyclophospha-
mide 500 mg/m®) every three weeks followed by 12 cy-
cles of weekly paclitaxel (80 mg/m?). Additionally, in
the case of HER2 positive determined by immunohis-
tochemical staining (IHC), the specific inhibitory anti-
body of HER2 receptor, Trastuzumab (Herceptin®) was
added in the course of the paclitaxel (Herceptin 4 mg/kg
on dayl then 2 mg/kg weekly). Samples that showed 3+
THC staining were considered as HER2 positive.

Every patient underwent surgery on the completion
of the neoadjuvant chemotherapy, and histopathologic
examination was performed. As described previously
[11], pathologic complete response (pCR) was defined as
no pathologic evidence of any residual invasive cancer
cells in the breast and axillary lymph nodes, and residual
disease (RDD) was defined as any residual cancer cells on
the histopathologic examination. Informed consent was
obtained from all patients for voluntary participation in
the study.

Tissue preparation and microarray

Samples for the microarray were collected into tubes
containing Isogen {Nippon gene, Toyama) and stored at
—80 °C. Total RNA was extracted by the single step
method of Chomezynski et al. [12] with acid guanidinium
thiocyanate phenol chloroform after homogenizing the
tissue using a high speed homogenizer. The mean yield of

RNA was 23.1 pg (ranged from 12.3 to 31.6 pg) from
each collected samples. RNA that had distinct ribosomal
RNA band by electrophoresis and had AjggfAzge absor-
bance ratio ranging from 1.8 to 2.1 was used for cDNA
synthesis. Gene expression profiles were analyzed on a
high-density oligonucleotide microarray (GeneChip®
HG-U133 Plus 2.0; Affymetrix, Santa Clara, CA) con-
taining 54,675 probesets. The oligonucleotide microarray
procedure for generation of the biotin-labeled cyclic RNA
(cRNA) by in vitro transcription, hybridization to the
array and scanning were performed according to the
manufacturer’s instructions. The amplification cycle of
RNA tocDNA and cDNA to cRNA was performed using
the GeneChip® 3’-Amplification Reagents One-Cycle
cDNA Synthesis Kit including SuperScript Il reverse
transcriptase and a T7-(dT),4 primer (Affymetrix). The
synthesized cRNA was biotinylated using GeneChip 3’-
amplification reagents for IVT labeling. The labeled
cRNA was then purified and chemically fragmented at
94 °C for 35 min using the GeneChip Sample Cleanup
Module (Affymetrix). The labeled fragmented cRINA was
next hybridized to the GeneChip® at 45 °C for 16 h
according to the manufacturer’s instructions. The
hybridized probe array was washed and stained with
streptavidin-phycoerythrin. The stained probe array was
scanned with a GeneChip® Scanner3000 (Affymetrix) at
570 nm. The signal intensity of the gene expression level
was calculated by GeneChip Operating Software, Ver.1
(Affymetrix).

Daia analysis

Microarray data analyses were performed with BRB Ar-
rayTools developed by Dr. Richard Simon and Amy Peng
Lam.  (http://linus.nci.nih.gov/BRB-ArrayTools.html)
which provides a variety of tools for the analysis of gene
expression profile. Gene expression data were log trans-

formed {base 2) and normalized to the median expression

value of all genes on each amray. Any genes in which the
expression levels did not differ by at least by 1.5 fold from
the median in at least 20% of the arrays were filtered out,
for the exclusion of the genes showing minimal variation
across the set of arrays. In addition, if an expression value
was missing or filiered out in more than 50%, these data
were excluded. The final data set included 50,508 clones,
and contained all 49 ABC transporter genes. The list of
transcripts on ABC transporters was obtained using
GeneSprings software (http://www.silicongenetics.com/
cgi/SiG.cgifindex.smf) from Agilent Technologies (Wald-
bronn, Germany). (Supplementary data).

Class comparison

To identify informative genes differentially expressed
between the two classes of patients grouped by their
pathologic response, we used supervised classification
methods applying the random variance r-test to daia
using the BRB Array Tools and was accompanied by
multivariate permutation tests in order to minimize
false-positives with the maximum allowed number of
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false positives set at 10, a false discovery rate of 0.1, and
confidence 90%. Genes with a parametric p-value less
than 0.05 were considered statistically significant.

Class prediction

To develop a prediction model of pathologic response
using the ABC transporter gene expression profiles, we
used the class prediction tools of BRB ArrayTools in
which six multivariate classification methods were
available including a compound covariate predictor [13],
a K-nearest neighbor analysis (K=1, 3), a nearest cen-
troid analysis, a support vector machine [14] and a
diagonal linear discriminate analysis.

For the evaluation of the feasibility of developing a
multigene predictor model of response to neoadjuvant
chemotherapy using differentially expressed ABC
transporters, six different multivariate classification
models were examined. Firstly, we determined the
number of genes that were included in the classifier
model using a paired f-test applying multiple univariate
parametric significance thresholds, and developed a
classifier model based on these selected genes at the
univariate parametric significance thresholds. With
changes in the parametric significance thresholds, the
multivariate classification algorithms were performed
iteratively evaluating the classification error and the
classifier p-value to identify the best classifier, and the
processes were iteratively performed for each number of
genes included in the classifier (determined by the sig-
nificance threshold). The prediction error of each model
was evaluated by leave-one-out cross-validation (LOO-
CV) [15]. This validation procedure was performed in a
manner that removed the left-out sample before select-
ing the discriminate genes [15,16]. The classifier p-value,
the probability that similar low error rate happen by
chance, was obtained by a random permutation test
performed 2000 times.

Results
The patient characteristics

All the patients received 4 courses of FEC (5-fluoro-
uracil, epirubicin and cyclophosphamide) combination
chemotherapy followed by 12 courses of weekly paclit-
axel. In those patients who were HER-2 positive by
IHC, Trastuzumab (Herceptin®) was added in the
course of the treaiment. We divided the patients into
two groups from the results of the histopathologic
examination performed after the completion of the
neoadjuvant chemotherapy. Pathologic data were
available for nineteen patients. Patients with no patho-
logic evidence of any residual invasive cancer cells in
breast were classified as ‘pCR’, and if any residual
cancer cells were found in the histopathologic study,
these palients were classified as ‘RD’ group. Thirty-six
point eight percent (7) of the nineteen patients showed
no pathologic evidence of any residual invasive cancer

cells in the breast and were classified as pCR and 63.2%
(12) of patients were classified as RD.

Gene expression profiling of differentially expressed ABC
transporters

Using gene expression data of the pretreatment tumor
sample, we compared the ABC iransporter gene
expression profile between the two groups (RD versus
pCR). A probe set on all of the 49 human ABC trans-
porters genes known so far was contained in the
microarray chip we used (HG-U133 Plus 2.0; Affyme-
trix). To identify differentially expressed ABC trans-
porter genes potentially associated with the clinical
response to neoadjuvant chemotherapy, a supervised
class comparison analysis was performed. The random
variance model t-test was used to discover differentially
expressed penes and was accompanied by a multivariate
1600 permutation tests in order to minimize false~posi-
tives with the maximum allowed number of false posi-
tives set at 10, a false discovery rate of (.1 and 90%
confidence.

By comparing the average expression level of each
transcript on ABC transporters between the two clas-
ses of patients, the median expression level in the RD
group was 107.8 (range 15.8-6009.1) and 104.4 in the
pCR group (range 17.9-5690.6). The median of fold
difference (RD: pCR) of transcripts on the ABC
transporters was 1.0, ranging from 0.3 to 7.6, Several
ABC transporters showed prominently high expression
at over 50 fold of the median value although the tu-
mor samples were all from the pretreatment chemo-
therapy-naive patients. The highest average expression
level in the RD group, 6009.1, was observed in
ABCC5 (AF146074, RD: pCR=6009.1:2427.5, fold
ratio 2.48) and the highest expression level in the pCR
group, 5690.6, was observed in TAPI (ABCE2,
NM_000593, RD: pCR = 4551.4:5690.6, fold ratio
0.8), the transporter associated with antigen processing
(Table 1).

The ABC transporters, which were significantly dif-
ferentially expressed with a parametric p-value of less
than 0.05, are listed in Table 2. Several transcripts
(ABCCS, TAP2/ABCB3) selected overlapped for the
microarray chip (HG-U133 Plus 2.0) containing 54,675
probe sets, more than 30,000 human transcripts were
detected, derived from more than 20,000 loci within the
human genome and some transcripts represented the
same human gene.

ABC transporters, the expression of which in the RD
group was significantly increased, included ABCCS (fald
ratio 2.48, p= 0.000368), ABCAI12 (fold ratio 7.64, p=
0.000795), ABCAI1 (fold ratio 3.30, p= 0.000859),
ABCCI3 (fold ratio 7.54, p= 0.0194), ABCB6 (fold
ratio 2.17, p= 0.0271), and ABCCI1 (fold ratio 2.71,
p= 0.0486) (Table 2). These genes all showed over 2
fold increases in RD compared with pCR tumors.
ABCCS was recently reported to confer resistance to
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Table 1. Clinical characteristics of the patients

No, of patients

Age, years

Median 51

Range 30-61
Menstruation statas

Pre menopause 12

Post menopause 7
TNM stage

1A 8

1B 7

I11A 2

1B 2
Histology

Invasive ductal 17

Mixed ductalflobuiar

Invasive lobular i

Invasive mucinous 1
Nuclear grade

1 1

2 9

3 9
HER2 status

HER2-positive 4

HER2-negative 15
ER status

ER-positive* 3

ER-negative 14
Pathologic response

Pathologic complete response 7

Residual disease 12
Treatment anmm

A 15

B* 4

*Cases in which more than 10% of tumor cells stained positive for ER
by JHC classified as ER positive.

“Treatment arm A; 4 courses of FEC* followed by 12 courses of
weekly paclitaxel,

bTreatment arm B; 4 courses of FEC* followed by 12 courses of
weekly paclitaxel with Trastuzumab.

*FEC combination chemotherapy (S-fluorouracil, epirubicia and
cyclophosphamide}).

5-fluorouracil {17) selected with the lowest p-value and it
showed the highest gene expression level in tumors with
decreased response. (AF146074, expression level RD:
pCR = 6009.1: 2427.5, fold ratio 2.48).

CFTR (NM_000492, ABCC7, fold ratio 0.27, p=
0.007030), ABCF2 (NM_005692, fold ratio 0.32, p=
0.015901) and ABCB3 (M74447, TAP2, fold ratio 0.54,
p= 0.0193435), the transporter associated with antigen
processing, showed increased expression in the pCR
group but the biological significance concerning
responsiveness to chemotherapy remains to be eluci-
dated. The differentially expressed ABC transporter
genes are shown in Figure 1 in hierarchical clustering
view.

Development gf multigene predictor model using the ABC
transporter gene expression profile

To evaluate the feasibility of developing a muitigene pre-
dictor model of response to neoadjuvant chemotherapy
using the ABC transporter expression profile, six different
multivariate classification models were examined.

Firstly, we determined the number of discriminate
genes that were included in the classifier model by
applying multiple univariate parametric significance
thresholds, and developed a classifier model based on
these selected genes at the significance thresholds. With
changes in the parametric significance thresholds, the
classification errvor and classifier p-value for each mul-
tivariate classification algorithms were evaluated itera-
tively by LOOCYV (leave one out cross validation) [15]
and the random permutation test to identify the best
classifier model. The classifier p-value, the probability
that a similar low error rate could happen by chance,
was calenlated by 2000 random permutation tests. We
calculated the average of the classification error and the
classifier p-value of six classifier models at each signifi-
cance threshold. Figure 2 shows the change in the
average classifier p-value for six multivariate classifica-
tion models from the permutation test and the average
of the classification error rate relative to multiple uni-
variate parametric significance thresholds.

During this iterative process, the average estimated
misclassification error and classifier p-value also dropped
as the significance threshold decreased to 0,003, but
applying further stringent significance thresholds caused
a steep increase in the classification error. When the ABC
transporters differentially expressed beiween the two
classes at a significance threshold level of 0.003 were used
for class prediction, the average of the classification error
was minimal, 0.072 (92.8% of predictive accuracy, 95%
Cl, 88.0-97.4%), with the classifier p = 0.012, 93.2%
(95% CI, 85.2-100%) positive predictive value for the
pCR group, 93.6% (95% CI, 87.8-99.4%) negative pre-
dictive value, sensitivity for the pCR group 88.1% (95%
ClI, 76.8-99.4%), and a specificity of 95.9% (91.1% CI,
87.8-100%). The respective values for each model are
represented in Table 3. On applying the compound co-
variate predictor classifier model, the predictive accuracy
reached 100% with a classifier p-value of 0.0005. The
ABC transporters selected as the best classifiers are pre-
sented in Table 4. The list included ABCA1, ABCAI12
and ABCCS, recently reported to confer resistance to
cyclic nucleotides including 5-fluorouracil [17].

Our results suggest that the ABC transporter genes
expression pattern may be useful in predicting the
pathologic response to sequential weekly paclitaxel/FEC
in breast cancer patients.

Discussion

To determine the optimal therapeutic regimen to which
the individual cancer patient is most likely to respond on
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Table 2. Differentially expressed ABC transporiers ordered by significance

Gene Genbank Parameiric % CV suppert RD*  pCR® Fold Description

symbol p-value* " difference®

ABCCs  AF146074 0.000368 100 6009.1 24275 2.48 ABC, sub-family C (CFTR/MRP), member 5

ABCC5  BES550362 0.000463 100 35715 12344 2.89 ABC, sub-family C (CFTR/MRP), member 5

ABCAl12 A1.080207 0.000795 100 711.7 931 7.64 ABC, sub-family A (ABCI), member 12

ABCAl  ALB33227 0.000859 100 166.8 505 3.3 ABC, sub-family A (ABC1), member |

CFTR NM_000492  0.007030 100 217 1044 027 cystic fibrosis transmembrane conductance
regulator, ABC (sub-family C, member 7)

ABCF2  NM_005692 0.015%01 100 494 1541 0.2 ABC, sub-family F (GCN2(), member 2

TAP2 M74447 0.019345 89 5434 10085 0.54 Transporter 2, ABC, sub-family B (MDR/TAP)

ABCCI3 NM_172025 0.0i9377 100 157.5 209 7.54 ABC, sub-family C (CFTR/MRP), member 13

ABCB6  NM_005689 0.027077 89 14719 6715 217 ABC, sub-family B (MDR/TAP), member 6

TAP2 AAST3502 0.042069 58 17405 2802 0.62 Transporter 2, ABC, sub-family B (MDR/TAP)

ABCCl1 AF352582 0.048626 42 160.9 384 2N ABC, sub-family C (CFTR/MRYP), member 11

Table sorted by p-value, * p by random variance -test.
#Geometric mean of intensities in the RD group.
bGeometric mean of intensities in the pCR group.
“Fold difference of geometric means RD: pCR.

ABCCI1 AF352582 1554911 at
ABCA!  AIS33227 1565776 a
ABCBS  NM_005689 203192
ABCAI2  ALD80207 215465 a
ABCCI3 NM_172025 1555265 _at
ABCCS  AF146074  209380_s a
ABCCS  BESS0362 226363
ABCF2  NM_005692 207623 at
CFTR  NM_000492 205043 at
TAP2 M74447 204769 s_at

. TAP2 AASTIS02 225973 a

Figure 1. Hierarchical clustering of differentially expressed ABC transporters associated with the response to neoadjuvant chemotherapy in
breast cancer patients. The cluster image map shows patterns of differential ABC transporter gene expression in breast cancer patients in respect
to the response to neozdjuvant chemotherapy. The hiererchical clustering on each axis was performed using the complete linkage algorithm.
Relatively highly expressed genes are shown in red, low expressed genes are shown in green.

an individual basis, there is a real need to develop an
appropriate predictor to identify those cancer patients
most likely to require or benefit from particular thera-
pies. Resistance to chemotherapy is significant obstacle
to appropriate treatment of cancer patients and affects
the treatment outcome. Numerous cellular mechanisms
exist which are responsible for the treatment failure due
to chemoresistance. ABC transporters are the one of the
major factors leading to drug resistance. Extensive study
has been conducted on the ABC transporters, and
ABCBI (MDRI-P-gp) {1,2], ABCCI-MRPI1 [3], and
ABCG2-MXR [4] are particularly well known for their
role in resistance to several chemotherapeutic agents.
Because the members of the ABC transporters are
grouped by sequence homology, the remained members

may play roles in absorption, distribution, and excretion
of chemotherapeutic agent and probably be related to
drug resistance although little has been known about
most of the functions of these genes. Characterization of
the expression of the genes related to chemoresistance is
an interesting subject and may lead to clinically useful
predictors of response to chemotherapy. The profiling of
ABC transporter genes in relation to the clinical re-
sponse to chemotherapy may also be useful to determine
the patient’s underlying risk and choose the optimal
therapeutic regimen to which the individual cancer pa-
tient is most likely to respond.

Focusing on the ABC transporters, we analyzed the
gene expression profile in breast cancer patients using
microarray data that contain the transcripts of all the
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Figure 2. Mnultivariate predictive classification models in [eave-one-out
cross-validation and permutation test with an increasing significance
threshold at which genes were selected as a classifier, The x-axis rep-
rasents the significance threshold p value used to select the discriminate
genes as classifiers. The y-axis shows the average of the misclassifica.
tion error rate determined by leave-one-out cross-validation and the
average classifier p-value, the probability that a similar low error rate
could happen by chance calculated after 2000 permutations. Classifier
genes selected as differentials between the 2 classes at a significance
threshold p=0.003 level showed the highest discriminate value.

members of ABC transporter family, We compared the
expression pattern of the ABC transporters between two
classes of pretreatment tumeor samples divided by the
pathologic response to neoadjuvant chemotherapy (RD
versus pCR).

On microarray analysis, several ABC fransporters
showed differential expression between the itwo groups
of tumors. Of interest, several ABC transporters showed
increased expression in the pCR group, including CFTR
{NM_000492, ABCC7, fold ratio 0.27, p= 0.007030),
ABCF2 (NM_005692, fold ratio 0.32, p= 0.015901) and
ABCB3 (M74447, TAP2, fold ratio 0.54, p= 0.019345).
ABCB3 is known to be involved in antigen presenting by
transporting peptides necessary for the assembly of
major histocompatibility complex (MHC) class I mole-
cules from the cytoplasm to the endoplasmic reticulum
[18). It is also known that its reduced expression is
associated with HLA class I deficient human tumor cell
lines [19] and it has been suggested that it is related to
the aggressive features of some kinds of tumors [20-22].
Its increased expression has been found to be associated
with pathological complete response in our clinical
samples, but any clinical significance in the treatment of
in breast cancer remains to be elucidated.

Five ABC transporters ABCC5 (AF146074, fold ratio
2.48, p= 0.000368), ABCA 12 (AL080207, fold ratio 7.64,

Talle 3. Performance of the multivariate classifier; the sensitivity, specificity, PPV and NPV for the pCR group of each predictor model at a

significance threshold of p=0.003

cCcv INNC? INNCE Nec? SVMS® LDD* Average®

Sensitivity 160 85.7 85.7 85.7 7.4 100 88.1
Specificity 160 91.7 91.7 100 100 91.7 959
PPV 100 85.7 857 100 100 87.5 93.2
NpV 100 91.7 91.7 92.3 85.7 100 93.6
Misclassification error 0 0.05 0.11 0.11 0.05 6.1 0.072
Percent correctly classified 00 95 89 89 95 85 928
Classifier P 5.00E-04 0.014 0.025 0.006 0.023 0.005 0.01225

*Compound covariate predictor classifier.

] Nearest neighbor classifier.

“3-Nearest neighbor classifier.

9Nearest centroid classifier.

“Support vector machine classifier.

fLinear diagonal discriminant analysis classifier.

EAverage value of six multivariate classifier models.

Table 4. ABC transporiers selected as best classifiers at a significance threshold of 0.003
Gene symbol Genbank  ~Value Parametric % CV ~ RD®*  pCR® §Fold Description

p-value* support difference

ABCCS AF146074 443 0.000368 100 6009.1 24275 248 ABC, sub-family C (CFTR/MRP), member 5
ABCCS5 BE550362 432 0.000463 100 35715 12344 2.89 ABC, sub-family C (CFTR/MRP), member 5
ABCAI2 AL080207 4.07 0.000795 100 7117 93.1 7.64 ABC, sub-family A (ABCI), member 12
ABCAl AlL833227 4.04 0.000859 100 166.8 505 3.30 ABC, sub-family A (ABCI), member 1

Table sorted by g value.
*Parametric p-value by random variance r-test.
*Geometric mean of intensities in the RD group.

bGeometric mean of intensities in the pCR group. §Fold difference of geometric means; RD; pCR.
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p= 0.000795), ABCAI (AL833227, fold ratio 3.30, p=
0.000859), ABCC13 (NM_172025, fold ratio 7.54, p=
0.0194), ABCB6 (NM_005689, fold ratio 2.17,
p= 0.0271) and ABCC11 (AF352582, fold ratio 2.71,
p= 0.0486) showed significantly increased expression in
the RD group asscciated with a decreased responsiveness
to sequential weekly paclitaxel/FEC (5-fluorouracil, epi-
rubicin and cyclophosphamide) necadjuvant chemo-
therapy. Of these, ABCCS5 was selected with the highest
significance {(p= 0.000368) and the highest expression
level (RD: pCR 6009.1: 2427.5) although correlation be-
tween the gene expression level and the functional protein
level remains to be seen. The ABCCS (MRPS) transporter
on human chromosome 3g27 has been known to be in-
volved in the transport of nucleoside analogs [23] and has
been reported to confer resistance to several drugs
including methotrexate, GW1843 and ZD1694 (raltitr-
exed) [24]. Recently, Pratt etal. demonstrated that
ABCCS confers resistance against 5-fluorouracil [17] that
was used in our neoadjuvant chemotherapy regimen.
These results suggest that ABCCS mediates transport of
several chemotherapeutic agents and may contribute to
resistance against 5-fluorouracil which is presently used in
neoadjuvant chemotherapy.

In our clinical trial setting, ABCBI, known to confer
resistance to several chemotherapeutic agents including
paclitaxel, did not significantly increase in tumers with
decreased response to neoadjuvant chemotherapy.
Samples used in this study were all from chemotherapy-
naive patients and the time of exposure to the drug may
not have been sufficient to induce the gene expression of
this transporter. Although several ABC transporters
showed high expression levels in the pretreatment sam-
ples, ABCR1 did not show significantly high expression.
ABCBI may thus play a greater role in resistance to
chemotherapy in a secondary chemotherapy clinical
setting than in first line chemotherapy when the expo-
sure time is sufficiently long to induce the gene expres-
sion of the transporters known to be inducible by
exposure to that chemotherapeutic agent [25,26].

But, some ABC transporters may also play signifi-
cant role in chemoresistance in early breast cancer. Re-
cently, it was reported that ABCCI expression predict
shorter relapse free survival and overall survival and
play important role in resistance to chemotherapy in
early breast cancer who underwent CMF (cyclophos-
phamide, methotrexate, and fluorouracil) adjuvant
chemotherapy [27].

A variety of compounds are transported by ABC
transporters through the lipid bilayer and still little has
been known about the function of individual trans-
porters in transport of chemotherapeutic agents.
ABCAl has been implicated in the control of the
extrusion of membrane phospholipids and cholesterol
toward specific extracellular acceptors [28] and macro-
phage interleukin-1 beta secretion and apoptosis [29].
ABCCI13, highty expressed in the RD group mapped to
chromosome 21q11.2 has been suggested that it might
be associated with hematopoijesis. It has also been

reported that ABCCI13 shows decreased expression
during cell differentiates [30]. ABCC11, called MRPS is
known to be a cyclic nucleotide efflux pump and a
resistance factor for fluoropyrimidines 2',3'-dide-
oxycytidine and 9-(2-phosphonylmethoxyethyl) ade-
nmine [31]. Szakacs etal [l10] suggested ABCC1]
mediated resistance may not be confined te nucleoside
analog, demonstrating that the ABCCI11 transfected cell
confers resistance to NSC 671136 by 2-3 fold. ABCBS6 is
a mitochondrial half transporter that is known to be
involved in the transport of a precursor of the Fe/S
cluster from mitochondria to the cytosol [32]. A recent
report showed that several ABC transporiers including
ABCB6 amplified drug resistance in a non small cell
lung cancer cell line (A549/CPT) in comparison with its
parental cell [33].

Although the role in chemoresistant of individual
transporters selected in our study to discriminate be-
tween the pCR and RD groups remains to be revealed,
the transporters may also play roles in response to
chemotherapy by influencing absorption, distribution,
and excretion of chemotherapeutic agents,

To evaluate the predictive signature of ABC trans-
porters, we examined multigene predictor model of
response to neoadjuvant chemotherapy using differen-
tially expressed ABC transporters. Six different multi-
variate classification models were examined. When the
ABC transporters differentially expressed between the
two classes at a significance threshold level of 0.003 were
used for class prediction, an average 92.8% of predic-
tive accuracy was observed, with a 93.2% positive pre-
dictive value for the pCR group, 93.6% negative
predictive value, sensitivity for the pCR group of 88.1%,
and 95.9% specificity. The classifier p-value, the proba-
bility that a similar low error rate could happen by chance,
was also low (p= 0.012). The optimum classifier model
included ABCCS, ABCAL, and ABCA12. These genes all
showed high expression in tumors in the RD group.

Of interest, although we developed the class predic-
tion model from a small subset of genes, ie., genes
belonging only to the ABC transporter family, the pre-
dictive accuracy reached above 90% with quite a low
classifier p-value although these prediction models based
on ABC transporter genes need to be validated in future
studies by comparing the classification model with all
subsets of genes and with larger numbers of samples.

Our result suggest that several ABC transporters in
human breast cancer cells may contribute to the clinical
response to neoadjuvant chemotherapy and gene
expression profiling of these ABC transporters may be
useful in prediction of the pathologic response to
sequential weekly paclitaxel/FEC in breast cancer
patients.
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A Literature Review of Molecular Markers Predictive of
Clinical Response to Cytotoxic Chemotherapy in Patients
with Lung Cancer

Trkuo Sekine, MD,* John D. Minna, MD,} Kazuto Nishio, MD,}
Tomohide Tamura, MD,* and Nagahiro Saijo, MD*

Background: To find candidate genes for a predictive chemosensi-
tivity test in patients with lung cancer by using a literature review.
Methods: Using MEDLINE searches, “in vitro chemosensitivity
associated genes™ and articles on association of the gene alteration
with clinical chemosensitivity in lung cancer patients were selected.
We calculated odds ratios (ORs) and their 95% confidence intervals
{95% Cls) of response rates for patients who had tumors with or
without gene alteration. Combined ORs and 95% Cls were estimated
using the DerSimonian-Laird method.

Results: Of the 80 in vitro chemosensitivity-associated genes iden-
tified, 13 genes were evaluated for association with ¢clinical chemo-
sensitivity in 27 studies. The median (range} number of patients in
each study was 50 (range, 28-108). The response rates of lung
cancer with high and low P-glycoprotein expression were 0% and
73% to 85%, respectively (p < 0.001). Glutathione S-transferase pi
expression (OR 0.22, 95% CI 0.06-0.79), excision repair cross-
complementing 1 alterations (combined OR 0.53, 95% C10.28-1.01;
p = 0.055), and tumor suppressor p53 mutation (combined OR 0.23,
65% CI 0.12-0.52) were associated with clinical chemosensitivity.
Conclusion: In total, 80 in vitro chemosensitivity-associated genes
were identified in the literature, and high and low P-glycoprotein,
glutathione S-transferase pi expression, excision repair cross-com-
plementing 1 alterations, and tumor suppressor p53 mutation were
candidates for future clinical trials of chemosensitivity tests in lung
cancer patients.

Key Words: chemotherapy, drug response, moiecular markers,
prediction, lung cancer

(J Thorac Oncol. 2006;1: 31-37)

ung cancer is the leading cause of death in many countries
despite extensive basic research and clinical trials. Ap-
proximately 80% of patients with lung cancer have developed
distant metastases either by the time of initial diagnosis or
during recurrence after surgery for local disease. Systemic
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chemotherapy against lung cancer, however, has limitations
in efficacy such that patients with distant metastases rarely
live long.!

Tumor response to chemotherapy varies among pa-
tients, and objective tumor response rates to standard chemo-
therapy regimens are approximately 20 to 40% in patients
with non—small-cell lung cancer and 60 to 90% in patients
with small-cell lung cancer. Thus, it would be extremely
useful to know in advance whether patients have tumors that
respond to chemotherapy agents and whether the tumeors
would be resistant to such therapy. For this purpose, cell
culture-based chemosensitivity tests have been investigated
for more than 20 years, but they are not widely accepted
because of technical problems sach as the large amount of
material required, a low success rate for the primary culture,
length of time required, and poor correlation with the clinical
response.?>

To overcome these obstacles, DNA-, RNA-, and pro-
tein-based chemosensitivity tests have been created, but gene
alterations that are predictive of the clinical drug response are
not established. Recently, as many as 400 genes whose
expression was associated with drug response were identified
by cDNA microarray studies, but their functions do not seem
to be related to drug sensitivity or resistance.-1° In addition,
the genes identified by microarray studies were highly unsta-
ble and depended on the selection of patients used for gene
identification.’-12 The purpose of this study was to provide an
overview of gene alterations in lung cancer that are associated
with chemotherapy drug response to identify candidate genes
for predictive chemosensitivity tests in patients with Jung
Cancer.

MATERIALS AND METHODS

Because one set of genes associated with chemosensi-
tivity is those directly involved in drmug resistance mecha-
nisms, we conducted a MEDLINE search for articles on
tumor drug resistance published in the years 2001-2003. This
search yielded 112 studies, including several review articles.
By searching manually through these articles, we identified
134 genes or gene families that may be involved in drug
resistance based on their function. We conducted the second
MEDLINE searches for papers of in vitro studies on the 134
genes or gene families by using their names as a keyword.
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From the 134 genes, we selected genes that met the following
definition of “in vitro chemosensitivity associated genes™ 1)
alteration of the gene was identified in a human drug-induced
resistant, solid tumor cell line; 2) transfection of the gene
induced drug resistance; or 3) down-regulation of the gene or
its encode protein increased drug sensitivity. In this latter
category, we included studies in which the gene expression or
function was suppressed by antisense RNA, hammerhead
ribozyme, or an antibody against the gene product. We
excluded studies in which drugs were used to inhibit function
because the specificity of the drug against the target may not
have been complete. We performed a third MEDLINE search
for articles on the association between the gene alteration and
chemosensitivity of lung cancer cell lines by using the name
of the gene as a keyword. Articles in which the association
was evaluated in 20 or more cell lines were included in this
study. Finally, we searched MEDLINE for studies on the
association between the gene alteration and clinical drug
response in patients with lung cancer by using the name of the
gene as a keyword. Articles in which the association was
evaluated in 25 or more patients with advanced lung cancer
were included in this study. Studies in which gene expression
was evaluated with microarray were excluded because result
analysis and interpretation of this technique have not been
established, as indicated by the fact that the list of genes
identified by microarray studies was highly variable without
overlap between these gene sets.!l!? Clinical studies on
concurrent chemoradiotherapy were excluded. We con-
structed 2 X 2 tables from the response data and calculated
odds ratios (ORs), their variances, and 95% confidence inter-
vals (95% Cls) for the patients who had tumors with gene
alteration relative to those who had tumors without gene
alteration. Combined ORs and 95% Cls were estimated using
the DerSimonian-Laird method.'3 When a response rate was
0, association with gene alteration was evaluated using the x*
test because 55% Cls for ORs cannot be calculated. The name
of each gene was standardized according to Human Gene
Nomenclature Database of National Center for Biotechnol-
ogy Information.

RESULTS

Of the 134 genes or gene families found, a gene
alteration in drug-induced resistant cells, an increased or
decreased resistance in transfected cells, and an altered sen-
sitivity in gene down-regulated cells were reported for 45, 57,
and 32 genes, respectively. In total, 80 genes met the defini-
tion of “in vitro chemosensitivity associated gene” (Table 1).

Gene alteration was associated with in vitro chemosen-
sitivity in 15 (50%) of 30 studies on 15 (56%) of 27 gene
alterations (Table 2). Clinical drug response was evaluated in 27
stadies on 13 gene alterations. The methods used to identify
gene alteration included immunohistochemical protein expres-
sion amalysis (n = 18), polymerase chain reaction (PCR)-
based mRNA expression analysis (n = 3), and PCR-based
mutation analysis (n = 6). Ail but one clinical study was
retrospective, and the median (range) number of patients in
each study was 50 (28-108). Gene alteration was associated
with clinical response in 8 of the 27 (30%) studies (Table 2).

TABLE 1.  In Vitro Chemosensitivity-Associated Genes

Transporters: ABCA2, ABCBI, ABCB11, ABCC], ABCC2, ABCC3,
ABCC4, ABCCS, ABCG2, MVP, ATP7A, ATPTB, SLC29AI,
SLC28Al, SLCI9A1

Drug tergets: TUBB, TUBB4, TUBA, TYMS, TOPI, TOP2A, TOP2B,
DHFR,

Target-associated proteins : MAP4, MAP7, STMNI, KIF5B, HSPAS,
PSMDI14, FPGS

Intracellular detoxifiers: GSTP1, GPX, GCLC, GGT2, MT, RRM2,
AKR1B1

DNA damage recognition and repair proteins: HMGB1, HMGB2, ERCC],
XPA, XPD, MSH2, MLH1, PMS2, APEX], MGMT, BRCAI, GLO1

Cell cyele regulators: RB1, GML, CDKN1A, CCND1, CDEN2A,
CDKNI1B

Mitogenic signal regulators: ERBB2, EGFR, KRAS2Z, HRAS, RAFi
Survival signal regulators: AKT1, AKT2

Integrin: ITGBI

Transcription factors; JUN, FOS, MYC, NFKB1

Apoplosis regulators: TPS3, MDM2, TP73, BCL2, BCL2L1, MCLI1,
BAX, BIRC4, BIRCS, TNFRSF6, CASP3, CASPE, HSPBI

We evaluated the association between transporter P-
glycoprotein/multidrug resistance 1 (ABCB1) expression and
clinical chemosensitivity in four studies. The response rate of
lung cancer with high ABCB1 expression was consistently
(%, whereas that for lung cancer with low ABCBI1 expres-
sion was 73 to 85% (Table 3). Among drug targets, only
topoisomerase [I-beta (TOP2B) expression was associated
with clinical drug response in patients with small-cell lung
cancer (OR 0.29, 95% CI 0.09-0.95). The intracellufar detox-
ifier glutathione s-transferase pi (GSTP1) was associated with
both in vitro and clinical drug response (OR 0.22, 95% CI
0.06-0.79) (Table 4). DNA repair gene excision repair cross-
complementing 1 (ERCCI) alterations were associated with
drug response among patients with non—small-cell lung
cancer with marginal statistical significance; the combined
OR (95% CI) for ERCC1 alteration was 0.53 {(0.28-1.01; p =
0.055) (Table 5). Tumor suppressor p53 (TP53) mutation was
the only alieration associated with drug response among
patients with non—small-cell lung cancer among genes In-
volved in cell cycle and apoptosis. A combined OR (95% CI)
for TP53 among patients with non—small-cell lung cancer
was 0.25 (0.12-0.52) (Tabie 6). B-cell CLL/lymphoma 2
(BCL?2) and its family protein expression was not associated
with clinical drug response (Table 7).

DISCUSSION

We identified 80 in vitro chemosensitivity-associated
genes in our literature search. Of these, 13 were evaluated
clinically in 27 studies; ABCB1, TOP2B, GSTP1, and
ERCCI expression and TP53 mutation were associated with
changes to drug responses among patients with lung cancer.

Classical drug resistance is believed to be the result of
molecular changes inhibiting the drug-target interaction.
ABCBI, an ATP-binding cassette protein, acts as an energy-
dependent transmembrane efflux pump and decreases the
intracellular accumulation of anticancer drugs, including an-
thracyclines, vinca alkaloids, taxanes, and epipodophyllotox-
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TABLE 2. Chemosensitivity-Associated Genes and Association with Chemosensitivity

Association with chemosensitivity

In vitro studies {#)

Clinical studies (r)

Catepory No of Genes Total Yes % Total Yes %
Transporter 15 9 5 55 4 4 100
Drug larget 8 2 i 50 5 1 20
Target-associated protein 7 0 0 0 0
Intracelluiar detoxifier 7 3 3 100 1 1 100
DNA repair 10 1 1 100 6 0 0
Damage recognition prolein 2 0 0 0 0
Cell eycle 6 4 2 50 2 0 0
Mitogenic sipnal 5 3 i 33 1 0 0
Survival signal 2 0 0 0 0
Transcription factor 4 3 0 0 0 0
Cell adhesion-mediated i 0 0 0 0
drug-resistance protein

Apoptosis 13 5 2 40 8 2 25
Total 80 30 15 50 27 8 a0
TABLE 3. ABCB1 (P-Glycoprotein) and Clinical Response to Chemotherapy
Author Histology Drugs Methed LExpression Patients (n) RR (%) Odds ratio
Yeh et al.?® Non-small cell Paciitaxel HC Low 35 80 ]

High 15 0 p < 0.001*
Kawasaki et al*! Small cell CAV or EP IHC Low 26 85 0

High 4 0 p < 0.001*
Hsia et al3? Small cell EP IHC Low 37 73 0

High 13 0 p < 0.001*
Savaraj et al. ¥ Small cell CAV, CEV, or EP RT-PCR Low 24 75 0

High 7 0 p < 0.001%

Combined odds ratio for ABCB expression in patients with SCLC; 0

IHC, Immunchistochemical analysis; RR, response rate; RT-PCR, reverse transcriptase-polymerase chain reaction.

*Calculated using the x* test because the confidence interval cannot be calculated.

ins. Overexpression of this protein gives tumor cells a mul-
tidrug resistance phenotype in vitro, which is thought to be
associated with clinical chemoresistance.!® Our review
showed that the response rate of tumors with ABCB1 over-
expression was 0 in all studies of lung cancer, whereas that
for lung cancer tumors with low ABCBI1 expression was 73
to 85% (Table 3).

There is a close relationship between drug sensitivity
and quantitative and qualitative alterations of the drug’s
target, including tamoxifen sensitivity and estrogen receptor
expression and trastuzomab response and Her-2/neu overex-
pression in breast cancer,!s imatinib resistance and BCR-
ABL gene amplification and mutations in Philadelphia chro-
mosome-positive leukernias, !¢ and imatinib response and KIT
gene mutations in gastrointestinal stromal twmors.?? In all of
these cases, the target molecule is a receptor or a mutated
tyrosine kinase located at the entry of growth-stimulating
signal transduction pathways. Recently, gefitinib, a tyrosine
kinase inhibitor of the epidermal growth factor receptor
(EGFR), has been developed, and two large phase II trials

showed a response rate of 18% and 12% in patients with
non—small-cell lung cancer who were previously treated
with conventional chemotherapy.181° Responses to the drug
have been unpredictable, but mutations of the EGFR gene
were identified in patients with gefitinib-responsive lung
cancer.202t Furthermore, all mutations in these tumors were
restricted to the activation loop of the kinase domain of
EGEFR, which are in distinct contrast to mutations in extra-
celluar and regulatory domains of EGFR in glioblastoma,
which are unresponsive to gefitinib.?? Thus, molecular devel-
opments of structure and function of the targets hold the
promise of targeted cancer therapy. The target molecules of
many anticancer cytotoxic agents have not been clearly de-
fined; therefore, the relationship between the target molecule
status and sensitivity to the agent has not been established.
TOP2B expression was associated with drug response in
patients with small-cell lung cancer, with a response rate of
71% for high TOP2B expression tumors versus 90% for low
TOP2B expression tumors (OR 0.29, 95% CI 0.09-0.95).23
This result, however, is in contrast with the idea that a higher
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TABLE 4. Drug Targets, Intracellular Detoxifier, and Clinical Response to Chemotherapy

Metﬁud

Author Histology Drugs Expression Patients () RR (%) Qdds ratio {95% CI)
Beta-tubulin class HI
Rosell et al.¥ Non-small cell  Paclitaxet, Real-time Low 13 46 0.39
Vinorelbine PCR High 24 25 (0.09-1.62)

‘Fopoisomerase Il-alpha
Dingemans et al.® Small cell CEV or EP HC Low 65 8s 0.65

Hiph 23 80 (0.20-2.17)
Dingemans et al 3% Non-smali cell  Platinum-based  JHC Low 30 47 0.67

High 8 3% (0.14-3.40)
Topoisomerase Il-beta
Dingemans et al.2* Small cell CEV or EP IHC Low 48 90 0.29

High 35 71 (6.09-0.95)
Dingemans et al 3 Non-small cell Platinum-based  [HC Low 18 50 0.86

High 13 a6 (0.21-3.58)
Glutathione s-transferase pi
Nakanishi et al.3¢ Non-small cell ~ Cisplatin-based  IHC Low 17 47 0.22

High 37 16 (0.06-0.79)

Cl, confidence interval; THC, immunohistochemical analysis; PCR, polymerase chain reaction; RR, response rate; CEV, eyclophosphamide, etoposide, and vineristine; EP,

etoposide and cisplatin.

TABLE 5. DNA Repair Genes and Clinical Response to Chemotherapy

Qdd ratio
Author Histology Drugs Method Alteration Patients (1) RR (%) (95% CI)
Excision repair cross-complementing 1
expression
Lord et al. #7 Non-stnall cell  Cisplatin, Real-time Low 23 52 0.38
gemcitabine PCR High 24 36 (0.11-1.26)
Excision repair cross-complementing 1
{ERCCI) polymorphism at codon
118
Ryu et ai,38 Non-small cell  Cisplatin-based ~ PCR ciC 54 54 0.61
Hybridization C/T or T/T 53 42 (0.28-1.31)
Combined odds ratio (95% C.1.) for
ERCC] alteration in patients with
NSCLC0.53 {0.28-1.01, p = 0.055)
Xeroderma pigmentosum group D
polymorphism
At codon 231
Ryu et al.*® Non-small cell  Cisplatin-based  PCR G/G 100 48 1.08
Hybridization — G/A or A/A 8 50 (0.26-4.57)
At codon 312
Camps et al.¥ Non-small cell  Cisplatin, PCR G/G 18 17 3.33
gemcitabing Sequencing G/A or AfA 15 40 (0.66-16.7)
At eodon 751
Camps et al.* Non-smalt celi  Cisplatin, PCR AlA 22 23 2.04
gemcitabine Sequencing A/Cor C/IC 16 38 (0.49-8.45)
Ryu et al 3 Non-small cell  Cisplatin-based  PCR AlA 96 49 0.74
Hybridization  A/C 12 42 (0.22-2.51)

Combined odds ratio {95% CI) for XPD polymorphism in patients with NSCLC: 1,38 (0.68-2.78).

CI, coafidence interval, PCR, polymerase chain reaction; RR, response rate; NSCLC, non—small-cel] fung cancer; XPD, xeroderma pigmentosum group D).
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TABLE 6. Cell Cycle Regulators, Mitogenic Signals, Tumor Protein p53, and Clinical Response to Chemotherapy

Patients RR  Odds ratio
Author Histology Drugs Method Alteration {n) (%) (95% CI)
Retinoblastoma | expression
Gregore et al.* Non-small cell  Cisplatin-based IHC Low 61 51 045
High 41 32 (0.20-1.03)
Cyclin-dependent kinase inhibitor 1A, p2] expression
Dingemans et al.?? Small cell CEV, EP IHC Low 63 90 057
High 22 71 {017-1,92)
Kirsten rat sarcoma 2 viral oncogene homolog mutation
Rodenhuis et al. “!" g Aenocarcinoma  Hosfamide, PCR-MSH Normal 46 26 0.65
carboplatin Mutated 16 19 {0.16-2.70)
Tumor protein p53 (P53) mutation
Nakanishi et al,?¢ Non-smali celi  Cisplatin-based ITHC Normal 1] 45 019
Mutated 29 15 {0.04-0.94)
Greporc et al.*? Nor-small cell  Cisplatin-baseéd  ITHC Normal 56 57 0.26
Mutated 46 26 (0.11-0.62)
Combined odds ratio (95% CI) for P53 mutation in
patients with NSCLC: 0.25 (0.12-0.52) .
Kawasaki et al™ Small cell CAY or EP THC Normal 10 7013
Mutated 20 75 (0.24-6.96)
Dingemans et al.2 Small celi CEV or EP IHC Nommal 47 85 08l
Mutated 45 82 (0.27-2.45)

Combined odds ratio (95% C.L) for P53 mutation
in patients with SCLC: 0.93 {0.37-2.35).

CI, confidence interval; THC, immunohistochemical analysis; PCR-MSH, polymerase chain reaction-mutation specific hybridization; RR, response rate; CEV, cyclophesphamide,

etoposide, and vincristine; EP, etoposide and cisplatin,
“Prospective study.

TABLE 7. B-Cell CLL/Lymphoma 2 (BCL2) Family Expression and Clinical Response to Chemotherapy

Odds ratio
Author Histology Drugs Method Expression Patients (n) RR (%} (95% CI}
BCL2
Krug et al.*? Non-small cell  Docetaxel, IHC Low 26 46 1.75
vinorelbine High 5 60 (0.25-12.3)
Dingemans et al.?® Small cell CEV or EP IHC Low 20 7% 1.36
High 71 85 (0.38-4.86)
Takayama et al.® Small cell CAV or EP iHC Low 17 76 0.50
High 21 62 (0.12-2.08)
Combined odds ratio (95% CI) for BCL2 expression in patients with SCLC: 0.87 (0.33-2.32)
BAX (BCL2-associated X protein}
Krug et al.*? Non-small cell Pocetaxel, vinorelbine THC Low 9 56 0.72
High 19 47 (0.15-3.54)

Cli, confidence interval; THC, immunohistochemical analysis; RR, response rate; CEV, cyclophosphamide, etoposide, and vincristine; EP, etoposide and cisplatin.

expression of topoisomerase Il enzymes correlates with
greater chemosensitivity in patients with breast cancer.?

In addition to genes imvolved in classical drug resis-
tance, genes that act downstream of the initial damage in-
duced by a drug-tarpet complex are thought to play an
important role in chemosensitivity.?s ERCC1 is a key enzyme
in mucleotide excision repair, one of the key pathways by
which cells repair platinum-induced DNA damage. High
levels of ERCC1 mRNA have been associated with platinum

resistance in the treatment of ovaran and gastric cancer.26:27
The codon 118 in exon 4 of ERCC] gene is polymorphic with
the nucleotide alteration AAC to AAT. Although this base
change results in coding for the same amino acid, it may
affect gene expression based on the usage frequency of
synonymous codons.2®# The associations between drug re-
sponse and both ERCC1 gene expression and polymorphism
at codon 118 in patients with non—small-cell lung cancer
have been reported in the literature. A combined OR (95%
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Cl) for these ERCCI alterations was 0.53 (0.28-1.01, p =
0.055), although each study failed to show statistical signif-
icant association. Thus, ERCC1 may be a candidate for
evaluation of the predictability of drug response in future
clinical trials.

TP53, which is mutated or deleted in more than half of
lung cancer cells, has a remarkable number of biological
activities, including ceil-cycle checkpoints, DNA repair, ap-
optosis, senescence, and maintenance of genomic integrity.
Because most anticancer cytotoxic agents induce apoptosis
through either DNA damage or microtubule disruption, mu-
tated TP53 may decrease chemosensitivity by inhibiting ap-
optosis or, in contrast, may increase chemosensitivity by
impairing DNA repair after drug-induced DNA damage.??
This review showed that mutated TP53 was associated with
poor drug response in patients with non—small-cell lung
cancer (Table 6).

No other genes located downstream (including xero-
derma pigmentosum group D, retinoblastoma I, cyclin-de-
pendent kinase inhibitor 1A, Kirsten rat sarcoma 2 wviral
oncogene homolog, B-cell CLL/lymphoma 2, and B-cell
CLL/lymphoma 2-associated X protein) were associated with
clinical drug response (Tables 5-7). The association was

evaluated for only 8 of 43 ir vitro chemosensitivity-associ-,

ated downstream genes; therefore, key genes may be among
the remaining 35 genes. Most clinical studies included a
limited number of patients with various background charac-
teristics such as tumor stage and chemotherapy regimen
administered, which resulted in low statistical power to iden-
tify the association. Finally, because all but one study was
retrospective, the quality of tumor samples may vary, and it
is therefore unclear whether the gene alteration was detected
in all samples. Thus, in future prospective clinical studies, the
method of tumor sample coliection and preservation, as well
as immunohistochemistry and polymerase chain reaction-
based methods, should be standardized, and the sample size
of patients should be determined with statistical consider-
ation.

The recently developed microarray technique enables
investigators analyze mRNA expression of more than 20,000
genes at once, and as many as 100 to 400 genes were selected
statistically as chemosensitivity-related genes.5-%1° Among
them, however, only a limited mumber of genes were func-
tionally related to chemosensitivity, and only ABCBI1 and
BAX corresponded with the 80 chemosensitivity-associated
genes identified in this literature review, which were picked
because of their known function and contribution to in vitro
chemosensitivity. Thus, it will be interesting to evaluate the
role of expression profile of these genes using microarray
analysis.

The association between the expression and alterations
of genes and clinical drug responses should be studied further
in prospective trials. ABCBI1, GSTP1, ERCCI, and TP53,
and other genes identified by exploratory microarray analyses
should be evaluated in those trals. Simple methods to iden-
tify gene alterations, such as immunohistochemistry and
polymerase chain reaction-based techniques, will be feasible
in future clinical trials because of their simplicity, cost, and

time. The median number of patients in retrospective studies
analyzed in this review was 50 (range, 28-108). In future
prospective trials, sample size consideration for statistical
power will also be important.

In conclusion, we identified 80 in vitro chemosensitiv-
ity-associated genes In a review of the literature; ABCBI,
GSTP1, and ERCCI1 expression and TP53 mutation were
associated with drug responses among patients with tung
cancer.
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