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Fig. 3. Cytokine production profile of Ve14i NKT cells, NK cells, and NK1.1* T cells after culture. (A} Spleen cells (7 x 10%) from C57BL/6 mice were
cultured with 50 ng/ml o-GalCer, a-GalCer plus 100 Ufml IL-2, or IL-2 for 4 and 6 days. IFNy and IL-4 in the supernatants were measured by ELISA, Data
are representative of three independent experiments. (B) IntraceBular cytokine staining for IFNvy and IL-4 in spleen cells cultured with o-GalCer and IL-2 for
4 days. The cultured cels were stimulated with PMA and ionomycine for 2 h. Then, the cells were stained with CD 1d/e-GalCer tetramer, anti-CD3 mAb, and
anti-IL-4, IFNY, or isotype control mAb and analyzed by flow cytometry. Histogram panels are on CD1d/e-GalCer tetramert CD3* cells (Vo 14i NKT cells),
CD1d/a-GalCer tetramer™ CD37 cells (including NK1,1* T cells), or CD1d/a-GalCer tetramer— CD3~ cells (inctuding NK cells). Closed histograms indicate
isotype controls. The fluorescence profiles are representative of three independent experiments.

Next, we examined the ability of the adoptively trans-
ferred, in vitro-expanded Val4i NKT cells, to secrete IL-4
and TENvy after administration of o-GalCer. Seven days after
cell transfer, the mice were injected with 2 jug of a-GalCer.
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Fig. 4. Migration of in vitro-expanded Valdi NKT cells afier adoptive
ransfer. Spleen cells from BALB/c mice were coliured with e-GalCer plus
100 U/ml IL-2 for 4 days. The cultured cells (2 x 107 were injected into
C.B-17/Icr SCID mice. Recipient mice were killed after 7 days, and the
presence of transferred Vee14i NKT cells in the liver and spleen was deter-
mined by fiow cytometry. The fluorescence profiles are representative of
three independent experiments.

The serum levels of -4 and IFNv were analyzed by ELISA.
Four hours after the o-GalCer injection, I-4 and IFN~y were
detected in the serum of mice that had received cultured cells
(Fig. 5A). One hour after ¢-GalCer administration, intra-
cellular cytokine staining for CD1d/a-GalCer tetramer* T
cells in the spleen revealed that intracellular IL-4 and IFNvy
were detected in 50 and 30% of CD1d/a-GalCer tetramer*
T cells, respectively (Fig. 5B). These results indicate that
the expanded Valdi NKT cells re-exposed to o-GalCer
retain the ability to produce IL-4 and IENy after adoptive
transfer.

Ithas been reported that increased IFNvy levels in the serum
of normal mice 10-16 h after a-GalCer injection were due to
TENv production by NK cells [11]. However, 10h after the
a-GalCer injection, the IFNvy level was decreased in the mice
that had previously received the cultured cells. Therefore, the
in vitro-expanded Vo 14i NKT cells could not induce NK cell
IFN+ production in vivo. Previous reports have demonstrated
that diminished IFNy levels in the serum of a-GalCer-primed
mice were caused by a failure of NX cell IFNvy production
after ce-GalCer re-injection [27]. Thus, the in vitro-expanded
V141 NKT cells might be similar to primed Vol4i NKT
cells.

4. Discussion

NKT cells play an important role in various immune
responses, including autoimmunity and tumor imenunity
[1-3]. The administration of «-GalCer, a specific ligand
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Fig. 5. IFN'y and IL-4 produetion of in vitro-expanded Vo14i NKT cells after adoptive transfer. Spleen cells from BALB/c mice were cultured with o-GalCer
plus 100 U/ml IL-2 for 4 days. The cultored cells (2 x 107) were injected into C.B-17/Ecr SCID mice. (A) Serum IFNvy and IL-4 levels. Seven days after the cells
were injected, the serum cytokine levels were analyzed 0, 4, and 10h after L.p. injection of a-GalCer. Data were obtained from 5 to 7 mice, {B) Intracellular
cytokdne staining of splenocytes 2 h after i.p. injection of a-GalCer (2 pg) in mice injected with cultured cells (2 x 107y 7 days earlier, Ceils were stained
with CD1d/a-GalCer tetramer and anti-IL-4, IFNy, or isotype control mAb. Stained cells were analyzed by flow cytometry. The fluorescence profiles are

representative of three independent experiments.

for Vol4i NKT cells, prevents tumor metastasis [9,10]
and autoimmune disease [28-30]. Moreover, the adoptive
transfer of NKT cells in mice prevents type I autoimmune
diabetes [31] and temor metastasis [12,32]. These studies
suggest several possible therapeutic applications for adoptive
immune therapy with NKT cells. However, it is apparent
that the frequency of NKT cells is very low in human blood.
Therefore, in vitro NKT cell expansion is required for
adoptive immunotherapy with these cells. In this study, we
found that in vitro-expanded Va14i NKT cells are able to
migrate into liver and spleen, and produce cytokines after
adoptive transfer.

Human Va24*VB11* T cells in peripheral blood mononu-
clear cells expand in vitro using o-GalCer and IL-2, IL-7, or
IL-15 [13-19], and mouse Va14i NKT cells also prolifer-
ate in the presence of c-GalCer in vitro [1-3]. However, the
function and phenotype of in vitro-expanded Valdi NKT
cells have not been well characterized because there is no
appropriate marker to identify these cells. In previous studies,
NICT cells have been identified as NEK1.1* T cells. However,
some Val4i NKT cells do not express NK1.1 [25,26], and
Voldi NKT cells lose or down-regulate the expression of
NK1.1in vivo after stimulation [33,34]. Therefore, the NK1.1

marker is not expressed on Val4i NKT cells after stimula-
tion. We could detect in vitro-expanded Ve 14i NKT cells by
CD1d/e-GalCer tetramer. However, an issue with CD1d/a-
GalCer tetramer staining is that the surface expression of
Valdi NKT cells is also down-regulated at 8—12h after «-
GalCer-stimulation [33,34]. Although their TCR expression
was recovered to normal levels at 2448 h [33,34], it is not
an issue is whether the numbers of in vitro-expanded Vo 14i
NKT cells (at 4 and & days after culture) is an underestimate
of the actual number. These in vitro-expanded Val4i NKT
cells in the presence of @-GalCer do not express NK1.1. It
has been reported that NK1.1~ CD1d/a-GalCer tetramer™
T ceils exist in normal mice and that some of these cells
are immature NKT cells that have recently emigrated from
the thymus [35,36]. However, recent studies have shown that
expanded NK1.1~ Va.14i NKT cells originate from NK1.1*
Voeldi NKT cells that down-regulate their surface NK1.1
expression [33,34]. We considered two possibilities for the
origin of in vitro-expanded Val4i NKT cells: expansion
of NK1.1 down-regulated NKT cells and/or expansion of
NK1.1~ precursor NKT cells. We observed that some Vor14i
NKT cells expanded when NK1.1~ spleen cells were cul-
tured (data not shown). Therefore, we concluded that both
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NK1.1* and NK1.1~ NKT cells expand after in vifro o-
GalCer-stimulation.

Previous studies demonstrated that mouse and human
invariant NKT cells could produce both Thl and Th2
cytokines [1-3]. Furthermore, it was reported that adult
Va24* VB11* NKT cells did not polarize into Thl or Th2
after expansion [37]. However, NKT cells display polariza-
tion induced by type 1 or 2 dendritic cells [19]. Thi or Th2
polarization of NKT cells is believed to be influenced by
culture environment, such as the type of dendritic cell. We
showed that in vitro-expanded Ve 141 NKT cells continuously
produced both IL-4 and IFN7y and did not polarize into Th1-
or Th2-type. By contrast, a previous study has demonstrated
that the robust expanded V14 NKT cells (after «-GalCer
administration) continue to produce IFNvy in vivo [34]. This
suggests that in vivo-expanded Ve 14i NKT cells favor Thi
polarization. In contrast to in vivo-expanded Valdi NKT
cells, in vitro-expanded Vo141 NKT cells might remain con-
tinually activated and produce both IFN<y and IL-4 because
they are continually exposed to «-GalCer in the culture con-
ditions. Indeed, in the expansion phase of Va14i NKT cells
{(after a-GalCer injection), these Val4i NKT cells had the
ability to secrete large amounts of both cytokines when re-
injected with c-GalCer (Tkarashi et al., unpublished data).

In addition to the IFNvy production by in vitro-expanded
Veal4i NKT cells, we showed that NK cells and NK 1.1t T
cells acquired the ability to produce IFN+y when cultured with
a-GalCer and IL-2. IL-2 alone could induce the proliferation,
but not IFNv preduction, by NK cells and NK1.1% T cells in
vitro. Qurresults indicate that ¢-GalCer~induced Vo 14i NKT
cell activation leads to IFNy production of NK and NK1.1*
T cells in vitro. Previous in vivo studies have demonstrated
rapid cytokine production by Va14i NKT cells in response
to a-GalCer triggered activation and IFN+y production by NK
cells [7,8], and bystander activation by conventional T cells
and B cells [38,39]. Taken together, the mechanisms of NK
cell activation by Vo141 NKT cells in vitro might be similar
to the in vivo mechanisms.

Vo141 NKT cells have been known to regulate immune
responses [1-3]. In fact, previous studies have shown that
adoptive transfer of thymic NKT cells prevented type I dia-
betes in NOD mice in an IL-4- and IL-10-dependent man-
ner (T helper 2) [31). Furthermore, hepatic metastasis of
B16 melanoma was prevented by adoptive transfer of IL-12-
activated Vo141 NKT cells from V14 TCR transgenic mice
[32]. These observations indicate that adoptive Valdi NKT
cell immunotherapy is useful for autcimmune diabetes and
cancer. However, important questions remain as to whether

in vitro-expanded Va14i NKT cells can survive in the recip-

ients and maintain the ability to produce IFN<y and IL-4 after
transfer, similar to resident Val4i NKT cells. A previous
study demonstrated that fresh mouse Ve 14i thymocytes pro-
liferated and survived in an IL-15-dependent manner after
adoptive transfer into lymphopenic mice [40]. We found that
in vitro-expanded Vo141 NKT cells survived and dominantly
migrated into the liver of lymphopenic mice. Furthermore,

we revealed that in vitro-expanded Vo141 NKT cells 7 days
after transfer could respond to «-GalCer and secrete IE-4
and IFNv after administration of a-GalCer. However, IFNvy
production patterns of lymphopenic mice transferred with in
vitro-expanded Ve:14i NKT cells after administration of a-
GalCer were similar to those of «-GalCer-primed mice, as
reported previously {27].

Previous studies have demonstrated that the antitumor
effect of a-GaiCer is mediated by Va14i NKT cells [9-12]
and that the IFNv production by Val4i NKT cells and the
subsequent IENvy production by NK cells are critical for a.-
GalCer to mediate antitumor activity [11,12]. Although it
appears that o-GalCer-based immunotherapy is useful for
cancer, treatment with a-GalCer has shown little therapeutic
effect in patients with solid tumors [41]. For these reasons,
it has been proposed that human Ve24i NKT cells from
cancer patients have impaired proliferative responses to a-
GalCer and have lost the ability to produce IFNv [22,23]. We
believe that adoptive Ver24i NKT cell therapy may be bene-
ficial for cancer patients. Further studies are needed to clarify
the mechanism and clinical applicability of in vitro-expanded
Va24i NKT cell therapy in cancer.
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We report a multicenter trial with iransrectal high-intensity focused ultrasound (HIFU) in the
treatment of localized prostate cancer. A total of 72 consecutive patients with stage T1c-2NOMO
prostate cancer were treated using the Sonablate 500™ HIFU device (Focus Surgery, Indianapolis,
USA). Biochemical recurrence was defined according to the criteria recommended by the American
Society for Therapeutic Radiology and Oncology Consensus Panel. The median age and prostate
specific antigen (PSA) level were 72 years and 8.10 ng/ml, respectively. The median follow-up period
for all patients was 14.0 months. Biochemical disease-free survival rates in all patients at 1 and 2 years
were 78% and 76%, respectively. Biochemical disease-free survival rates in patients with stage Tlc,
T?2a and T2b groups at 2 years were 89, 67% and 40% (p=0.0817). Biochemical disease-free survival
rates in patients with Gleason scores of 2-4, 5-7 and 8-10 at 2 years were 88, 72% and 80% (p=
0.6539). Biochemical disease-free survival rates in patients with serum PSA of less than 10 ng/ml and
10~20 ng/ml were 75% and 78% (p=0.6152). No viable tumor cells were noted in 68% of patients by
postoperative prostate needle biopsy. Prostatic volume was decreased from 24.2 ml to 14.0 ml at 6
months after HIFU {p <0.01). No statistically significant differences were noted in International
Prostate Sympiom Score, maximum urinary fiow rate and quality of life analysis with Functional
Assessment of Cancer Therapy. HIFU therapy appears to be minimally invasive, efficacious and safe
for patients with localized prostate cancer with pretreatment PSA levels less than 20 ng/ml.

{Hinyokika Kiyo 51: 651-658, 2005)
Key words: Prostate cancer, High-intensity focused ultrasound, Minimally invasive surgery

INTRODUCTION

Prostaie cancer is the most common malignancy in
men and the second leading cause of death due to cancer
in the United States'. Prostate cancer has been treated
in various ways, depending on the severity of the

condition, age of the patient, staging, Gleason score and
serum prostate-specific antigen (PSA) level. Radical
prostatectomy has long been regarded as appropriate
therapy for patients with organ-confined prostate cancer,
Despite excellent 3- to 10-year survival rates after radical
prostatectomy for organ-confined disease, surgery is
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associated with significant morbidity, including blood
loss due to transfusion-related complications, erectile
dysfunction in 30% to 70% of cases, and stress
incontinence in up to 10% of patients>. In addition,
surgical intervention is not typically considered for
patients whose life expectancy is less than 10 years.
Recently, a number of alternative less invasive
treatments have been developed for patients with
localized prostate cancer, either not appropriate [or
surgery or who do not want to risk the potential-side
effects of surgery. Three-dimensional conformal
radiotherapy (3D-CRT), brachytherapy, intensity-
modulated external beam radiotherapy, cryosurgical
ablation of the prostate and laparoscopic radical
prostatectomy have all been applied for the treatment of
this group of patients*™® . However, in the event of
treatment failure, these cannot be repeated and salvage
radical prostatectomy s associated with a high
morbidity rate”.

High-intensity focused ultrasound (HIFU) delivers
intense ultrasound energy with consequent heat
destruction of tissue at a specific focal distance from the
probe without damage to tissue in the path of the
ultrasound beam® . HIFU non-invasively induces
complete coagulative necrosis of a tumor without
surgical exposure or insertion of instruments into the
lesion. This advantage makes it one of the meost
attractive options for the localized treatment of
tumors®'?.  We report here a multicenter trial with 72
consecuiive patients treated with HIFU for clinical stage
T1c-2NOMO localized prostate cancer.

PATIENTS AND METHODS

Inclusion and Exclusion Crileria
As a rule, the inclusion criteria for treatment were
patients with biopsy proven and untreated stage Tlc-

9NOMO localized prostate cancer'’.  Age, serum PSA

levels, prostatic volume and WHO performance status
should be less than 80 yrs, 20 ng/ml, treatable with a 4.0
focal length probe which means a prostatic volume less
than 50 ml and 0-1. Patients with urethral stricture,
anal stricture, bleeding tendency, renal dysfunction with
serum Cr more than 2.0 mg/dl, hydronephrosis, larger
than 5 mm caleifications in the prostate, uncontrolled
diabetes mellitus, hypertension, angina, history of
cardiac infarction or other malignant diseases were
excluded from the study. None of the patients were
receiving neoadjuvant hormonal and/or chemotherapy
before HIFU. All patients were fully informed of the
details of this treatment and gave written consent
preoperatively.
HIFU Egqipment

For this study, we used the Sonablate 5007 (Focus
Surgery, Indianapolis, IN, USA} HIFU machine. This
treatment module includes the ultrasound power
generator, transrectal probes, the probe positioning
system, and a continuous cooling system (Fig. 1). The

Fig. 1. The Sonablate-500™ type device consists
of an pperator’s console, imaging monitor,
transrectal probe and an automatic
continuous cooling system.

transrectal HIFU probes use proprietary transducer
technology with low-energy ultrasound (4 MHz} for
imaging of the prostate and for -the delivery of high-
energy ablative pulses (site intensity, 1,300-2,200 W/
cm?). The single piezoelectric crystal alternates
between high-energy power for ablative (3 sec) and low-
energy for ultrasound imaging (6 sec)'?,

Prior to beginning the treatment, the operator uses
longitudinal and transverse sonograms to obtain an
image of the prostate and selects the prostate tissue
volume to be ablated by a set of cursors on these images.
The probe houses a computer-controlled positioning
system that directs each ablative pulse to the targeted
region of the prostate. Each discrete high-energy
focused ultrasonic pulse ablates a volume of 3X 3% 10
mm?® of tissue'®. The total acoustic power is initially
set at 24 W and 37 W for 3.0 and 4.0 cm focal length
probes, respectively. The individual focal lesion
produces almost instantaneous coagulative necrosis of
the tissue due to a temperature rise of 80° to 98°C in the
focal zone®. Under computer control, the ultrasound
beam is steered mechanically to produce consecutive
lesions in a manner such that all focal lesions overlap

Bladder

Treament Zong

Sector Seciion View Linear Section View

Fig. 2. The
ablates the entire prostate tissue. Focal
lesions are overlapped in finear rows (left)
at each of the lateral sector positions
{right) to create a volume lesion.

computer-controlled  transducer
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laterally and longitudinally to ensure necrosis of the
entire targeted prostate volume (Fig. 2}.  An automatic
cooling device is used during treatment to maintain a
constant baseline temperature of less than 18°C in the
transrectal probe that helps to prevent thermal injury of
the rectal mucosa.
HIFU Procedure
* All patients were anesthetized by general, epidural,
spinal or intravenous anesthesia, and were placed in a
supine and open leg position. A condom was placed
over the probe and degassed water was used to inflate the
condom that was covered with ultrasound gel for close
coupling of the ultrasound probe te the rectal wall, and
the probe was inserted manually into the rectum. The
probe was fixed in position by an articulating arm
attached to the operating table. Afier selection of the
treatment region of the prostate from the verumontanum
to the bladder neck, the treatment was started.
Transrectal probes with focal lengths of 3.0 and 4.0 cm
were used according to the size of the prostate as
determined by transrectal ultrasound (TRUS), with
larger glands requiring longer focal lengths. The
treatment continued layer by layer {10 mm thickness)
from the apex to the base (Fig, 2). Usually, three
successive target areas {anterior, mid-part and base)
were defined to treat the whole prostate. After
treatment was completed, a transurethral balloon
catheter was inserted into the bladder'®.
Clinical Follow-up and Definition of Cuicome

Patient status and treatment-related complications
were followed up by all available means, including
periodic  patient  visits and  selladministered
questionnaires dealing with urinary continence and
erectile function using Functional Assessment of Cancer
Therapy (FACT)} questionnaire. Urinary symptoms
and urinary flow rate analysis were performed using
International Prostate Symptom Score (I-FS5) index
and urowflowmetry'®!'® | Serum PSA was assayed
every 1 to 6 months during follow-up. A postoperative
prostate needle biopsy under TRUS was performed on
all patients at 6 months. The American Society for
Therapeutic Radiology and Oncology (ASTRO)
consensus definition, i.e., three consecutive increases in
post treatment PSA after a nadir has been achieved, was
used to define biochemical failure' . The time to
biochermical failure was defined as midway between the
post treatment PSA nadir and the frst of three
consecutive PSA increases. None of the patients
received androgen deprivatien after HIFU or other

anticancer therapy before documentation of a°

biochemical recurrence. HIFU related complications
were defined by Japanese version of National Cancer
Institute-Common Toxicity Criteria version 2.0'%).
Statistical Analyses

All statistical analyses were performed by the
Department Statistics in Indiana University. The chi-
square test was used to assess the correlation between

preoperative and postoperative  parameters. The
distributions of biochemical disease-free survival times
were calculated according to the Kaplan-Meier curves
and the logrank test was used to compare curves for
groups. All p values less than 0.03 reflected statistically
significant differences.

RESULTS

A total of 75 patients were entered in the trial. The
prostate was treated in 1 (75) or 2 {14) HIFU sessions in
a total of 89 procedures (1.2 sessions/patient). One
patient with stage T1b, 1 patient with a serum PSA of
20.60 ng/ml and 1 patient on whom treatment was
stopped during the procedure because of appearance
with farge microbubbles in the prostate were excluded.
The median age, serum PSA level and prostatic volume
of the 72 patients analysed were 72 yrs (range 45 to 79},
8.10 ng/ml (range 2.10 to 19.80) and 22.1 m! (range 8.5
to 52.8), respectively. The TNM stage was Tlc in 40
patients, T2z in 18 patients and T2b in 14 patients. All
patients had a histological diagnosis of prostatic
adenocarcinoma according to the Gleason grading
system. The Gleason score was 2 to 4in 9 patients, 5 to
7 in 35 patients, 8 to 10 in 6 patients and unknown in 2
patients {Table 1).

The median tume of HIFU treatment and
hospitalization was 169 min (range 65 to 485 min) and
5.0 days (range 2 to 55), respectively. The gland size
decreased from an initial volume of 24.2 ml to a final
median volume of 14.0ml (p <0.01) in 45 patients.
Totally, 49 out of 72 (68% ) had negative follow-up
biopsies at 6 months after HIFU. Biochemical discase-
free survival rates were analyzed in 60 patients. Twelve
patients were excluded from the analysis for
unsatisfactory followup. The median follow-up period
for all patients was 14.0 months (range 2 to 24).
Biochemical disease-free survival rates in all patients at |

Table 1. Characteristics in 72 patients with
localized prostate cancer

79 (45-79)

8.10 ng/ml (2.10-19.80)

99.1 (8.5-52.8)

Median age (range)
Median PSA (range)
Prostate volume (range)
Pretreatment PSA (%) :

10 or less 44 (61)

10.1-20 28 (39)
Clinical stage (%) :

Tle 40 (56}

T2a 18 (23)

T2b 14 (19)
Gleason score (%) :

9-4 9 (18)

5-7 55 (76)

8-10 6 (8)
Unknown 2 (3)
Median mos followup (range)  14.0 (2-24}
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and 2 years were 78% and 76%, respectively (Fig. 3).
Biochemical disease-free susvival rates in patients with
stage Tlc, T2a and T2b groups at 2 years were 89%,
67% and 40% (p = 0.0817, Fig. 4). Biochemical
disease-free survival rates in patients with Gleason 24,
5-7 and 8-10 groups at 2 years were 88, 72% and 80%
(p = 0.6539, Fig. 3). The biochemical disease-free
survival rate in patients whose serum PSA less than 10
ng/ml and 10- 20 ng/ml were 75% and 78% (p=
0.6152).

Prostatic volume was decreased from 24.2 ml to 14.0
ml at 6 months after HIFU (p <0.01, Fig. 6). No
statistically significant difference was noted in I-PSS, Q-
max and FACT quality of life analysis (Fig. 7, 8 and 9).

Prostate Vol.
o) PCo0t
40
35
30 1
25
20 X
15
10
s 14.0
0 ,
pre 8 months
(n=45)
Fig. 6. Changes of prostatic volume.
PSS

12

10
P —_
6 —
4 —
2 N—
D

pra 3 manths 1 yoar
(n=24)

Fig. 7. Changes of
Symptom Score.

International  Prostatic

G-max
{ml/s)

30

25

20

15

19

13.3

pre 6 months

Fig. 8. Changes of maximum fiow rate.

Thirteen out of 72 patients developed a urethral
stricture, 6 and 4 patients developed epididymitis and
prostatitis. Postoperative erectile dysfunction was
noted in 12 out of 51 (39%) patients who were potent
preoperatively. Nephrotic syndrome, transient urinary
incontinence, transit stooly incontinence, balanoposthitis
or retrograde ejaculation was observed in 1 patient each
(Table 2).

For analysis of HIFU treatment using Sonablate
500™, ultrasound imaging for identifying prostate and
quality levels were categorized more than good in
patients with 929%. A transrectal probe was easily
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Table 2. Complications

Complication Grade 1 Grade 2  Grade3  Graded Total
Urethral stricture 0 o 13 G 13
Erectile dysfunction (31 potent patients) 0 o i2 o 12
Epididymitis 2 2 2 0 6
Prostatitis 2 0 2 ] 4
Nephrotic syndrome 0 0 1 0 1
Balanaposthitis 1 0 0 0 1
Uninary incontinence (grade 1) 1 0 0 0 1
Stooly iacontinence 1 0 0 0 1
Retograde ejaculation 1 0 0 0 )
FACT up data in which a complete response was cbtained in
100 669 of patients with no residual cancer (regardless of
g0 T PSA levels) or no increases in PSA levels in three
80 consecutive examinations with a PSA velocity < 0,75
0 ng/ml/year for patients with negative biopsies'®., More
&0 recently, Chaussy and Thuroff summarized clinical
50 outcomes by the ASTRO definition as 84.2% stahility
40 rate in the HIFU group and 80% rate in the
30 combination with transurethral resection of the prostate
20 (TURP) and HIFU group in 1 year'®. In sum-
i0 marizing our clinical outcome using the ASTRO
o po—— . o definition, the biochemically disease-free survival rate
e 159 14 533 was 762 at 2 years follow-up. Patients with stage Tlec,
B4 months 468 141 5.0 T2a and T2b showed resectively 89, 67% and 40%
01 year 462 13.1 59.3 biochemical disease-free survival rates at 2 years follow-
(1=29) up {p=0.0817). The clinical outcome in our series of

Fig, 9. Quality of life change by FACT general
and prostate.

inserted into the rectum in 97% of the patients.
Totally, 96% of the HIFU treatment was categorized as
an easy procedure.

DISCUSSION

In 1995, Madersbacher et al reported the
effectiveness of HIFU in 10 cases of localized prostate
cancer®. Histologically, HIFU-treated lesions of the
prostate demonstrated a coagulation necrosis with sharp
boundaries. In 1996, Gelet et al. reported preliminary
experiences with HIFU using the Ablatherm device
{EDAP-Technomed, Lyon, France) for treating localized
prostate cancer'®. Beerlage et al. reported the results
of HIFU treatments in 111 patients with clinical stage
T1-3NOMO prostate cancer and a PSA level less than 25
ng/ml. The treatment for the first 49 patients was
performed  selectively (ie. unilateral or bilateral
treatment in one or two sessions depending on findings
from TRUS and biopsies) and the whole prostate was
treated in the remaining 62 patients. A complete
response {defined as a PSA level <4.0ng/ml and a
negative biopsy) was achieved in 60% of the whole
prostate treated patients with and in 25% of selectively
treated patients'”,

In 2001, Gelet et al. reported their long-term follow-

patients with preoperative PSA less than 20 ng/ml were
comparable to the outcome of patients treated with
radical prostatectomy®*,

In our series, postoperative urethral strictures at near
verumontanum in the prostatic urethra occurred in 21%
of the patients. Recently, TURP or bladder neck
incision immediately before or after HIFU was found to
reduce the treatment-related morbidity such as postop-
erative prolonged urinary retention, urinary catheter-
ization time and wrinary infection®®?"), Neoadjuvant
hormonal therapy alse might be useful to reduce the
volume of the prostate which can reduce the time of
treatment and rate of morbidity. IHowever, the upper
limit of the gland volume is 50 ml even after reducing the
size of the prostate with necadjuvant androgen
deprivation or TURP in our series. Generally,
radicalism of prostate cancer and preservation of sexual
funetion are always controversial because postoperative
impotence depends on preservation of neuro-vascular
bundles that sometimes includes tumor invasion. In
our study, 39% of the patients exhibited erectile
dysfunction after the HIFU therapy. One out of 12
patients who desired treatment for postoperative erectile
dysfunction recovered with sildenafil citrate. We
considered this rate to be lower than that compared to
radical prostatectomy™ Further experience Is
required to confirm this important conclusion.

D'Amico et al. compared the outcome of a cohort
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treated with 3D-CRT versus a matched cohort treated
with brachytherapy plus external radiation therapy.
The 5-year estimate of PSA failure-free survival rate after
3D-CRT alone was 45% and 67% when both radiation
treatments were combined®?, More recently, Kupelian
et al. compared the biochemical disease-free survival rate
after permanent seed brachytherapy, external beam
radiation therapy (EBRT), combined sceds and EBRT,
or radical prostatectomy for clinical stage T1-2 localized
prostate cancer™ . The 5-year biochemical disease-
free survival rate for radical prostatectomy, EBRT <72
Gy, EBRT >72 Gy, permanent seed brachytherapy and
combined seeds and EBRT wure 81, 51, 81, 83% and
77%, respectively. Although not directly comparable,
the results after treatment with HIFU appear to be
simijar to those after radiotherapy, even when both
brachytherapy and EBRT are combined.

For many reasons, transrectal HIFU appears to be
highly attractive as a minimally invasive treatment for
localized prostate cancer. HIFU treatment requires no
incision or puncture, with no bleeding, can be performed
on an outpatient basis and is repeatable even when
patients with local recurrence have already been treated
with radiation therapy®” . In addition, radiation
therapy including brachytherapy and even surgery can
be performed after HIFU.

Transrectal HIFU has considerable potential as a
noninvasive treatment modality for patients with
localized prostate cancer especially whose PSA less than
20 ng/ml.
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Radical prostatectomy with neoadjuvant hormone therapy for ¢T3 prostate cancer
Hiroyuki Fujimoto
Urology Division, National Cancer Center Hospital

Abstract
The efficacy of necadjuvant hormone therapy and radical prostatectomy for ¢T1-2 pros-
tate cancer have been reported to be negative from some randomized prospective studies.
On the other hand, radical prostatectomy alone for ¢T3 prostate cancer is understood as
out of indication because of high rate of positive surgical margin and PSA failure. Several
investigators have examined the role of neoadjuvant hormone therapy before radical pros-
tatectomy for ¢T3 prostate cancer to improve outcome.

This document was reviewed the literature whether neoadjuvant hormone therapy is
beneficial or not, for organ confined prostate cancer and for locally advanced prostate
cancer, and presented our extended resection of prostate with neoadjuvant hormone ther-
apy is improved the results in ¢T3 prostate cancer.

Key words: radical prostatectomy, neoadjuvant hormone therapy, surgical resection
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%21 Statistically significant differences found ! 3 versus
8 months’ neoadjuvant hormone therapy (NHT) ®

3 months NHT 8 months NHT p—value
presurgery PSA nadir level 35%<0.1ng/d} 73%<0.1ng/d! <0.0001
TRUS prostate volume (mean) | 40.5cm’ to 25.7 em®(37%) 40.5cm?® to 22.8cm*(48%)  0.0001
positive margins after surgery 23% 12% 0.01
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5mNHT 0.60 0.38-0.94

1 Kaplan—-Meier curves for disease—free survival
until PSA failure and Hazard ratios”
3m: 3 months, 5m: 5 months, NHT: neoadjuvant hormone therapy,

RP: radical prostatectomy
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