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of Small Nodules Detected by CT?
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Rationale and Objectives. To evaluate how computer-aided diagnosis (CAD) can improve radiologists’ recommendations
for management of possible early lung cancers on CT.

Materials and Methods. Twenty-eight lung cancers and 28 benign lesions were employed, Each group of 28 lesions was
classificd into subgroups of two sizes (9 between 6 and 10 ram and 19 between 11 and 20 mm) and three paticrns {8 with
pure ground glass opacity [GGOY, 12 with mixed GGO and 8 solid lesions). Sixteen radiologists participated in the ob-
server study, first without and then with CAD. Radiolegists’ recommendations, including () follow-up in 12 months. (2}
in 6 months, (3} in 3 months, or (4} biopsy, were compared at three levels of their malignancy probability ratings (low:
196-33%; medium: 34%-66%; high: 67%-99%) for 896 observations (56 lesions by the 16 radiologists) in the two size
subgroups and three patterns.

Results. The number of recommendations changed by radiologists by use of CAD was 163 (18%) among all 896 observa-
tions. Among these changed recommendations. the {raction showing a beneficial effect from CAD was 68% (111/163),
and the fraction showing a beneficial effect regarding biopsy recommendations was 69% (48/70). With CAD, the radiolo-
gists’ performance regarding biopsy recommendations was significantly improved for 43 lung cancers (31 changed to bi-
opsy versus 12 changed away from biopsy; P = .003) and was also improved for 27 benign lesions (10 changed to biopsy

versus 17 changed away from biopsy; P = .18). Most of the cancers with improved recommendations were solid lesions
or inixed GGO and relatively large.

Conclusion. CAD has the potential to improve the appropriateness of radiologists’ recommendations for small malignant
and benign lesions on CT scans.
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Among diagnostic imaging modalities, computed tomog-
raphy (CT) has the highest sensitivity for detection of
small pulmonary lesions. However, it is difficult for radi-
ologists to correctly distinguish cancers from noncancer-
ous lesions (false positives) and to make appropriate and
consistent recommendations management of patients with
suspicious lesions. On the one hand, a large number of
false positives will lead to unnecessary patient anxiety
and will increase the increased economic costs and radia-
tion exposure. A high rate of false positives can also lead
to unnecessary investigation such as CT scans, biopsy,
and even surgery. On the other hand, in the case of lung
cancers (true positives), if radiologists fail to make an
apprepriate recormendation such as biopsy or surgery,
the patients may miss an opportunity for cure.

The Food and Drug Administration has approved the
clinical use of some computer-aided diagnosis (CAD)
detection systems in screening for clinical use, especially
for breast cancer screening on mammography in the
United States. Gur et al (1) reported that the introduction
of detection CAD into a large clinical practice {115,571
screening mammograms) was not associated with stati-
cally significant changes in both recall and breast cancer
detection rates. Commercially available detection CAD
systems show marks, including true positives {cancers)
and false positives (noncancerous lesions also anatomic
structures), on each whole image (1--3). Recently, auto-
matic classification CAD schemes for distinction ol ma-
lignant and benign iesions have been developed in some
universities {(4~8) that show an estimated likelihood of
malignancy for each segmented lesion based on its image
features, Some observer studies using mammograms re-
ported that classification CAD had a beneficial effect for
radiologists’ diagnostic accuracy for classifying malignant
and benign breast masses and their recommendations re-
garding biopsy (5,6).

It is important that a larger database, including large
number of lesions and a variety of lesion patterns, be
used for developing classification CAD. The thin-section
CT database for developing our classification CAD
scheme used in this study comprised follow-up exams
obtained from a 3-year CT lung cancer screening program
(17,892 examinations). The database included 61 primary
lung cancers (size range 6—19 mm; mean 12 mm) and
183 benign nodules (size range 3-20 mm; mean 7 mm)
with three different patterns (8,9). We have reported (8)
that our CAD scheme has the potential to improve radiol-
ogists’ diagnostic accuracy for lesion classification and
also to improve radiologists’ recommendations in an ob-
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server study. The data analysis in the previous report (8)
was independently calculated for 16 observers, and the
radiologists’ recommendations were improved by increas-
ing the number of biopsy recommendations for actual
carly cancers (statistically signtficant) and by reducing the
number for actual benign ones (not significant) in an ob-
server study. The current study used the same data from
the same observer test as used previously (8). Our pur-
pose in this study was to evaluate further how CAD can
assist radiologists in their recommendation management
of possible early lung cancers that have different sizes
and patterns.

Institutional review board approval and informed ob-
server consent were obtained.

Database

Our database was obtained as part of an annual 3-year
CT screening for lung cancer in a general population in
Nagano, Japan (8,9), which included 59 patients (27 men,
32 women, mean age G4.6 years) with 61 primary small
lung cancers (mean size 12.3 mm; size range 6-20 mm;
18 nodules with pure ground glass opacity [GGO]; 28
with mixed GGO; and 15 with solid opacity), and 169
patients (99 men, 70 women, mean age 61.6 years} with
183 benign lesions {mean size 7.2 mm; size range 3-20
mm; 12 with pure GGO, 30 with mixed GGO, and 141
with sclid opacity). All patients gave informed consent.
All cancers were confirmed by surgery, and benign le-
sions were confirmed by surgery or follow-up (resolved
or no change for 2 years or more). The mean size {aver-
age length and width) of each nodule was recorded by
one radiologist (F.L.). The three types of patterns of these
lesions, including pure GGO, mixed GGO, and solid
opacity, were viewed independently and grouped by three
radiologists (F.L. among them) without knowledge of the
final diagnosis, and then a consensus was reached through
discussion. Thin-section CT scans were performed on a
helical scanner (CT HiSpeed Advantage, GE, Milwaukee,
WI) with a standard tube current {200 mA) to cover the
entire lesion, with 1-mm collimation and a bone recon-
struction algorithm with a 0.5-mm interval.

CAD
With our CAD scheme, the nodules were segmented
automatically by use a dynamic programming technique.



The technique has been described in detail elsewhere (7).
A total of 41 and 15 image features based on two-dimen-
sional and three-dimensional volume data, respectively,
were determined from guantitative analysis of the nodule
outline and pixel values. Linear discriminant analysis was
employed for distinguishing benign from malignant nod-
ules, The performance of this CAD scheme was evaluated
based on a “leave-cne-out” testing method by use of 61
malignant and 183 benign nodules. For the input of the
linear discriminant analysis, we selected many combina-
tions from 56 features and two clinical parameters {age
and gender). The final features included effective diame-
ter, contrast, margin or edge, shape, attenuation, and in-
ternal homogeneity of the segmented nodules.

Our computerized classification mcthod outputs a per-
centage (1%—-99%) indicating the likelihood of malig-
nancy. The performance of the classification scheme
yielded an A, value of 0.937 (0.934 for lesions at 6-10
mm, 0.855 for lesions at 1120 mm, 0.219 for nodules
with pure GGO, 0.852 for nodules with mixed GGO, and
(.957 for solid nodules) for distinction between 61 lung
cancers and 183 benign nodules.

Case Selection

Twenty-eight patients {mean age 63.4 years; 14 men
and 14 women) with lung cancers and 28 patients (mean
age 64.2 years; 17 men and 11 women) with benign le-
sions on thin-section CT were included in this observer
study. The 28 malignant lesions were randomly selected
from 61 lung cancers, and the 28 benign lesions were
selected by matching of their size and pattern to the can-
cers from 183 benign lesions among our database. For
both cancers and benign lesions, 9 lesions were in the
range of 6-10 mm and 19 lesions in the range of 1120
mm; the lesion patterns were 8 pure GGO, 12 mixed
GGO, and 8 solid opacity. The performance of the classi-
fication scheme yielded an A, value of 0.831 (0.842 for
lesions at 6—10 mm, 0.870 for lesions at 11-20 mm,
0.910 for nodules with pure GGG, 0.814 for nodules with
mixed GGO, and 0.783 for solid nodules) for the 28 lung
cancers and 28 benign nodules. The 56 lesions used in
this observer study were the largest number of lesions
that could be matched in size and pattern between the 183
benign lesions and the 61 lung cancers in our database,

The 28 cancers included 19 well-differentiated adeno-
carcinomas, 5 other adenocarcinomas, 2 squamous cell
carcinomas, and 2 localized small-cell carcinomas.
Among the 28 benign lesions, 2 (inflammatory pseudo-
tumor and sclerosing hemangioma) were confirmed by

surgery, 19 had resolved on follow-up examination, and 7
had not changed for 2 years or more.

Observer Study

Sixteen radiologists (H.M. among them) participated in
this observer study. The 16 radiclogists, including 7 chest
radiologists and 9 general radiologists, have a mean of 14
years of experience (range 7-26 years). Consecutive re-
gion of interest images for each lesion on thin-section CT
were presented for interpretation by use of a cine-type
display on a high-resolution CRT monitor. The window-
ing was initially sel at a width of 1500 Hounsfield units
and a level of =550 Hounsfield units, but conld be ad-
justed by the observer. In addition, zooming capability
was provided. Two clinical parameters (age and gender)
were provided to the observers on the monitor.

It was explained to the observers that the purpose of
this study was to assist radiologists in distinguishing be-
nigh from malignant lesions on thin-section CT by use of
a CAD scheme. The observers were informed that the
lesions used in this study were obtained from an annual
3-year CT screening for lung cancer in a general popula-
tion in Japan. The instructions for the observers included
(a) the role of CAD output as a “second opinion;” (b) 28
malignant (6—10 mm: 9 cases; 11-20 mm: 19 cases; and
pure GGO: 8 cases, mixed GGO: 12 cases, and solid
opacity: 8 cases) and 28 benign lesions {matched to the
cancers in size and pattern) are included in this study; (¢)
the sensitivity and specificity of our CAD scheme, for a
threshold of 50% likelihood of malignancy, are 80% and
75%, respectively; (d) click on a bar (left: benignancy,
right: malignancy) on the screen by using a mouse to in-
dicate your confidence level regarding the likelihood of
malignancy (from 1% to 99%) of a lesion first without
and then with computer output; and (e) after indicating
your confidence {without and with CAD), click on one of
four recommendations: (1) return to annual screening, in
12 menths; (2) follow-up in 6 months; (3) follow-up in 3
months; or (4) biopsy/surgery.

For a training session belore the test, we provided five
different cases so that the observers could leam how to
operate the cine mode interface and how to take into ac-
count the computer output in their decision. There was no
pretest training regarding interpretative guidelines for rec-
ommendations to radiologists. Radiclogists’ recommenda-
tions without and with CAD were freely decided by each
of the observers in this observer study. The reading time
was not limited. The average reading time for 56 test
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cases by 16 radiologists was 46 minutes (range 28-100
minutes; 0.82 minute per case).

Data Analysis

The radiologists’ recommendations without and with
CAD were analyzed for 896 observations (56 lesions by
the 16 radiologists) and were compared at three levels of
malignancy (low: 1%-33%; medium: 34%—66%; and
high: 67%-99%) for malignant and benign lesions. The
test for proportion was used for comparison of the differ-
ence in changes on recommendations between those hav-
ing 4 beneficial and those have a detrimental elfect from
CAD for malignant and benign lesions. A chi-square test
for independence was used for comparison of the differ-
ence in the proportions between radiclogists’ biopsy rec-
ommendations without and with CAD. The recommenda-
tions were further classified as “biopsy” and “other” for
highly suspicious lesions for which the radiologists indi-
cated their confidence ratings to be 67%~99%. The chi-
square test {including a multiple-group test} was used in-
dependently for comparison of the difference between (1)
lesion sizes (lesions at 610 mm and those at 11-20 mm)
and (2} lesion patterns (pure GGO, mixed GGO, and solid
opacity) for biopsy recommendations on these highly sus-
picious lesions, without and with CAD.

Figure 1 shows the correlation between computer out-
put and change in the 16 radiologists’ recommendations
for 896 observations. With CAD, the fraction by which
the radiologists changed their recommendations was 18%
(163/896), including 18% (80/448) for cancers and 19%
(83/448) for benign lesions. Among these changed recom-
mendations, the {raction having a beneficial effect (malig-
nant: step up; benign: step down) was 68% (111/163),
and the fraction having a detrimental effect (malignant:
step down; benign: step up) was 32% (52/163) because of
CAD (test for proportion, P <¢ .001). The fractions hav-
ing a beneficial effect from CAD were 78% (62/80) and
59 % (49/83) for cancers and benign lesions, respectively.

Among the 62 observations for cancers with a benefi-
cial effect, 31 (50%) were changed from follow-up to a
biopsy recommendation by 11 radiologists. Among the 49
observations for benign lesions with a beneficiai effect,

17 (35%) were changed from biopsy recommendation to
follow-up by 9 radiologists. Figure 2a shows a cancer in
which the CAD helped four radiologists to improve their
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Figure 1. Graphs show the correlation between computer out-
put and change in recommendations for 448 cbservations (28
cancers by 16 radiclogists) {a} and 448 observations (28 benign
lesions by 16 radiologists) {(b}. The four recommendation steps
are (1) follow-up in 12 months, (2} follow-up in 68 months, (3) fol-
low-up in 3 months, and (4) biopsy. The numbers on the Y axis
show the differences in recommendation indices between the
without computer-aided diagnosis (CAD) and with CAD condi-
tions: no change (0), step up (1, 2, and 3}, and step down (-1, -2,
and -3). The number of recammendations changed by radiclo-
gists by use of CAD was 163 (18%) for all 896 observations.
Among these changed recommendations, the fraction toward a
beneficial effect {malignant: step up; benign: step down) because
of CAD was 68% (111/163) {F < .001}.

recommendation {rom follow-up to biopsy. Figure 2b
shows a benign lesion in which the CAD helped four ra-
diologists to improve their recommendation from biopsy
to follow-up.

Table 1 lists the number of lesions grouped based on
radiologists’ confidence ratings at three levels and recom-
mendations in four steps for 896 observations (448 malig-
nant and 448 benign) without and with CAD. There
was no statistical significance in the biopsy recommen-
dations between radiologists without and with CAD for
cancers (38% = 170/448 versus 42% = 189/448, P =
.22), although the number was increased from 170 to
189. For benign lesions, there was also no statistical
significance in biopsy recommendations (13% = 57/
448 versus 11% = 50/448; P = .54). The results indi-
cate that the effect was not significant in the total pro-
portion of radiologists’ recommendations regarding bi-
opsy by use of CAD.



Figure 2. Thin-section computed tomography images in two pa-
tients. (a} Computer-aided diagnosis (CAD) (likelihood of malig-
nancy: 71%) helped four radiclogists to alter their recommenda-
fion from follow-up to biopsy for a 47-year-old man with a squa-
mous cell carcinema. (b) CAD {likelihood of malignancy: 5%)
helped four radiologists to alter their recommendation from bi-
opsy to follow-up for a 63-year-old man with a berign lesion (no
change for more than 3 years).

Table 2 shows the distribution of size and pattern of
lesions for which radiologists made biopsy recommenda-
tions without and with CAD. The difference was statisti-
cally significant between a beneficial effect (benign: re-
moved from biopsy; malignant: added to biopsy) and a
detrimental effect (benign: added to biopsy; malignant:
removed from biopsy) because of CAD (69% = 48/70
versus 31% = 22/70, test for proportion, P = .002). The
difference was statistically significant between a beneficial
effect and a detrimental effect with CAD for cancers
(72% = 31/43 versus 28% = 12/43; P = .003}, but the
difference was not statistically significant between them
with CAD for benign lesions (63% = 17/27 versus
37% = 10/27; P = .18). The results indicate that the
changes regarding biopsy recommendations from CAD
occurred less frequently for small lesions and lesions with
pure GGO.

Table 3 shows the proportion of high confidence rat-
ings (67%-99%) and recommendations for all lesions
(malignant and benign) in three subgroups. The difference
was statistically significant in the fraction of biopsy rec-
ommendations without CAD between lesions at 6—10 mm
and lesions at 11-20 mm (32% = 10/31 versus 77% =
158/204; P < .001). The difference also was statistically
significant tor the fraction of biopsy recommmendations
with CAD between the 6- to 10-mm lesions (31% = 11/
35) and the 11- 20-mm lesions (73% = 185/2532) (P <
.001). The difference was statistically significant in the
fraction of biopsy recommendations without CAD within
three patterns (pure GGOs: 27% = 12/44; mixed GGOs:
81% = 81/100; and solid lesions: 82% = 75/91; multi-
ple-group test P << .001). Further, the difference was sta-
tistically significant for the fraction of biopsy recommen-
dations without CAD between pure GGOs and mixed
GGOs (P < .001) or solid lesions (P << .001). There was
no statistically significant difference hetween the mixed
GGOs and solid lesions without CAD (£ = .95). The
difference also was statistically significant for the fraction
of biopsy recommendations with CAD within pure GGOs
(26% = 16/62), mixed GGOs (78% = 92/118), and solid
lesions (82% = 88/107) (P < .001), and between pure
GGOs and mixed GGOs (P < .001) or solid lesions (P <
.001). There was no statistically significant ditference be-
tween the mixed GGOs and solid lesions with CAD (P =
.53). The results indicate that radiologists also did not
often recommend biopsy for the lesions between 6 and 10
mm and pure GGO lesions even when they indicated a
high level of suspicion for cancer, regardiess of CAD.
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Table 1
Number of Lesions Grouped Based on Three Levels of Radiologists’ Confidence and Four Different Recommendations for
Lesions Without and With Computer-Aided Diagnosis (CAD)

Confidence Levels Without CAD GConfidence Levels With CAD

1%-33% 34%-66% 67%-99% 1%-33% 34%-66% - 67%-99%

Recommendations Malignant/Benign Total Malignant/Benign Total

Biopsy 1/0 32/26 137/31 170/57 1/0 22/20 166/30 189/50
Other 79/269 141/118 58/9 278/391 63/287 118/98 78/13 259/398

Follow-up in 12 months 15/98 5/7 0/0 20/105 7/94 3/5 0/0 10/99
Follow-up in 6 months 39/92 48/27 Ya 94/120 29/110 41/28 9/1 79/139
Follow-up in 3 months 25/79 88/79 51/8 164/166 27/83 74/65 69/12 170/160
Total 80/269 173/139 195/40 448/448 64/287 140/118 244/43 448/448

Data are total 896 observations (56 lesions by 16 radiologists), including 448 observations with cancers (28 lesions by 16 radiologists)
and 488 observations with benign nodules (28 lesions by 16 radiologists). There was no statistical significance in-the biopsy recommen-
dations between radiologists without and with CAD for both cancers (38% = 170/448 versus 42% = 189/448; P ='.22) and benign le-
sions (13% = 57/448 versus 11% = 50/448; P = 54).

Table 2
Distribution of Lesion Sizes and Patterns for which Radiologists Made Biopsy Recommendations for Lesions Without and
With CAD

Biopsy Recommendations
Without CAD

Biopsy Recommendations
With CAD

Number (n = 70) With Beneficial
(Detrimental) Effect From CAD

Malignant (n = 43)/Benign (n = 27)

Malignant/Benign Malignant/Benign

Total 170/57 189/50 31 (12)/17 (10)
Size
6- to 10-mm lesion 12/5 131 3 (2)/4 (0}
11- to 20-mm lesion 158/52 176/49 28 (10/13 (10)
Pattern
Pure GGO 14/3 15/4 4(3)/0 (1)
Mixed GGO 82/20 89/11 13(6)/10(1)
Solid 74/34 85/35 14.(3)/7 (8)

CAD, computer-aided diagnosis; GGO, ground glass opacity.

The difference was statistically significant between beneficial effect (malignant: 31 added to biopsy; benign: 17 removed from biopsy)
and detrimental effect (malignant: 12 removed from biopsy; benign: 10 added to biopsy) with CAD:(69% = 31 + 17/70 versus 31% =
12+10/70; P < .002). The difference was statistically significant between a beneficial effect and a detrimental effect with CAD for can-
cers (72% = 31/43 versus 28% = 12/43; P = .003), but the difference was not statistically significant between them with- CAD for be-
nign lesions (63% = 17/27 versus 37% = 10/27; P = .18). Also the results indicate that the changes regarding biopsy recommendations
due to CAD were less occurred for small lesions and lesions with pure GGO.

mendations concerning different lesion sizes or patterns and
why radiologists changed their recommendations for some

Radiologists’ recommendations with use of CAD have
been investigated in several observer studies (3,5,6). Some
studies showed that there was a significant beneficial effect
resulting from classification CAD by increasing biopsy rec-
ommendations for breast cancers (5,6) with reduction (6) or
no significant change in biopsy recommendations (5) for
benign masses. In these studies, no further details were
given for the effect of CAD on radiologists’ recommenda-
tions—for example, how CAD affected radiologists’ recom-
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lesions, but not others.

Observer studies with pulmonary nodules indicated
similar results for the improvement of radiologists’ per-
formance in detecting lesions and distinguishing benign
from malignant lesions on chest radiographs (10-12)
and on chest CT scans (8,13-16). In our recent CT
studies, we also asked radiologists to indicate their rec-
ommendations after they detected suspicious lung le-
sions (16) or after they had classified small lesions as



Table 3

Proportion of High Confidence Ratings (67%-99%) and
Recommendations for All Lesions (Malignant and Benign)
in Three Subgroups

Biopsy Biopsy
Recommendations Recommendations
Without CAD With CAD
Size
6- to 10-mm
lesion 32% (10/31) 31% (11/35)
11- to 20-mm
lesion 77% (158/204) 73% (185/252)
Pattern
Pure GGO 27% (12/44) 26% (16/62)
Mixed GGO 81% (81/100) 78% (92/118)
Solid lesion 82% (75/91) 82% (88/107)

CAD, computer-aided diagnosis; GGO, ground glass opacity.

The difference was statistically significant regarding the fraction
of biopsy recommendations between the 6- to 10-mm lesions and
the 11- to 20-mm lesions without (32% versus 77%; P < .001)
and with (31% versus 73%; P < .001) CAD, and between pure
GGOs and mixed GGOs or solid lesions without (27% versus
81% or 82%; P < .001) and with (26% versus 78% or 82%; P <
.001) CAD. The results indicate that radiologists did not often rec-
ommend biopgy for small lesions and lesions with pure GGO,
even when their level of suspicion for cancer was high, regardiess
of CAD.

malignant or benign (8). The results indicated that our
detection CAD scheme significantly improved radiolo-
gists’ recommendations for small-cell lung cancers with-
out any significant detrimental effect for false positives on
thick-section CT (16). Our classification CAD scheme
also significantly improved radiologists’ recommendations
for early lung cancers, without any significant detrimental
effect for small benign lesions on thin-section CT (8).
Our purpose in this study was to further evaluate how
classification CAD can assist radiologists in improving
their recommendations for two sizes (610 mm and
11-20 mm) and three patterns (pure GGO, mixed GGO,
and solid lesion) of early lung cancers compared with
benign lesions.

The findings in the previous work indicated that the
improvements in radiologists’ confidence ratings resulting
from CAD were relatively uniform; the average A, value
was improved from 0.785 to 0.853 for all lesions, includ-
ing from 0.812 to 0.892 for nodules with pure GGO;
from 0.819 to 0.863 for nodules with mixed GGO; and
from 0.784 to 0.844 for solid nodules (8). However, the
results of the current study indicated that the improve-
ment of radiologists’ biopsy recommendations resulting
from CAD occurred mostly for larger lesions (11-20 mm)

and lesions with mixed GGO or solid opacity. In other
words, the current study indicated that the changes in bi-
opsy recommendations were often dependent on lesion
sizes or patterns. Radiologists’ recommendations regard-
ing biopsy were not often changed for smaller lesions or
lesions with pure GGO resulting from CAD although the
performance of CAD was also good for classification of
these lesions.

We did not give any pretest training regarding inter-
pretative guidelines for recommendations to radiologists
in this observer study. However, several CT studies re-
garding the frequency of malignancy in different sizes
and patterns, and regarding the growth rates of the can-
cers in different patterns, have been published previously
(17-26). In the past decade, CT has been applied widely
for early lung cancer screening (17-25), and radiologists
have learned how lesion size and pattern relate to the
probability of malignancy, and how histology affects tu-
mor morphology. For example, the frequency of malig-
nancy was very low for lesion sizes smaller than 10 mm
in diameter in a screening program (23), and also in a
clinical study (26). GGO lesions are more likely to be
malignant than are solid ones in CT screening programs
for lung cancer (9,24). In Hasegawa’s series, almost all of
the GGO lesions were slowly growing lung adenocarcino-
mas and the mean volume-doubling time of tumors with
pure GGO was very long (more than 800 days) (25). Re-
cently, guidelines for management of small pulmonary
nodules detected on CT scans have been published (27).
In the statement from the Fleischner Society (27), biopsy
recommendations are only suggested as an option for le-
sions larger than 8 mm, whereas long follow-up intervals
are appropriate for pure GGOs or very small opacities.
These data help explain why radiologists in our study did
not often recommend biopsy, even when their level of
confidence for cancer was high, regardless of CAD, for
the smaller and nonsolid lesions. We believe that radiolo-
gists’ propensity to recommend biopsy may depend on
their perception as to whether the lesion, if cancerous, is
likely to grow quickly.

The limitations in this study include the small numbers
of malignant and benign lesions. However, the dataset
was obtained from a lung cancer CT screening program,
which included three different CT patterns for both malig-
nant and benign lesions. We believe that it is more diffi-
cult for to distinguish small benign lesions from early
lung cancers in similar patterns, especially when distin-
guishing those lesions with GGO. Therefore, we used a
special case subset, which included the most difficult

949

133



cases in differentiating benign from malignant lesions, in
this observer study. There was no case hias for malignant
lesions because the 28 lung cancers used in this observer
study were selected randomly among our database, and
only the 28 benign lesions were selected by maiching
their patterns and sizes to the cancers. Importantly, with
our CAD scheme, the radiologists’ performance was im-
proved regarding biopsy recommendations for solid le-
sions or lesions with mixed GGO at relatively larger
sizes. CAD has the potential to be useful for improving
management of patients with small lung lesions on CT in
clinical practice or in lung cancer screening programs.
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ABSTRACT

The purpose of our research is to make clear the mechanism that a reader (physician or radiological technologist)
effectively identify abnormal findings in CT images of lung cancer screening by using with CAD system. A method
guessing the 2X2 decision matrix between reader / CAD and reader / reader with CAD was investigated. We suppose
the next scene to be it. At first, a reader judges whether abnormal findings per one patient per one CT image are present
(1) or absent (0) without CAD results. The second, a reader judges whether abnormal findings are present {1) or absent
(0) with CAD results. We expresses the correlation between diagnoses by a reader and CAD system for abnormal cases
and for normal cases by following formula using phi correlation coefficient:p=(cd-ab)/N(at+c)(b+d)(b+c)(a+d). a,b,c,d:
2X2 decision matrix parameters. If TPR1=(at+c)y/n, TPR2=(b+c)/n and TPR3=(atb+cyn for abnormal cases,
TPR3=TPR1+TPR2 - TPRIxTRR2 - ¢¥TPR1(1-TPR1)TPR2(1-TPR2). Therefore, a=n (TPR3 - TPR1), b=n (TPR3 -
TPR2), ¢=n (TPR1 + TPR2 -TPR3), d=n (1.0 - TPR3). This theory was applied for the experimental data. The 41
students interpreted the same CT images [no training]. A second interpretation was performed after they had been
instructed on how to interpret CT images ftraining], and third was assisted by a virtual CAD [training + CAD]. The
mechanism that makes up for a good peint of a reader and a CAD with CAD in interpreting CT images was theoretically
and experimentally investigated. We concluded that a method guessing the decision matrix (2X2) between a reader and

a CAD decided the” presence” or “absence” of abnormal findings explain the improvement mechanism of diagnostic
performance with CAD system.

Keywords: mechanism of double check, CAD, TNR, TPR, decision matrix, phi coefficient

1. INTRODUCTION

With advances in the development and technical performance of CAD, the need has arisen to study how CAD affects
human readers, and the mechanism by which CAD improves diagnostic accuracy. Such research should lead to an
elucidation of the circumstances in which the use of CAD will prove beneficial. At present, many of the research papers
showing that CAD assistance improves diagnostic accuracy compared the accuracy of detection or differential diagnosis
for a human reader working independently, with that obtained for a reader plus CAD output, by analysis of receiver
operating characteristic (ROC) curves or by the area under the ROC curve (Az) .

To demonstrate whether or not CAD is actually useful in the clinical arena, we propose that CAD assistance should be
evaluated by a single operating point {diagnosis of 0 or I: binary protocol) on the ROC curve used in the clinical setting,
rather than by the ROC curve overall. In brief, we propose a binary protocol in which the benefit of CAD is evaluated in
accordance with the practice of informing the patient of the diagnostic result of 0 or 1, with reference by the reader to
the CAD output as 0 or 1. To corroborate the validity of this protocol, we conducted a reading experiment for CT
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images, and applying this protocol to the reading data, we evaluated CAD performance (complementarity) and reader
performance (CAD consultation capacity, reading reproducibility). Via the above research process, we explain the
mechanism by which CAD assistance improves diagnostic accuracy.

2, THEORETICAL DISCUSSION

We propose the following model to explain the mechanism by which diagnostic accuracy is improved by the use of
CAD.

2.1 The protecol for CAD assistance studied in this research

The CAD protocol studied in this research is shown in Figure 1. First, a human reader and CAD independently read the
same image database. Next, the reader reads each image with reference to the CAD output (hereafter, abbreviated as
reader +CAD). The reader reads all images twice.

l Medical Image ’l

CAD Qutput (0, 1) Reader reads image and gives diagnosis (0, 1)
W
> Reader consults CAD output and gives diagnosis (0, 1)

inform patient of result {0, 1)

Figure 1 Standard Protocol for CAD Use.
0: Detailed examination not required, 1: Detailed examination required, or follow-up (Not the same as

“ detailed examination not required”) In the clinical seiting, diagnoses of 0 and 1 by reader and CAD are
fundamental.

2.2 Format of image diagnosis results in this report

The diagnoses produced by a reader, CAD, and reader +CAD are assumed (o be responses of either O or 1 {normal or
abnormal, or lesion absent or present) for the patient's CT image as a whole. For responses according to a continuous
scale of percent-confidence level (0-100%), a level in the range 0-49% is classified as 0 and in the range 50-100% as 1.
When the results are displayed in the ROC curve coordinate system (X-axis, FPR=1-TNR: 0-100%: Y-axis, TPR:0-

100%), the diagnostic accuracies for reader, CAD, and reader +CAD are displayed as a pair of TNR and TPR values for
each.

2.3 Effect of CAD assistance studied in this chapter

Figure 2 shows a typical example, displayed in the ROC curve coordinate system, of the results of diagnosis of 0 or 1
for reader, CAD, and reader +CAD for a certain image database. It shows that a reader with the performance
represented by the point (TNR1, TPR1} on the ROC curve obtained the result represented by the point (TNR3, TPR3)

on the ROC curve after consulting the output of the CAD system with performance represented by the point (TNR2,
TPR2) on the ROC curve.

When the reader and CAD results were as shown in Figure 2, the reader +CAD results can be divided into any of the
following three regions. First, that both the reader +CAD's TNR3 and TPR3 values are better than those of the reader
and CAD. In the second region, one of the reader +CAD's TNR3 or TPR3 values is better than those of the reader or

CAD, but the other was worse. In the third region, both the reader +CAD's TNR3 and TPR3 values are worse than those
of either reader or CAD.

The results for reader +CAD in the first region show that CAD assistance was clearly worthwhile. The results for the
third region show that there was clearly no value in the use of CAD. The resulis for the second region produce divergent
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evaluations. In brief, CAD assistance may be worthwhile when TNR3 (reader +CAD)>TNRI (reader) or TPR3>TPRI1.
At this time, it was not possible to improve on the results for CAD alone, even after referring to the CAD output when
TNR3<TNRZ2 or TPR3<TPR2. However, because the results for the reader alone were improved by consulting the CAD
output, we can conclude that the use of CAD was worthwhile. In the opposite case, there was no value to using CAD. In
brief, this refers to the situation when TNR3<TNR1 or TPR3<TPR1. Even if TNR3>TNR2 or TPR3>TPR2, the resuit
for reader +CAD is worse than that obtained for the reader alone, and the CAD information is not usefui for the reader.
Further, in the situation TNR3=TNR1 or TPR3=TPR1 too, there is no value in using CAD. The fact that the same result
was obtained with CAD assistance as for CAD alone may have significance for reconfirmation, but the time and effort
required to read the same image twice raises doubts from the standpoint of labor saving.

In the present report, we separately discuss for normal and abnormal groups with definitive diagnoses, the framework
(theory) in which the results TNR3>TNRI and TPR3>TPRI1 are produced in the first and second regions of Figure 2.

Diagnosis Results

ol N :\\""‘:'
Read‘?ﬁ CAD S Reader CAD R+C Naormal Abnormal
& FP TP
i TN* FN*
; - ' CAD 1
8 a ] Ep* TP
= Aeader )
= TN FN*
(3) L Fp* TP
v}
0 TN FN*
1 % "
0 FP TP
0 TN FN

FFR Figure 3 Correspondence between the 0 and 1 diagnoses

Figure 2 Three regions of the Reader for reader, CAD, and reader +CAD. No asterisk: The case
+CAD results when the reader and satisfied the criteria (i), (ii), (iii} for CAD consultation,
CAD resulis were as shown in Figure Asterisk: "CAD-noncompliant responses”.

2.4 Establishment of criteria for CAD consultation

The correspondence between the 0 and 1 diagnoses for reader, CAD, and reader +CAD—in accordance with the
protocol for CAD use (Figure I)}—and the definitive diagnoses (true response)” is shown in Figure 3. Here, the criteria
for CAD consultation to be satisfied by the reader for the 100% effective use of CAD output, via the opportunity of
reading each image twice, while maintaining the consistency of diagnosis, are set out as foilows.

(YA true response by a reader leads to a true response for reader +CAD, regardless of the truth/falsity of the CAD
Tesponse.

(iiYThe reader response is false, but a true response for CAD leads to a true response for reader +CAD,
(tii)False responses by both reader and CAD also lead to a false response for reader +CAD.

The responses for reader +CAD can be divided into responses that satisfy the above three CAD consultation criteria
(Figure 3, no symbol) and those that do not satisfy them (hereunder, denoted as a "CAD-noncompliant responses".
Figure 3, asterisk). These are respectively the true responses (TN or TP) and false responses (FP or FN).

As shown in Figure 3 for example, in a situation when the reader diagnosis is | and the CAD diagnosis is also 1, a
diagnosis of | by the reader +CAD is compliant with CAD consultation criterion (jii} in a normal individual, and is FP
{false positive). In contrast, a diagnosis of 1 by the reader +CAD is compliant with criterion (i) in an abnormal
individual, and is TP (true positive). If the reader diagnosis is I, the CAD diagnosis is also 1, and the reader +CAD
diagnosis is 0, then this diagnosis in a normal individual is noncompliant with criterion (iii) (noncompliant response:
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based on inconsistency with the reader diagnosis), and the result is TN* {true response). In contrast, in an abnormal
individual, it is noncompliant with criterion (i) {noncompliant response), and the result is FN* (false response). When
the reader diagnesis is 1, the CAD diagnosis is 0, and the reader +CAD diagnosis is 1, this is a noncompliant response in
which criterion (ii} has not been satisfied in a normal individual, and is FP* (false response). In contrast, the same
pattern for an abnormal individual produces a TP (true response). Further, when the reader diagnosis is 0, the CAD
diagnosis is 1, and the reader +CAD diagnosis is 1, the result in an abnormal individual is a FP* (false response), as a
consequence of noncompliance with criterion (i). In contrast, the same pattern in which criterion (if) is satisfied in an
abnormal individual produces a TP (true response).

Inference > Analogy
[nference e Analogy
CAD Reader+CAD CAD Reader+CAD
0 ; G 1 0 i 0 1
0 G a 0 | Cmatc| aA=p | atc 0 ¢ a 0 C=c | A=a
Reader ate Reader Reader TC Reader are
! b | d o U Bb | D¢ | bea L d b P B=0 [ p=bed| brd
btc  atd {m) atb+c d (m) b+e a+d (n) c a+b+d ()
{1) Normal Group 3] 3) Abnormal Group (4)
m=a+btc+d n=atb+etd

Figure 4 Estimation of 4-way contingency table for reader/CAD to achieve the reader +CAD

2.5 Four-way contingency tables based on diagnoses of 0 and 1 by reader/CAD and reader/reader +CAD

Figure 4 shows the results obiained when the same image database is independently read by a reader and CAD, and a 4-
way {2 x 2) contingency table (hereunder, abbreviated to "contingency table") is displayed for the differences between
reader and CAD diagnoses for the normal group and abnormal group,. Figure 4 (1) and (2) show contingency tables for
the normal group and Figure 4 (3) and (4) for the abnormal group {(NB: hereunder in this text, the contingency table
parameters are similarly displayed as a, b, ¢, and d. Note that a, b, ¢, and d>0.)

Figure 4 (2) shows a contingency table (A, B, C, D>0) for the normal group and abnormal group displaying the
differences between diagnoses of the reader and reader +CAD in situations when the CAD consultation criteria (i), (ii},
and (iii) are completely satisfied by the reader (Figure 3 CAD-noncompliant response 0: in all asterisked cases), for the
normal group, with Figure 4 (2). In brief, in accordance with CAD consultation criterion (i), A=0, C=a+c. In accordance
with CAD consultation criterion (ii), B=b and in accordance with CAD consultation criterion (iii), D=d. In contrast,
Figure 4 (4) shows the same concept for the abnormal group. In brief, in accordance with criterion (i}, B=0 and D=b+d,
and in accordance with criterion (ii), A=a, and in accordance with criterion (iti), C=c.

2.6 Estimates of contingency tables for reader/CAD and reader/reader +CAD to achieve accuracy of
reader+CAD (observed TNR3 and TPR3 respectively) (when the CAD consultation criferia are completely
satisfied)

Via the protocol for the use of the CAD in Figure 1, with known (TNRI1, TNR2, TNR3} and (TPR1, TPR2, TPR3) for
an arbitrary reader, CAD, and reader +CAD located in the ROC curve coordinate system, as shown in Figure 2, a
method for estimating a, b, ¢, and d of Figure 4 (1) and (3) for the contingency table for reader/CAD to produce the
TNR3 and TPR3 values for reader +CAD is shown below. Based on those results, a method for inferring by analogy the
A, B, C, and D values for Figure 4 (2) and (4), the contingency table for reader/reader+CAD, is shown. This assumes,
however, that the CAD consultation criteria (i), (ii) and (iii} are completely satisfied.

2,6.1 For the normal group (number of images: m}

When the reader TNR1=(a+c)/m, CAD TNR2=(b+c)/m, and the reader satisfies consuliation criteria (i), (ii), and (iii)
(CAD-noncompliant responses for Figure 3, FP*=0, TN*=0), the TNR3 for reader +CAD 1is shown as
TPR3={a+b+c}m. The contingency table parameters for reader and CAD are thus a=m (TNR3-TNR2), b=m (TNR3—
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TNR1), e=m {TNR1+TNR2~TNR3), and d=m {1.0-TNR3). Hence, the contingency table parameters for reader and
reader +CAD, are, in accordance with Figure 4 (2), A=0, B=b=m (TNR3-TNR1), C=a+c=m (TNR1}), D=d=m (1.0~
TNR3). Provided however, that TNR3>TNR2 or TNRI1.

2.6.2 For the abnormal group (number of images: n)

When the reader TPRI=(b+d)/n, CAD TPR2=(a+d)/n, and the reader satisfies consultation criteria (i), (i), and (iii}
{CAD-noncompliant responses for Figure 3, FN*=0, TP*=0), the TPR3 for reader +CAD is shown as TPR3=(a-+b+d)/n.
The contingency table parameters for reader and CAD are thus a=n (TPR3-TPRI), b=n (TPR3-TPR2), ¢=n (1.0-
TPR3), and d=n (TPRI+TPR2-TPR3). Hence, the contingency table parameters for reader and reader +CAD, are, in
accordance with Figure 4 (4), A=a=n (TPR3-TPR1), B=0, C=c=n (1.0-TPR3), and D=b-+d=n (TPR1). Provided
however, that TPR3>TPR2 or TPRI,

3. EMPIRICAL DISCUSSION

We conducted a reading experiment to compare with actual practice, the theory behind the mechanism by which

diagnostic accuracy is improved by the protocol for CAD assistance in Figure 1, and analyzed the results by the method
described below.

3.1 Reading experiment®

Forty-one medical technology students who could become CT screeners (CTS) in the future participated in the reading
experiment described below. In the first experiment, the readers participated in a training session for reading CT images
consisted of single-slice image. Next, they read another single-slice CT images for a total of 99 patients—73 abnormal
and 26 normal individuals—with definitive diagnoses, and evaluated the presence/absence of an abnormal finding. If a
reader was detected a abnormal finding, the lesion was localized on a chest CT diagram by a reader, and a response was
made according to a continuous confidence scale of 0-100%. One month later, the second experiment was performed.
Between the first and second experiments, the CTS attended four, once-weekly lectures on the CT diagnosis of chest
diseases. Immediately before the second experiment, the CTS underwent practice exercises for a separate CT image
database from that used in the first experiment. Next, the CTS read the same images as in the first experiment, and
evaluated them for the presence/absence of an abnormal finding. Three months later, the CTS consulted the CAD results
for the CT images for the same patients, and evaluated the presence/absence of an abnormal finding by the same method
as in the first and second experiments, At this time, the results of the CAD presented to CTS were hypothetical,
prepared artificially by the researchers to have the average performance of the CTS in the second experiment. There was
only one abnormal finding detected by the hypothetical CAD, and its location was circled on the CT image. 1f an
abnormal finding by the hypothetical CAD was not detected, the notation "No abnormal finding" was made on the CT
image. The CTS were informed before the reading experiment that the performance of the hypothetical CAD was
FPR=8.3% (TNR=91.7%) and TPR=80% (FNR=20%).

Throughout the first, second, and third experiments, the readers were instructed to detect only the most important
abnormal finding.

3.2 Classification of 0 and 1 diagnoses for experimental data (TP, FN, FP, TN)

Based on whether an abnormal finding was present (1) or absent (0) on each single-slice CT image, the CTS response
was also either 1 or 0. However, CTS also added a continuous confidence scale to their diagnosis.

An image with a definitive diagnosis of "abnormal finding present" was considered to be composed of a finding-present
region and a finding-absent region, and a definitive diagnosis of "abnormal finding absent” was considered to be
composed only of a finding-absent region. This process yielded a total of 73 finding-present regions and 99 finding-
absent regions among 99 cases read. For a case with a definitive diagnosis of abnormal finding present, once a decision
was made on a diagnosis of either a finding-present region or a finding-absent region (presence/absence of a finding
plus a confidence scale (%)), the diagnosis for the other region is automatically also decided. A confidence level of 0-
49% was classified as 0 and 51-100% as 1 (an evaluation of 50% was forbidden). For a finding-present region, the CTS
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diagnosis was classified as TP when an abnormal finding was made at the same location as the definitive diagnesis, and
as FN when it was overlooked. For a finding-absent region, the CTS diagnosis was classified as FP when an abnormal
finding was detected, and as TN when a finding was not detected. Furthermore, the diagnostic results of the hypothetical
CAD were classified as TP, FN, FP, or TN in the same manner as for the CTS. The results obtained when the
hypothetical CAD was consulted (reader +CAD) were similarly classified (see the references for further details).

3.3 Method of analysis of experimental data
3.3.1 Comparison of measured datz and estimates

Using the 0 and | diagnosis data for reader, CAD, and reader +CAD, the TNR and TPR values were calculated for
normal and abnormal individuals, and based on those results, contingency tables were estimated for reader/CAD, and
reader/reader +CAD when the CAD consultation eriteria (i), (ii), and (iii) were completely satisfied. Additionally, a
contingency table for reader/reader +CAD was determined from the measured data for reader and reader +CAD
(including the CAD-noncompliant responses). Next, the deviations between the estimates and the measured values were
determined for the same contingency table parameters as above, In short, Deviation=|Estimated contingency table
parameters-Measured contingency table parameters]. Moreover, the CAD-noncompliant responses included in all
responses A, B, C, and D of the contingency table parameters for reader and reader +CAD weie identified and tabulated.

3.3.2 Evaluation of reader and CAD complementarity’

There are two types of contingency table for reader/CAD. One is the contingency table for measurements that can be
prepared from the reader’s 0 and 1 diagnoses and the CAD's 0 and 1 diagnoses. The other is the estimated contingency
table for reader/CAD that produces the measured TNR3 or TPR3 for reader +CAD. From these contingency table data
a, b, ¢, and d for reader/CAD, the complementarity of reader and CAD was evaluated by means of the p coefticient.

p=(cd—ab)V(a+c)(b+d)(b+c)a+d), a, b, c, and d>0.

The TNR or TPR for reader, CAD, and reader +CAD were respectively labeled X1, X2, and X3, and the
complementarity ¢ of reader and CAD was evaluated according to the following equation.

p=(X1+X2-X1-X2-X3)NX 1(1-X 11X2(1-X2)
Where -1<p=+1, This implies that when ¢ is -1, the complementarity is a maximum (similarity is a minimum), when
©=0, they are mutually independent, and when g=-+1, the complementarity is a minimum (the similarity is a maximuom}.

When TNR3<TNR1 or TNR2, and when TPR3<TPRI or TPR2, a or b will be negative, in which case ¢ will be
meaningless.

3.3.3 Evaluation of CAD assistance effect

From the contingency tables, for each of the estimates (complete satistaction of the CAD consultation criteria) and the
measured values (including CAD-noncompliant respenses), the following p-values (one-sided) were calculated, and the
respective CAD assistance effects were evaluated,

.
Exact p=(1/2)"*"Z,,C; where r=min(a,b)
=0

4. EXPERIMENTAL RESULTS

4.1 Example of estimation of contingency tables for reader/CAD, and reader/reader+CAD to produce measured
reader +CAD diagnostic aceuracy (TNR3, TPR3)

4.1.1 Results of 0 and 1 diagnoses by a single reader for the abnormal group (n=73) (Figure 5):

The number of true responses (TP) for the reader alone was 59, and the number of TP for CAD was also 59. The
measured contingency table for reader/CAD at this time is shown in Figure 5 (1). If this complementarity can be
completely utilized by a reader, the expected number of TP for reader +CAD would be 72=13+13+46, yielding a
complementarity in this case of ¢=-0.149. The number of TP for reader +CAD obtained in actual practice was
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67=11+56, determined from the contingency table for reader/reader +CAD (Figure 5 (4)). The estimated contingency
table for reader/CAD to produce this was Figure 5 (2). The number of TP for reader +CAD in this case was 67=8+8+51.
The complementarity of reader and CAD at this time has decreased to  (NB: complementarity is higher at lower values
of p). From the estimated contingency table, the contingency table for readerfreader +CAD when the reader has satisfied
the CAD consultation criteria was estimated to be Figure 5 (3). The p-value for CAD assistance effect at this time
(difference between reader and reader +CAD) was p=0.004. In contrast, the p-value for the measured reader and reader
+CAD was p=0.028. In the contingency table for reader/reader +CAD (Figure 5 (4)}, the CAD-noncompliant response
was B for 3 cases (I diagnosis for the reader: true response, and 0 diagnosis for CAD: false response, and 0 diagnosis
for reader +CAD: false response), and C for 2 cases (0 diagnosis for reader: false response, and 1 diagnosis for CAD:
true response, and 0 diagnosis for reader +CAD: false response), for a total number of 5 false responses. The deviations
(absolute value) in the contingency table parameters for the measured (Figure 5 (4)) and estimated (Figure 5 (3)) reader
and reader +CAD were equal for cach parameter in 3 cases. In brief, there were 3 more cases in which a finding was
overlooked by the reader alone and detected by reader +CAD (A), and 3 cases (B) were overlooked by reader +CAD

despite detection by the reader alone. The estimated contingency table when these deviations were offset was obtained
(Figure 5 (3)).

4.1.2 The results obtained for the normal group (m=99)

Figure 5 (5) to (8) are shown that similar tendencies were displayed as those in the abnormal group.

Results of 0 and I diagnoses by a single reader for the sbnormal group (n=73)

(1) (2) (3) (4)
{Measured) (Estimated) (Estimated) (Measured)
CAD CAD Reader+CAD Reader+CAD
0 ] ¢ i & 1 1] i
0 | 13 0 6 8 ¢ 3 11
Reader 14 0 6 & |14 Reader 14 Reader t4
i Reader : 1
13 46 |50 i 8 51 |50 0 505 50 3 56 159
14 59 (1) 14 59 (13 6 67 (73) 6 §7 (73
p=-0.149 p=0.293 Exact p=0.004 Exact p=0 .028
Deviation={Measured — Estimated!=3
(5 (6) (7) (8)
{Measured) (Estimated) (Estimated) (Measured)
CAD CAD Reader+CAD Reader+CAD
0 1 0 ] 0 i 0 1
0 7% 5 0 0 84 o 0
Reader 84 Reader 82 2 |82 Reader 84 Reader 83 ! 34
I 1 1 1
14 I s 1 4 17 ni 4 |is 12 IT
93 6 09 93 6 09 85 4 9 g5 4 09
¢=0.011 p=0.346 Exact p=0.0005 Exact p=0 .0008

Deviation={Measured — Estimated|=1

Results of G and 1 diagnoses by a single reader for the normal group (n1=99}

Fig.5 Example of estimation of contingency tables for reader/CAD, and reader/reader+CAD to produce
measured reader +CAD diagnostic accuracy for abnormal (upper), normal {lower)
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¢
Reader+CAD (Optimal expected value)

® Reader+CAD (Actual)

adl

CAD _reader
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Figure 6 Results of diagnostic accuracy for reader, CAD, and reader +CAD in the ROC curve
coordinate system

4.1.3 Representation of diagnostic accuracy for reader, CAD, and reader +CAD in the ROC curve coordinate
system

Figure 6 shows the outcome when above reading results are displayed in the ROC curve coordinate system. The actual
diagnostic accuracy was lower than the reader +CAD figure expected from the original observed values.

o

-2 1% Optimal expected value

-4 ® | Actual value

fuons &— Aumuaueduoly —> yTIM
() Buewsuredmoy vy pue 19peay

20 a5 90 95 100
Reader +CAD's TPR (%)

Figure 7 Relationship between reader +CAD’s TPR and the complementarity (@)

4.2 Diagnostic accuracy of reader +CAD as a function of the reader and CAD complementarity ¢

Figure 7 shows the relationship between the reader/CAD complementarity ¢ and the corresponding measured TPR3
values for reader +CAD when 41 readers read 73 abnormal cases according to the protocol for CAD use in Figure 1.
There are two types of relationship at work here. One is the relationship between the ¢ calculated from the measured
contingency table (Figure 5 (1)) and the expected diagnostic accuracy (TPR3) when the reader/CAD complementarity is
100% utilized, and the other is the relationship between the actual diagnostic accuracy (TPR3) and the ¢ calculated from
the estimated contingency table {(Figure 5 (2)) to produce this accuracy. Both relationships show a tendency for the
diagnostic accuracy to be higher when CAD consultation is associated with greater complementarity.
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4.3 The |deviation] between the estimated and observed values for A, B, C, and D of the contingency table for
reader/reader +CAD

The deviations between the values of A, B, C, and D in the estimated reader/reader +CAD contingency table and the
measured values was determined from the diagnoses of 0 and 1 obtained from 41 readers reading 99 images. This
process showed that the deviations were equivalent for each parameter for all readers producing deviations for the 73
cases in the abnormal group. Among the 41 readers, the deviation was 0 for 6 readers (15%), T for 10 (24%), 2 for 7
(17%), 3 for 3 (7.3%), 4 for 4 (10%) 5 for 4 {10%), and other for 7 readers (17%).

4.4 Diagnostic accuracy for reader +CAD as a function of the number of CAD-noncompliant responses

Figure 8 shows the correspondence between results of tabulation of the total number of CAD-noncompliant responses
by each reader included in the responses for the measured contingency table parameters A, B, C, and D for reader/reader
+CAD, and the diagnostic accuracy (TPR3, TNR3: measured values) for each reader. This shows that fewer
noncompliant responses is associated with a higher tendency for diagnostic accuracy.
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Figure 8 Relationship between CAD-noncompliant responses and the reader +CAD’s TPR
and TNR{%): CAD-noncompliant responses is, 1) Reader True and CAD False result in
Reader +CAD False, 2) Reader False and CAD True result in Reader +CAD False, 3)
Reader False and CAD False result in Reader +CAD True
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Figure 9 Test of significant difference between reader and reader +CAD’s TPR values
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4.5 Test of significant difference in the effect of CAD assistance

Figure 9 shows the relationship between the exact p-value—that represents the degree of difference in diagnostic
accuracy (TPR) for reader/reader +CAD—and the actual measured diagnostic accuracy (TPR3). The two do not appear
to be correlated. As regards the difference in diagnostic accuracy (TPR) between reader and reader +CAD, there were
more readers yielding statistical significant differences (p<0.05) when the CAD consultation criteria were satisfied, in
comparison with the actual situation (including CAD-noncompliant responses).

5, DISCCUSION

The development of CAD is presently flourishing. Several systems has been approved by the FDA, and are marketed as
a medical device and used in the clinical setting. However, we are yet to see adequate investigations into the effect of
CAD on human readers and how they are actually useful in practice. In the present work, we sought to elucidate the
mechanism by which CAD yields a benefit, on the assumption of the situation shown in Figure 2, when CT images are
given diagnoses of 0 or 1 after the reader consults the CAD output, Here, to evaluate first whether or not CAD is useful
in practice, we note that a method in which the diagnosis is 0 and 1 is more realistic than using the ROC curve overall.
Next, we discuss the significance of the contingency table estimation method for reader/CAD, and reader/reader +CAD
proposed in this report. Moreover, by analyzing the deviation between the estimates and actual measured values, we are
able to explain the mechanism by which the CAD assistance is obtained.

5.1 Necessity for a binary evaluation method
5.1.1 The foundation of the image diagnosis is the diagnesis of 0 or 1.

In the protocol for CAD use method shown in Figure 1, we consider the situation when a reader will use CAD in aciual
practice. In this report, the CAD result presented to the reader is assumed to be a diagnosis of 0 or | for each patient.
Such a CAD protocol is applicable to a CAD for differential diagnosis of normal or abnormal (benign or malignant)
(Reference). The CAD performance at that time is denoted by one point on the ROC curve. In contrast, for CAD
intended to detect abnormal findings, it is normal for CAD to produce numerous FPs in an image for one patient. Hence,
when the result of a diagnosis of 0 or I for each patient is presented to the reader, the CAD's TPR2 fits within the range
0-100%, but it is highly likely that the FPR will be 100%. Even in such circumstances however, the method described in
Section 2.6 of this report will be effective. The estimation of the contingency tables for reader/CAD, and reader/reader
+CAD can be performed for the TNR or TPR for three parties—an arbitrary reader, CAD, or reader +CAD—within the
ROC curve coordinate system {including data on the coordinate axes).

In contrast, a reader diagnoses the same image twice, once as a reader alone and again with CAD assistance. In each of
these situations, regardless of the type of diagnosis—detection (detection of abnormal findings), differential diagnosis,
ete.—the reader's diagnosis of 0 or 1 is the basis. A slightly more detailed diagnosis than the 0 or 1 result is a response
in terms of a confidence level between 0 and 1. The reader's diagnostic accuracy will be evaluated later by ROC curve,
but the ROC curve itself is not communicated to the patient. The patient will be notified of the diagnosis of either 0 (for
example, no abnormality), or not 0 (1: for example, abnormality present or follow-up). When a singie reader has
diagnosed the medical images of numerous patients according to a confidence level between 0 and 1, the diagnostic
performance of that reader is represented by a single ROC curve, but the resuit of 0 or | diagnosed by that reader is
represented by a single point on this ROC curve.

Summing up the above, when a reader in the diagnostic setting with the performance (TNR1, TPR1) represented by one
point on the ROC curve consults the CAD output (TNR2, TPR2) represented by one point on the ROC curve, a result
(TNR3, TPR3) for CAD consultation (reader +CAD) represented by one point on the ROC curve is produced.

3.1.2 The horizontal axis (FPR=1-TNR} of imaging diagnosis undertaken in the clinic is approximately constant.

Diagnosis by a reader alone is performed so that the horizontal axis (FPR=1-TNR) of the ROC curve is constant. No
other horizontal axis (FPR1=1-TNR1) is used. In Japan, the screening examination for various cancers is undertaken as
an arm of government policy, but the rate of detailed examination required produced by primary screening
(approximately equivalent to the FPR) is accuracy-controlled to be constant. In the case of lung cancer screening using
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chest X-ray films for example, the mean FPR is 2.6% of all readings. Hence, the result of detecting the difference in the
diagnostic accuracy between "without CAD (reader)" and "with CAD (reader +CAD)" using the ROC curve overall
{Az) does not necessarily guarantee that CAD will be useful in the clinical arena. A method for detecting a difference in
the TPR for reader/reader +CAD when the horizontal axis (FPR=1-TNR} is constant may be the CAD evaluation
method that corresponds to actual reality.

5.2 Significance of the estimation of the contingency tables for reader/CAD and reader/reader+CAD

As shown in the example in Figures 5 and 6, if there are results of diagnoses of 0 and 1 for the same database by the
reader and CAD, a contingency table for reader/CAD is obtained. And, the optimal outcome can be expected if a reader
fully utilizes the complementarity between reader and CAD shown in the contingency table, However, this is a numeral
showing a possibility, and the actual reality is not necessarily the same. As shown in Figure 6, the accuracy of reader
+CAD in practice is either the same as, or normally below the optimal expected value. This is because the reader has
two opportunities for reading an image and making a CAD-noncompliant response such as those marked with asterisks
in Figure 3. And, it is not possible to identify the ocutcome for the contingency table for reader/CAD at that time from
the data only from diagnoses of 0 and 1 made independently by the reader and CAD. In this report, the method for

estimating the contingency table for reader/CAD to produce the result for reader +CAD in actual practice is shown in
2.6.

The actual reader/CAD complementarity ¢ in Figure 7 was lower than the complementarity of reader and CAD to
produce the optimal expected aceuracy of reader +CAD (TNR3 or TPR3). It can also be seen from Figure 8 that the
greater the complementarity between reader and CAD, the higher the diagnostic accuracy that can be obtained. These
facts lead to the supgestion that for CAD to be useful to readers, it will be necessary for CAD to output numerous
instances of true responses, despite false responses by readers.

The contingency table for reader/reader +CAD can be inferred by analogy from the estimated contingency table for
reader/CAD. This estimated contingency table shows the situation when CAD consultation criteria (i), (ii), and (iii)
described in chapter 2.4 are completely satisfied. The deviation between these estimated values and the observed
contingency table parameters for reader/reader +CAD represents the difference from a reader using a CAD-
noncompliant response. As shown in Figure 6 (an abnormal case), the absolute value of this deviation is equally
produced in parameters A, B, C, and D of the contingency table. This phenomenon was observed for all readers
producing deviations, not only for the abnormal group, but also for the normal group. Briefly, given the opportunity for
the second reading (for reader +CAD), there were equal numbers of occurrences of false response for the reader alone
but a true response afier CAD consultation, and of a true response for reader alone and a false response after CAD
consultation. The result of offsetting these true responses and false responses was resolved in the estimated contingency
table for reader/reader +CAD. This fact corroborates the validity of the contingency table for reader/reader +CAD
estimated using this method.

Among the 41 readers, the deviation between the estimate and observation was 0 for 6 readers (15%). For these cases,
close investigation of the nature of the contingency table parameters A, B, C, and D for reader/reader +CAD, revealed
the inclusion of CAD-noncompliant responses in the A, B, C, and D responses for the contingency table, as for Figure 5
(the situation for a deviation of 3). This signifies that a deviation of 0 between the estimation of contingency table
parameters for reader/reader +CAD and the actual measurements that it was & apparent phenomenon (including CAD-
noncompliant responses).

When we closely investigate the nature of the contingency table parameters A, B, and C for reader/reader +CAD, it is

possible to identify which of the CAD consultation criteria (i), (ii}, or (iii) has not been satisfied {one of those marked
with an asterisk in Figure 3).

As shown in Figure 8, a higher diagnostic accuracy was yielded for readers with fewer noncompliant responses. As
well, as shown in Figure 9, it was easy to produce a statistically significant difference in diagnostic accuracy between
"without CAD (reader)" and "with CAD (reader +CAD)" when the CAD consultation criteria were satisfied, than when
they were not satisfied. These facts suggest that the extent to which a reader can definitely satisfy the CAD consultation
criteria influences the effective use of CAD. The fundamental challenge for the use of CAD lies in whether the correct
diagnosis can be selected when the reader's diagnosis and the CAD output are inconsistent. In order to reliably achieve
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consistency, it is necessary, at least before using CAD, to thoroughly ascertain one's compatibility with CAD, focusing
on the situations in which complementarity with CAD is present, and the extent of such complementarity.

5.3 Application of this method to other protocols for CAD use

Figure 10 presents an overview of protocols for CAD use other than that in Figure ! that are conceivable at this point in
time. Figure 10 (1) is the same as Figure 1, the protocol investigated in this report. It has been redrawn to shed light on
differences with other protocols. In the following we designate it the standard protocol. In the standard protocol, the
reader reads ail images twice. By contrast, in the protocol in Figure 10 (2}, the reader reads the image and makes an
evaluation of "abnormality present” (a diagnosis of 1) without reference to the CAD output, and only consults the CAD
output in cases where the evaluation is "abnormality absent” {a diagnosis of 0). An image in which the reader has made
a diagnesis of 1 is read only once and one in which a diagnosis of 0 is made is read twice (reader/CAD contingency
table parameters a and ¢). Figure 10 (3) represents a modification of the standard protocol. Only in the case where the
reader diagnosis and CAD output are inconsistent (a, b) does the reader consult the CAD output, Figure 10 (4)
represents a modification of the method in Figure 10 (2). First, if the reader makes a diagnosis of 1, a reader +CAD
diagnosis s not made. Next, if the reader makes a diagnosis of 0 and the CAD output is also 0, a combined diagnosis is
not made. CAD is consulted only in cases where a diagnosis of 1 is made (inconsistency between reader and CAD: a).
Figure 10 (3) represents a method in which the reader only reads the image in cases where the CAD output is 0. In
Figure 10 (6), all images are read once while the reader consults the CAD output.

From the reading experiment data investigated for the standard protocol shown in Figure 1 and Figure 10 (1), it is
possible to simulate the reader and CAD complementarity, the number of CAD-noncompliant responses, and the reader
+CAD diagnostic accuracy (TNR3, TPR3)} obtained by the particular protocol for CAD use when the protocols
described in Figure 10 (2) through (5) are employed. Here, we first discuss the advantages and disadvantages of the
standard protocol and Figure 10 (2), and mention the characteristics of the other protocols.

In a situation when the CAD usage criteria are completely satisfied in the protocol of Figure 10 (2), TNR3 (=1-FPR3)
will be the same as the TNR1 obtained for reader alone (TNR3=TNRI). It can be expected that TPR will benefit more
than that with the standard protocol. The situation in this instance is shown in Figure 11 (1). That is to say, when such a
situation has ensued, it would be suggested that the reader has made a diagnosis using the protocol of Figure 10 (2),

(M (2) (3)
1 0 0 1 1
CAD Reader Reader CAD Reader Reader
ol 0.1 \l/ 0 \L : \L 0
Reader +CAD Reader +CAD Reader +CAD Reader +CAD
\l/ 0,1 \l/ 0,1 \l/ 0,1 \l/ 0,1
4). (5) (6)
0 1] 1 1
<— CAD |« Reader  pm» CAD |—> CAD
1 0 0,1
Reader +CAD Reader Reader +CAD

\I/ 0,1 \l/ 0,1 \L Q,1

Figure 10 Overview of protocols for CAD use
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