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FIG. 6. Four amino acid residues, 312 to 313, in the eytoplasmic
region of the E1 protein are important for interaction with the core
protein. (A) Alignment of the amino acid sequence of the Ef cyto-
plasmic region among different HCV genotypes {1a, H77 [AF009606];
b, J1 [D89813]; 2a, JFHI [AB047639); 3a, CB [AF046860]; 4a. ED43
[Y11604); 30 EUH1480 [Y13184]). A conserved region from Gin*" 1o
Pra™* js shown by gray shading. Mutant pelyproteins consisting of the
core, E1, E2. and p7 proteins with four residues each replaced by Ala
in the conserved E1 region were constructed. Four amino acid resi-
dues, His*'?, Val*', Ser™ ™. and Gly*'%, in the E1 cytoplasmic region of
strain J1 and substitution of the amine acids with Ala in Cp7 (312
315A) are indicated by the box. (B) These mutant polyproteins were
expressed in 293T cells and immunoprecipitated with anti-core anti-
body or nonspecific mouse 1gG in the presence of MgCl, and (RNA,
The El protein that coprecipitated with the core protein was detected
by immunoblotting. The substitution of four amino acid residues, 304
to 307, with Ala in the conserved region of the El protein, Cp7
(304-307A), could not be examined due to the low level of expression.

protein could not be cxamined due to a low level of expression
(data not shown). Among the mutant constructs examined,
only the substitution at residues 312 to 315, Cp7 (312-315A),
markedly diminished association with the core protein (Fig.
6B). These results suggest thal this region in the EL cyioplas-
mic domain of the J1 strain of HCV (His*'?, Val®'?, Ser®, and
Giy*'?) is important for interaction with the core protein.

DISCUSSION

The biogenesis of the transmembrane glycoproteins involves
a series of coordinated translation and membrane integration
events that are directed by topogenic determinants within the
nascent chains and that ultimately iead to the most {avored
topology for any given polypeptide (24), However, there is an
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increasing number of examples of glycoproteins that can as-
sume multiple topological orientations. The large envelope
protein of the hepatitis B virus, for ipstance, has been sug-
gested to adopt distinct topologies that enable the protein to
serve in virus assembly as a matrix-like protein and in virus
eniry as a receptor binding protein {22). An unglycosylated
form of the HCV E2 protein has been identified and shown to
interact with protein kinase R in the cytosol (45). In Newcastle
disease virus, type I and polytopic forms of the fusion protein
are present in the same cell, and the polytopic form is sug-
gested to be involved in the membrane fusion event (31).

HCV glycoproteins El and E2 were shown to possess trans-
membrane domains and associate to form noncovalent het-
erodimers that are statically reiained in the ER membrane
upon recombinant expression (10, 29, 46). Previously, the El
protein of genotype la was suggested to possess a single C-
terminal transmembrane domain, based in part on its utiliza-
tion of potential glycosylation sites {33} and on a model of the
transmembrane domains of the E1 and E2 proteins, in which
the C terminus reorients, upon signal peptidase cleavage, from
the ER lumen to protrude slightly into the cytoplasm (7). In
our study, we have suggested that the EI1 protein can also
adopt a polytopic topotogy in which the protein spans the ER
membrane twice and includes an intervening cytoplasmic re-
gion. In this modef, the membrane orientation of the C-termi-
nal transmembrane region is inverted and translocation of the
signai peptidase-cleaved C terminus is not reguired.

Our analysis revealed that the 305 mutant of the 1b genotype
expressed by transfection exhibited a single band of 32 kDa,
whereas that of genotype 1a expressed by recombinant vaccinia
viruses has been reported te contain two bands (33). Although
we do not know the reason for this discrepancy, it may relate
o differences in the expression systems. HCV proteins ex-
pressed by vaccinia virus and Sindbis virus vectors formed
disulfide-linked aggregates (9. 11, 34), and coexpression of a
large amount of vaccinia viral proteins also may alter the
proper processing of the expressed proteins, as suggested by
Merola et al. (32). However, further work wilt be necessary (o
clarify the reasons for the differences in glycosylation patterns
of EI mutanis obtained in the different expression systems.

Mottola et al. analyzed the determinants for ER localization
of the E1 protein and showed that the juxtamembrane region of
El, between amino acid residues 290 and 333, was required for
ER retention {41). This region lies within the ectodomain of
the El protein in the type I topology and in the cytoplasmic
region of the protein in the preposed polytopic form. ER
localization determinants of transmembrane proteins have in
general been located either in the cyiosolic or in the trans-
menibrane domain, not iz the luminal ectodomain, except for
the veast Sec20 protein (41). Therefore, assignment of the ER
localization signal to the cytoplasmic region of the E1 protein
might further support the possibility of the polvtopic topology
model. Affinity purification and membrane reconstitution of
the E1 protein carrving an affinity tag (S-peptide) in the puta-
tive cytoplasmic region are also consistent with this model (33).
Together, these findings provide indirect support that the EJ
glycoprotein can adopt a polytopic form.

As previously reporied (20), oligomerization of the HCV
core protein to form nucleocapsid-like particles requires the
presence of stem-loop RNA structures, such as those in tRNA.
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Here, we have demonstrated that self-assembly of the core
protein occurs without envelope protein in the presence of
tRNA and that tRNA is required for the association of El
glycoprotein with the core protein, suggesting that oligomer-
ization of the core protein may be a prerequisite for this in-
teraction during virus assembly. Based on hydropliobicity and
the clustering of basic amino acids, the HCV core protein is
proposed to possess three domains: the N-terminal basic and
hydrophilic region (domain 1; residues 1 to 118), a centraf
basic and hydrophabic domain (domain 2; residues 119 10 174),
and the hydrophobic signal sequence for E1 (domain 3; resi-
dues 175 to 191) (14). Biophysical characterization of the core
protein indicated that the C-terminal residues 125 to 179 were
critical for the folding and oligomerization of the core protein
(21). Although our mutant HCV polyprotein containing Ala
substitutions at residues 312 to 315 in the cytoplasmic region of
the El protein exhibited a clear reduction in its interaction
with the core protein, a substantial amount of residual binding
was retained. These results suggest that regions other than the
residues from 312 to 315 in the E1 protein are also involved in
the interaction with the core protein.

In Semliki Forest virus, the cytoplasmic domain of the E2
giycoprotein, which corresponds to the E1 protein in HCV, has
been shown to interact with the capsid protein (26, 49). As-
sembly of alphaviruses has also been found to require the
specific interaction between the C-terminal cytoplasmic do-
main of the E2 protein and the capsid protein (17}. Although
the functional significance of the two forms of the HCV E]
protein is stil] unclear, the E1 cytoplasmic region among dif-
ferent HCV genotypes is well conserved and four amino acid
residues, His?'?, Val*'?, Ser®', and Gly*'” of strain J1, were
shown o be important for interaction with the core protein.
Although the four amino acid sequences identified in strain Ji
of genotype 1b are nol strictly conserved among the different
HCV genotypes (Fig. 6A), a pattern of polar-hydrophobic-
polar-giycine residues can be discerned in alt of them. The
interaction of the cytoplasmic E1 protein with the core protein
may indicate that the polytopic form is a mature Ei protein
that is incorporated into virions.

In conclusion, the polytopic topology model of the HCV El
protein and the interaction of oligomerized core protein with
the cytoplasmic region of the E protein may provide clues to
aid in understanding the biosynthesis and assembly of the
HCYV structural proteins. HCV core protein is also involved in
the development of liver steatosis, type II diabetes mellitus,
and hepatocellutar carcinoma in transgenic mice (39, 40, 48). A
detailed knowledge of the assembly of HCV particles will pro-
vide the basis {or the development of effective therapeutics for
chronic hepatitis C.
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Hepatitis C virus RNA replication is regulated

by FKBP8 and Hsp90

Toru Okamoto’, Yorihiro Nishimura?,
Tohru Ichimura3, Kensuke Suzuki’,
Tatsuo Miyamura?, Tetsuro Suzuki®,

Kohiji Moriishi' and Yoshiharu Matsuura**

"Department of Molecular Virclogy, Research Institute for Microbial
Diseases, Osaka University, Osaka, Japan, *Department of Virology 11,
National Institute of Infectious Diseases, Tokyo, Japan

and *Department of Chemistry, Graduate School of Sciences

and Engineering, Tokyo Metropolitan University, Tokyo, Japan

Hepatitis C virus (HCV) nonstructural protein 5A (NSS5A)
is a component of viral replicase and is well known to
modulate the functions of several host proteins. Here, we
show that NS5A specifically interacts with FKBPS, a mem-
ber of the FK506-binding protein family, but not with other
homologous immunophilins. Three sets of tetratricopep-
tide repeats in FKBPS are responsible for interactions with
NS5A. The siRNA-mediated knockdown of FKEPS in a
human hepatoma cell line harboring an HCV RNA replicon
suppressed HCV RNA replication, and this reduction
was reversed by the expression of an siRNA-resistant
FKBP8 mutant. Furthermore, immunoprecipitation ana-
tyses revealed that FKBP8 forms a complex with Hsp90
and NS5A. Treatment of HCV replicon cells with geldana-
mycin, an inhibitor of Hsp90, suppressed RNA replication
in a dose-dependent manner. These results suggest that
the complex consisting of NS5A, FKBPS, and Hsp90 plays
an important role in HCV RNA replication.

The EMBO Journal (2006) 25, 5015-5025, d0i:10.1038/
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Subject Categories: microbiclogy & pathogens; molecular
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Introduction

Hepatitis C virus (HCV) persistently infects approximately 170
million people worldwide, and it is responsible for most cases
of severe chronic liver diseases, including cirrhaosis and hepa-
tocellular carcinoma (Wasley and Alter, 2000}. Although treat-
ment with interferon {IFN} alpha and ribavirin is available for
about half of the population of HCV patients (Manns et al,
2001), therapeutic and preveniative vaccines are still necessary
for more effective treatment; however, such vaccines have not
yet been developed. HCV belongs to the Flaviviridae family
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and possesses & positive-sense single-stranded RNA with a
nucleotide length of 9.6 kb. The HCV genome encodes a single
large precursor polyprotein composed of about 3000 amino
acids, and the polyprotein is processed by cellular and viral
proteases into at least 10 structural and nonstructural (NS)
proteins (Moriishi and Matsuura, 2003).

The development of efficient therapies for hepatitis C has
been hampered by the lack of a reliable cell-culture system,
as well as by the absence of a non-primate animal modei. The
HCV replicon consists of an antibiotic selection marker
and a genotype 1b HCV RNA, which replicates autcnomously
in the intracellular compartments in a human hepatoma cell
line, Huh7 (Lohmann et al, 1999). This replicon system has
functioned as an important tool in the investigation of HCV
replication and it has served as a cell-based assay system for
the evaluation of antiviral compounds. Recently, cell culture
systems for in vitro replication and infections viral produc-
tion were established based on the full-length HCV genome
of genotype 2a, which was isolated from an HCV-infected
patient who developed fulminant hepatitis {Lindenbach
et al, 2005; Wakita et al, 2005; Zhong et al, 2005). How-
ever, no robust in vitro culture systems for the la and 1b
genotypes, which are the most prevalent HCV genotypes in
the world, have been established to date.

Several viruses reguire viral and host molecular chaper-
ones for entry, replication, and assembly, as weill as for other
steps in viral production (Maggioni and Braakman, 230S;
Mayer, 2005). Cyclosporine A has been found to effec-
lively inhibit viral replication in hepatitis C patients and in
HCV replicon cells (Inoue et al, 2003; Watashi et al, 2003).
Recently, it was shown that cyclophilin (Cyp) B specifically
binds ie NS5B and promotes association with the
genomic RNA; furthermore, cyclosporine A was shown to
disrupt interactions between NS5B and CypB (Watashi et al,
2005). CypB belongs to the immunephilin family, which
shares peptidyl propyl cis/trans isomerase (PPlase} activity
and an affinity for the immunosuppressive drug (Fischer and
Aumuller, 2003). Furthermore, blockades of CypA, CypB, and
CypC, as well as the induction of cellular stress responses,
have been suggested 1o be involved in cyclosporine A-
induced reduction of HCV RNA replication (Nakagawa
et al, 2005). However, the involvement of other immunophi-
lins in HCV RNA replication is not yet well understood.

HCV nonstructural protein 5A {NS5A) is a membrane-
anchored phosphoprotein that possesses multiple func-
tions in viral replication, [FN resistance, and pathogenesis
{Macdonald and Harris, 2004). NS5A contains a zinc metal-
binding motif within the N-terminal domain, and this
zinc-binding ability is lknown to be essential for HCV replica-
tion (Teliinghuisen et al, 2004, 2005). Adaptive mutzations
frequently mapped in the coding region of NS5A have been
shown to increase RNA replication (Yi and Lemon, 2004;
Appel et al, 2005) ang they are known to affect the hyperphos-
phorylation of NS5A by an unknown host kinase (Koch and
Bartenschlager, 1999; Neddermann et al, 1999; Pietschmann
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et al, 2001). RNA replication in HCV replicon cells has been
shown to be inhibited by treatment with lovastatin, a drug
that decreases the production of mevalonate by inhibiting
3-hydroxy-3-methylglutaryl CoA reductase; this inhibition of
RNA replication was reversed by the addition of geranyl-
geraniol, which suggests that HCV RNA replication requires
geranylgeranylated proteins (Ye et al, 2003; Kapadia and
Chisari, 2(05). A NS5A-pull-down assay identified a geranyl-
geranylated protein, FBL2, as a NSSA-hinding protein (Wang
et al, 2005). Although several host proteins could potentialiy
interact with NSSA, little is known about NSSA function.

To gain a better understanding of the functional role of
NS5A in HCV replication, we screened human libraries by
employing a yeast two-hybrid system and using NS5A as bait.
We thereby successfully identified FKBP8 as an NSSA-binding
protein. FKBPS is classified as a member of the FK506-binding
protein family, but it lacks several amino-acid residues thought
1o be important for PPlase activity and FK506 binding (Lam
et al, 1995). We demonstrated here that FKBP8 {orms a
complex with Hsp90 and NSSA, and that this complex is
critical for HCV replication, as based on the finding that
treatment of the HCV replicon cells with geldanamycin, an
inhibitor of Hsp90, suppressed RNA replication. These results
therefore suggest that protein complex formation with NS5A,
FKBP8, and Hsp90 plays a crucial role in HCV RNA replication.

Results

Identification of human FKBPE as an HCV
NS5A-binding partner

To identify host proteins that specifically interact with NS54,
we screened human brain and liver Hbraries using a yeast
two-hybrid system that employs NSS5A as bait. One positive
clone was jsolated from among 2 million colonies of the
human fetal brain lbrary, and the nucleotide sequence of
this clone was determined. Several positive clones were
isolated from the human liver library, but most of these
clones included exon fragments of other than FKBP and/or
noncoding regions. A BLAST search revealed that the positive
clone encodes a full-length coding region of FKBP38, human
FK506-binding protein 38kDa. Although FKBP38 has been
isolated from human and mouse mRNA (Lam et al, 1995), an
additional sequence at the N-terminus of FKBP38 was re-
vealed based on an analysis of the transcriptional start site in
the genomic sequences of FKBPP38 (Nieisen et ai, 2004). The
isoforms of FKBP38 were designated as FKBP8, which in-
cludes splicing variants of 44 and 46 kDDa in mice, and 45 kDa
in humans corresponds to the 44 kDa of the mouse FKBPS
(Nielsen et al, 2004). Human FKBPS is identical to FKBP38
except for the extra 58 amino-acid residues at the N-terminus,
and the FKS506-binding domain in the N-terminal half,
followed by three sets of tetratricopeptide repeats (TPRs),
a calmodulin binding site, and a transmembrane domain
(Figure 1A}. Because the levels of expression of FKBPS and
FKBP38 have not been well characterized in humar cell lines,
we generated a mouse menocicnal antibody against human
FKBPS, and we designated it as clone KDM19. This antibody
recognizes a 50-kDa of endogenous FKBPS in 293T cells, as
well as exogenous HA-tagged FKBP8 (HA-FKBPS), which has
slightly greater molecular weight (Figure 1B). Although the
KDM19 antibody detected an exogenous HA-tagged FKBPP38
(HA-FKBP38) in 2937 cells, no protein band correspongding to
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Figure 1 Expression of FKBP8 and FKBP38 in mammalian ceils.
{A) Schematic representaticn of FKBPS and FKBP38. The FK506-
binding domain (FBD), tetratricopeptide repeat (TPR), putative
caimodulin binding motif (CaM), and transmembrane domain
(TM) are shown. (B) N-terminally HA-tagged FKBP8 and FKBP38
were expressed in 293T cells and visualized by immunoblotting
using mouse monoclonal antibody to FKBPS or the HA tag. (C} HA-
FKBP8 was expressed together with Flag-NS5A of genotype 1b (J1}
in 293T cells and was immunoprecipitated with anti-HA antibody.
Immunoprecipitated proteins were subjected to immunoblot with
anti-Flag or HA antibody. (D) Endogenous FKBPS in HCV replicon
{9-13) cells was immunoprecipitated with isotype control (lane 1)
or anti-FKBPB antibody, KDM-11 {iane 2}. Endogenous FKBPS was
ca-immunoprecipitated with HCV NS5A, The datz shown in each
panel are representative of three independent experiments.
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endogenous FKBP38 was detected. Similar results were ob-
tained in human liver tissue and in the hepatoma cell lines
Huh7, HepG2, and FLC-4 (data not shown), These findings
suggest that FKBP8, but not FKBP38, is a major product in
human cells. In order to examine whether or not FKBP8
binds to NS5A protein in mammalian cells, Flag-tagged NS5A
(Flag-NS5A) was expressed together with HA-FKBPS in 293T
cells. Cells transfected with the expression plasmids were
harvested at 48-h post-transfection, lysed, and subjected to
immunoprecipitation. Flag-N55A was co-precipitated with
HA-FKBPS8 by anti-HA antibody (Figure 1C). Flag-NSSA was
also immunoprecipitated together with HA-FKBP38, suggest-
ing that the extra N-terminal sequence of FKBPS is not critical
for NS5A binding (data not shown). To further confirm
the specific interaction of HCV NSSA with endogenous
FKEPS8, this interaction was examined in Buh7{9-13) cells
harboring subgenomic HCV RNA replicon. Endogenocus
FKBP& was co-precipitated with HCV NS5A by anti-FKBPS
antibody (Figure 1D}. To determine the direct interaction
between FKBPS and NSSA, Hisg-tagged FKBP8 (His-FKBPS)
and thioredoxin-fused domain 1 of NS5A (Trx-NSS5A} pre-
pared in Escherichia coli were examined by pull-down
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analysis. Trx-NSSA was co-precipitated with His-FKBP8 by
anti-FKBPS antibody (Supplementary Figure 1}, suggesting
that FKBP8 can directly bind to NS5A demain I

In order to investigate the interaction of FKBP8 with the
NS5A of other HCV genotypes, HA-tagged NS5A (HA-NS5A)
proteins of genotype 1a (H77C), 1b (Conl and J1), or 2a
(JFH1) were expressed together with Flag-tagged FKBP8
(Flag-FIKBP8} in 293T cells (Figure 2A). Flag-FKBP8 was co-
immunoprecipitated with the HA-N55As of all of the geno-
types examined here by anti-HA antibody, although it should
be noted that the interaction between Flag-FKBPS and the
HA-NSSA of genotype 2a was weaker than that of the other
genotypes tested. Furthermore, the HA-NS5As were co-pre-
cipitated with Flag-FKBP8 by anti-Flag antibody (Figure 2A,
bottom panel}. The TPR domain of FKBP8 is known to be
responsible for protein-protein interactions. Among the
immunophilins, FKBP8 shares high homelogy with CypD
and FKBP52, both of which contain three tandem repeats
of TPR, as does FKBP8 (Boguski et al, 1990; Hirano et al,
1990). However, co-immunoprecipitation of Flag-NSSA with
HA-FKBP52 and HA-CypD by anti-Flag or anti-HA antibody
was not successful (Figure 2B). These results indicate that
FKBP8 specifically interacts with NSS5A.

A + 4+ + + + Flag-FKBP8
+ & HA-NSSA 1a (H77C)
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Figure 2 Specific interaction between FKBPS and N55SA. (A) HA-NSS5As
were obtained from severai genotypes of HCV and were expressed
with Flag-FKBP8 in 293T cells. Proteins immunoprecipitated
with anti-HA or Flag antibody were subjected to Western blotting.
(B) Flag-NS54 was coexpressed with HA-FKBPS, -CypD, or -FKBPS2
in 293 T cells. Proteins immunoprecipitated with anti-HA or -Flag tag
antibody were subjected to Western blotling. The data showsn in
each panel are representative of three independent experiments.
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The TPR domain is required for the interaction between
NS5A and FKBP8

FKBPS, CypD, and FKBPS2 have high similarity and identity
to each other within the TPR domain (Lam et al, 1995).
Several FKBP8 mutants lacking the transmembrane region,
the calmodulin-binding region, the TPR domains, and/or the
FK506-binding domain were generated in order to identify the
region responsible for the interaction with NS5A (Figure 34).
HA-tagged FKBPS mutants were coexpressed with Flag-NS5A
in 293T celis and were immunoprecipitated with anti-HA
antibody. Flag-NSSA was co-immuneprecipitated with the
FKBP8 mutanis, except in the case of a dTPR mutant lacking
the transmembrane, calmodulin binding, and TPR domains
{Figure 3B). Although the level of expression of dFBD, an
FKBP8 mutant with a deletion in the N-terminal region
containing the FK506-binding domain, was lower than that
of dTPR, co-immunoprecipitated NASA was clearly detected.
These findings suggested that the lack of an association
of dTPR with NS5A was not due to the relatively low level
of expression of dTPR, as compared to those of the other
FKBP8 mutants. A specific interaction of NS5A with the TPR
domain, but not with the transmembrane, calmedulin bind-
ing, or FK506-binding domains of FKBPS, was also observed
using the yeast two-hybrid system (data not shown}. These
results indicated that FKBP8 interacts with HCV NS5A
through the TPR domain.

FKBP8 forms a homomultimer and a heteromulftimer
with NS5A

FKBPS is similar to FKBPS2 and CypD with respect to their
amino-acid sequences and functienal domains. In order to
examine the interactions among FKBPS, FKBP52, and CypD,
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Figure 3 Determination of the NS5A-binding region in FKBPS.
(A) Schematic represeniation of FKBP8 and deleted mutants.
(B) Flag-NSSA was coexpressed with HA-FKBP8 znd its mutants
in 2937 ceils. Proteins immunoprecipitated with anti-HA antibody
were subjected to Western blotting. The data shown in each panel
are representative of three independent experiments.
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Flag-FKBP8 was coexpressed with HA-FKBP32, HA-CypD, or
HA-FKBPS8 in 293T cells and it was immunoprecipitated with
anti-Flag or anti-HA antibody. Flag-FKBPS and HA-FKEPS
were co-immunoprecipitated with each antibody, but not
with HA-FKBPS2 or HA-CypD. It is known that Hsp90 forms
a homedimer and also interacts with FKBPS2 through TPR
domain as FKBP8 (Chadli et al, 2000). If homodimer of
FKBPS is due to intermediating of Hsp90 as FKBP8-Hsp90-
Hsp90-FKBP8 complex, FKBP52 would be co-precipitated
with FKBPS as FKBP8-Hsp90-Hsp90-FKBP52. However, we
could not detect any association of FKBP8 and FKBP52 in
the immunoprecipitation analysis (Figure 4A). These data
suggest that FKBPS can form a homomultimer without Hspot
and associate with neither FKBP52 nor CypD through
Hsp20. To examine the effects of the interaction with NSSA
on the hemomultimerization of FKBP8, HA-NS5A was co-
expressed with Flag-FKBP§ and Glu-Glu-tagged FKBP8 (EE-
FKBPS) in 293T cells, and was then immunoprecipitated with
anti-Flag or anti-EE antibody. HA-NSSA was co-immunopre-
cipitated with Flag-FI(BP8 and EE-FKEPS by anti-Flag or anti-
EE antibody (Figure 4B}. Although multimerization of EE-
FKBP8 and Flag-FKBP8 was increased about 2 times in the
presence of HA-NSSA, but no further increase of the multi-
merization of FKBPS was observed by the increase of HA-
NSSA expression (Figure 4C). These results further support
the notion that NS5A binds to FKBPS via the TPR domain and
stightly influence homomultimerization exerted by the
FK506-binding domain.
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Knockdown of FKBP8 decreases RNA raplication in HCV
replicon cells

In order to determine the role of endogencus FKBPS on HCV
RNA replication, 80nM of small interfering RNA (siRNA)
targeted 1o FKBP8 or control siRNA was transfected into Huh?
(9-~13) cells harboring subgenomic HCV replicon RNA. To
verify the specificity of the knockdown of FKBP mRNA, we
synthesized three siRNAs targeted to different regions of
FKBP8 (Targets 1-3). The total RNA was extracted from
the transfected ceils, and HCV RNA and FKBP8 mRNA
levels were determined by reai-time polymerase chain reac-
tion (PCR). HCV subgenomic RNA and FKBP8 mRNA levels
in the cells transfected with each of the FKBP8 siRNAs were
reduced by more than 60%, as compared to the levels in cells
treated with the control siRNA at 72h post-transfection
(Figure 5A). The levels of expression of FKBPS and the
HCV proteins (i.e., N54B, NS5A, and NS5B) decreased in
HCV replicon cells transfected with 80 or 160nM of the
FKBP8 siRNA (Target 1), but this was not observed in the
cells with the control siRNA (Figure 5B). To further confirm
the specificity of the reduction in HCV RNA replication in the
replicon cells putatively achieved by the knockdown of
FKBP8, a plasmid encoding Flag-FKBP8 containing either a
silent mutation within the siRNA target sequence (Flag-
IFKBP8) or empiy plasmid was transfected into the HCV
replicon cells and then selection was carried out with the
appropriate antibiotics. The remaining cells, that is,
Huh?*FKBP8 and Huh7c cells, harboring the Flag-rFKBPS
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Figure 4 Homomultimerization of FKBP8. (A) Flag-FKBP8 was coexpressed with HA-FKBPS2, -CypD, or -FKBP8 in 293T cells, and was
immunoprecipitated with anti-HA or Flag antibedy. Precipitates were analyzed by Western blotting. (B) Flag- or EE-tagged FKBP8 was
coexpressed with HA-NS5A in 2937 celis and was immunoprecipitated with anti-EE or Flag antibody. Precipitates were analyzed by Western
blotting. (C} Flag- and EE-tagged FKBPS were coexpressed with increasing amounts of HA-NS5A (0.1, 0.2, and 0.4 pg of expression plasmid/
well) in 293T cells. Immunoprecipitates with anti-Flag antibody were analyzed by Western blotting. The data shown in each panel are

representative of three independent experiments.
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Figure 5 Decrease in HCV RNA by FKBPS-targeted siRNA. {A) HCV replicon cells (9-13 cells) were transfected with each of three kinds of
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transfected with 80 and 160 nM of Target 1 or nentargeted siRNA were harvested at 72 h post-transfection, and the samples were analyzed by
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independent experiments.

and empty plasmid, respectively, were pocled and then
transfected with the FKBP8 siRNA (Target 1) or control
siRNA. Although transfection of the FKBP8 siRNA led to a
60% reduction of HCV RNA and FKBP8 mRNA in Huh7c
cells, in comparison with levels in cells transfected with the
control siRNA, no reduction in HCV RNA, and only a slight
reduction in FKBP8 mRNA levels were observed in
Huh7:FKBPS cells (Figure 5C). Flag-rFKBP8 expression was
clearly detected in Huh7rFKBPS cells after transfection with the
FIKBP8 siRNA or control siRNA, whereas the endogencus
FKBP8 decreased in both Huh7rFKBP8 and Huh?7c cells with
the FKBPS siRNA (Figure 5D). These findings suggest that the
slight reduction of FKBPS mRNA in the Huh7rFKBPS cells
was due to a loss of endogencus FKBPS. Knockdown of FKBPS
by siRNA induce no apoptosis in a hepatoma cell line
{Supplementary Figure 2). These results therefore confirmed
that the inhibition of HCVRNA replication by FKBP8 siRNA
was due to a specific reduction in the mRNA of FKBPS, but was
not due to a nonspecific reduction of any other host mRNA.
To further examine the involvement of FKBP8 on HCV
replication, we established a line of Huh? cells that stably
expresses shRNA targeted to FKBP8, Huh7 was transfected
with pSilencer 2.1 U6 hygro containing the ¢cDNA of sShRNA to
FKBPS, and then selection was carried out with hygromycin.
FKBP8 was detected in Huh?7 cells harboring a control
plasmid (Huh?7N), whereas decreased expression of FKEP8
was clearly observed in cells expressing the shRNA to FKBPS
(Huh7FKBP8KD) (Figure 6A). In order to examine the effects
of the knockdown of FKBP8 on HCV RNA replication, a
chimeric HCV RNA containing the Renitla luciferase gene
was transfected into these cell lines. Although the chimeric

©2006 European Moiecular Biology Organization

HCV RNA exhibited 5.5 times higher replication than a repli-
cation deficient GND mutant RNA in Huh?N, enly a doubling
of the levels of replication was observed in Huh7FKBPSKD
(Figure 6B). Furthermore, HCV RNA containing a neomycin-
resistant gene was transfected into the cell lines in order
to examine the role played by FKBP8 in HCV RNA repli-
cation. The efficiency of colony formation in Huh?N and
Huh7FKBPBKD cells with the HCV RNA were 1700 and 23
colonies/pg RNA, respectively (Figure 6C). We also examined
the rote of FKBP8 on the cell culture sysiem for HCV infec-
tion. The siRNA-mediated knockdown of FKBP8 impaired
both intracellular viral RNA replication and release of HCV
core protein into the culture supernatants (Figure 6D}, These
results further confirmed that FKBP8 piays a crucial role in
the efficient replication of HCV RNA.

FKBPB8 forms a mulfticomplex with NS5A and Hsp30

To identify the cellular proteins that associate with FKBPS, we
employed a purification strategy using an MEF affinity tag
composed of myc and FLAG tags fused in tandem and
separated by a spacer sequence containing a TEV protease
cleavage site (myc-TEV-FLAG) (ichimura et al, 2005). The
MEF expression cassette fused with FKBP8 was transfected
inte 293T cells and the ceils were immunoprecipitated. The
endogenous FKBPS-binding proteins bound to the Flag beads
were subjected to sodium dedecyl sulfate-pelyacrylamide gel
electrophoresis {SDS-PAGE) and were then visualized by
silver staining. The visible protein bands were excised and
determined by a nanoflow LC-MS/MS system. Major protein
bands with a molecular size of 94 and 53 kDa were identified
as Hsp90 and FKBPS, respectively, although it should be
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replicon. (€) Huh7N and Huh? FKBPSKD cell lines were transfected with in vitro-transcribed replicon RNA (pFK-I335 neo/NS3-3//NK5.1) and
the cells were incubated for 4 weeks, The remaining cells were fixed with 4% paraformaldehyde and then were stained. (D) Huh?.5.1 cells
were transfected with either of siRNA targeted to FKBP8 {Target 1) or nontarget control at a concentration of 80 nM. The cells were inoculated
with HCVcc at 24 h after transfection and cells and culture supernatants were harvested every day. Intracellular viral RNA (upper} and HCV
core protein in the supernatant (lower) were determined. The data shown in each panel are representative of three independent experiments.

noted that the remaining bands detected in the samples could
not be reliably identified (Figure 7A).

In order to elucidate the interaction of Hsp90 with FKBPS in
mammalian cells, Flag-FKBP8 was coexpressed with HA-Hsp20
and immunoprecipitated by anti-Flag or anti-HA antibody. HA-
Hsp90 and Flag-FKBPS were co-precipitated with each other by
either of the antibodies but no interaction was obhserved
between HA-HspS0 and Flag-NSS5A (Figure 7B). To examine
the interplay among NS54, FKBPS, and Hsp90, HA-Hsp90 was
coexpressed with EE-FKBP8 and/or Flag-NS5SA (Figure 7C).
Co-immunoprecipitation of Hsp20 and NS5A was clearly de-
tected in the presence but not in the absence of FKBPS. The
increase in NS3A expression had no effect on the interaction
between FKBP2 and Hsp90 (Supplementary Figure 3), These
results suggest that Hsp90 does not directly bind to NS5A but
forms complex with NS5A through the interaction with FKBPS.

FKBPS interacts with NSBA and Hsp80 via different sites
in the TPR domain

Crystal structure of the TPR domain of Hop, an adaptor
chaperone that binds both Hsp?0 and Hsp90, revealed that
C-terminal MEEVD motif of Hsp90 is held by amino-acid
residues of the two-carboxylate clamp positions within the
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TPR domain (Scheufler et al, 2000; Brinker et al, 2002; Cliff
et al, 2006}. To examine the role of the C-terminal MEEVD
motif of Hsp90 on the interaction with FKBP8, Hsp90 mutant
lacking the MEEVD motif (HA-Hsp90AMEEVD) was co-
expressed with Flag-FKBP8 {Figure 8A). Wiid-type Hsp90 but
not the mutant Hsp90 was co-precipitated with FKBPS, indi-
cating that the FKBPS8 interacts with HspS0 via the C-terminal
MEEVD motif. Lys®” and Arg®” residues in the twa-carbox-
ylate clamp positicns of FKBP8 were conserved among the
TPR domain of other immunophiling, such as FKBP52 and
CypD (Figure 8B). To examine the role of the two-carboxylate
clamp positions of FKBPS for the interaction with Hsp90 and
NSS5A, FKBPS mutant replaced Lys®® and Arg™ with Ala,
designated as FKBPBTPRmut, was coexpressed with HA-Hsp90
or HA-NSSA (Figure 8C). FKBPSTPRmut exhibited no interac-
tion with Hsp90, but still retained the capability of binding to
NS5A, indicating that FKBPS interacts with Hsp9C and NSSA
through the conserved two-carboxylate clamp residues and
other region in the TPR demain, respectively.

Hsp80 participates in the replication of HCV RNA
To examine the role of Hsp90 in the replication of HCV RNA,
FKBPSTPRmut lacking the ability to bind to Hsp9G was

©2008 European Molecular Biology Organization
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Figure 7 FKBP8 forms complex with NSS5A and Hsp90. {A) An
N-terminally myc-TEV-Flag-tagged FKBP8 was expressed in 293T
cetlls and immunoprecipitated. The precipitated proteins were
applied to SDS-PAGE and then stained with silver staining. Hsp90
and FKBPS were identified by LC-MS/MS. (B) HA-Hsp90 was
coexpressed with Flag-FKBPS or Flag-NS5A in 293T cells, and was
immunoprecipilated by anti-HA or anti-Flag antibody. Precipitates
were analyzed by Western blotting. (C} HA-Hsp90 was coexpressed
with EE-FKBP8 and/or Fiag-NSSA in 293T cells and was immuno-
precipitated with anti-HA antibody. Precipitates were analyzed by
Western blotting by anti-EE, -HA or -Flag antibody.

expressed in HCV replicon cells {Figure 8D). Expression
of FKBP8TPRmut resulted in 30% reduction of HCV RNA
replication, suggesting that FKBPSTPRmut works as a domi-
nant negative. Geldanamycin is well known io bind io the
ATP/ADP binding site of Hsp90 and specificaily inhibits
the enzymatic activity of Hsp90, resulting in the promotion
of the degradation of client proteins for Hsp90 {Neckers,
2002). To determine the effects of Hsp90 inhibition induced
by geldanamycin on the replication of HCV RNA, HCV
replicon cells were treated with various concentrations of
geldanamycin. Treatment with geldanamycin clearly reduced
the levels of HCV RNA replication {Figure 8E}; moreover,
this treatment led to the slight suppression of NSSA
without reducing the levels of FKBP8 expressed in the HCV
replicon cells (Figure 8F). Although the inhibition of
cleavage at the NS2/NS3 junction by geldanamycin has
been demonstrated in both in vitro and in vive assays
(Waxman et al, 2001}, the effects of geldanamycin on the
replication of HCV RNA have not yet been examined in
replicon cells. The HCV replicon cell line used in the present
study does not contain an NS2-coding region, and NS2
has been shown to be unnecessary for the replication of
HCV subgenomic replicon (Lohmann et al, 1999). There-
fore, the observed reduction in RNA replication in the HCV
replicon cells by treatment with geldanamycin was not due
to an inhibition of HCV polypretein processing. in vitro
pull-down assays revealed that geldanamycin inhibited
the binding of FKBP8 to Hsp90 and/or NSS5A domain |
(Supplementary Figure 4). Thus, geldanamycin may inhibit
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HCV replication by disruption of NSS5A/FKBP8/Hsp90
complex. These results suggest that a protein complex
cemposed of FKBP8, Hsp90, and NSS5A is involved in HCV
RNA replication.

Discussion

HCV NSSA is a multifunctional protein involved in viral
replication and pathogenesis (Macdonald and Harris, 2004).
in this study, we demonstrated that NS5A specifically binds
to FKBP8, but not to other homologous immunophiling
such as FKBP52 and CypD, and that FKBP§ forms both a
homomultimer and a heteromultimer with Hsp%0. Mutation
analyses of FKBP8 and Hsp90 suggest that FKBPS intermedi-
ates between NSS5A and Hsp90 via the different position in
the TRP domain. FKBPS has been shown to be expressed in
several human tissues, including the liver (Lam et al, 1995);
moreover, it has been demonstrated that FKBP8-knockout
mice exhibit unusual morphological changes in brain devel-
opment in the embryonic stage (Nielsen et al, 2004).
However, the physiological function of FKBP8 has not been
clarified to date.

Recently, the in vitro replication of the full-length HCV
genome of genotype 2a (JFH1) isolated from an HCV-infected
patient who developed fulminant hepatitis was reported
(Lindenbach et al, 2005; Wakita et al, 2005; Zhong et al,
2005). Although binding of NS5A of the JFH1 clone to FKBPS
was weaker than that of genotypes la and 1b (Figure 24),
siRNA-mediated knockdown of FKBPS impaired produc-
tion of infecticus HCV particles in JFHI cell culture system
(Figure 6D). In spite of a weaker interaction between FKBPS
and NS5A, these resufts suggest that FKBPS is still required
for HCV replication in the cell cuiture system of JFHI.
The involvement of FKBP8 in mitochondria-mediated apop-
tosis remains coniroversial. Shirane and Nakayama {2003)
reported that FKBP8 binds to Bel-2 and that the Bel-2/FKBPS
complex was sequestered in the mitochondria in order to
suppress apoptosis. However, Edlich et al (2005} reported
that FKBPS binds to calmodulin via elevations in the calcium
concentration, which in turn feads to the promation of apop-
tosis in neuronal tissues. Knockdown of FKBP8 led to
impaired HCV RNA replication, which was restored by the
expression of an RNAi-resistant FKBP8 mutant. These resulis
suggest that the impairment of HCV RNA replication induced
by the knockdown of FKBP8 was not due to an inducticn
of apoptosis, nor to any side effects of RNA transfection.
The modulation of apoptosis by FKBP8 might be diverse in
different tissue types and cell lines.

FKEP8 belongs to the FKBP family due to sequence simi-
larity, but neither FK506 binding nor PPlase activity has been
detected in the case of FKBP8 thus far {Lam et al, 1995).
Apoptosis was induced in the SH-SYSY neuroblastoma cell
line by the treatment with mitechondria-mediated proapop-
totic drugs, but was inhibited by the knockdown of FKBP8
and was enhanced by treatment with GP11046, a nonimmuno-
suppressive FK506 derivative, whereas this result was not
obtained with FK506 (Edlich et al, 2005). The inhibition
constant of FKBP8 to FK506 was 50 times higher than that
of FKBP12 to FK506 (Edlich et al, 2005), which suggests that
the binding affinity of FKBP8 to FK506 is low. Furthermore,
cyclosporin A, but not FK506, was shown to suppress HCV
RNA replication via the interaction of NSSB with CypB
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Figure 8 FKEP8 interacts with NS5A and Hsp90 via different sites in the TPR domain and participates in HCV replication. (A) Flag-FKBPB was
coexpressed with HA-Hsp90 er HA-Hsp90AMEEDV lacking the C-terminal MEEDV residues and was immunoprecipitated by anti-HA or anti-
Flag antibody. Precipitates were analyzed by Western blotting. (B} Sequence alignment of TPR domains of FKBP8, FKBPS2, and CypD. The two
beld characters (K and R) indicate amino-acid residues substituted to Ala in FKBPSTPRmut. (C} Flag-FKBPS or Flag-FKBFSTPRmut substituted
Lys®” and Arg®"! to Ala was coexpressed with HA-Hsp90 (left) or HA-NSSA (right) in 293T cells, and was immunoprecipitated by anti-HA or
anti-Flag antibcdy. Precipitates were analyzed by Western blotting. (D) Flag-FKBPS, Flag-FKBP8TPRmut, or empty plasmid was transfected
into the replicon cells and HCV RNA was determined by real-time PCR after 48 h transfection. Relative replication was expressed as % increase
after being normalized with the expression of B-actin IRRNA. (E) The effect of geldanamycin on HCV RNA replication. HCV replicon cells {9-13
cells) were treated with 1, 3, 10, and 30 nM of geldanamycin and after 24 h treatment, HCV RNA replication was determined by real-time PCR.
Relative replication was expressed as % replication after standardized by the expression of P-actin (closed circles). Cell viabilities were
determined by trypan blue staining (closed triangles). (F) The effect of geldanamycin on the expression of NS5A and FKBPS. The replicon cells
were examined by immunoblotting after treatment with various concentrations of geldanamycin. The data shown in each panel are
representative of three independent experiments.

(Watashi et al, 2003, 2005). These results support the notion necessary for the replication of a noncytopathogenic strain
that FK506 preferentially binds to FKBP members other than of BVDV and is involved in the establishment of persistent
FKBPS8 in vivo, and that it does not participate in the inhibi- infection {Lackner et al, 2003). Furthermore, FKBP52, which
tion of HCV replication. shares a high homology with FKBP8, was shown to regulate

Cellular and viral chaperenes are implicated in the proces- replicaticn of adeno-associated virus type 2 by interacting
sing of viral proteins and viral assembly (Maggioni and with viral DNA (Qing et al, 2001). In this study, we demon-
Braakman, 2005; Mayer, 2005). The NS2 protein of bovine strated that HCV NSSA binds to FKBPS and forms a complex
virai diarrhea virus (BVDV), a member of the Flaviviridae with Hsp90. FKBP8 could directly bind to NSSA domain [
family as is HCV, exhibits autoprotease activity that leads in vitro (Supplementary Figure 1}, suggesting that Hsp90 is
to cleavage at the N52 and NS3 junction (Lackner et al, 2005). not required for interaction hetween NSS5A and FKEPS.
A noncytopathogenic strain of BVDV is unable to cleave the FKBP32 forms a homodimer, binds to Hsp20 through TPR
NS$2/3 junction in the absence of the interaction of a mole- domain, and regulates chaperone activity of Hsp90
cular chaperone, J-domain protein interacting with viral (Silverstein et al, 1999; Scheufler et al, 2000, Wu et al,
protein (Jiv); these previous findings suggest that Jiv is 2004). FKBP8 may act as cechaperone of HspS0 10 regulate
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HCV genome replication by interaction with NSSA. Hsp90is a
molecular chaperone that is highly expressed in most cell
types in various organisms (Neckers, 2002}. Here, Hsp90 was
found to be able to bind to FKBP8 and form a complex with
HCV NS5A. The suppression of NS5A, but not that of FKBPS,
was cbserved in replicon cells treated with geldanamycin,
thus suggesting that HspS0 regulates the replication of HCV
RNA via the interaction with FKBP8. It is well known that
several host proteins such as VAPs and FBL2 interact with the
HCV replication complex and regulate HCV RNA replication
(Evans et al, 2004; Gao et al, 2004; Hamamoto et al, 2005;
Wang et al, 2005). The TPR domain of FKBPS is composed of
220 amino acids and is too long to determine the critical
residues responsible for interaction with NSSA. Therefore, we
tried to make a chimeric mutant carrying the TPR of FKBP52
to determine the critical amino-acid residues for binding to
NS5A in FKBP8. However, expression of a chimeric FKBP8
possessing TPR of FKBPS2 was much lower than the native
form, suggesting that TPR domain is critical for stability and
conformation of FKBP8. Amino-acid residues responsible for
the binding to NS3A must be different from the two-carbox-
ylate positions responsible for Hsp90 binding and locate
within the TPR domain. The ternary complex consists of
NS5A, FKBPS and Hsp90 may be involved in the replication
of HCV. FKBPS52 possesses PPlase activity and chaperone
activity in domain 1 (amino acids 1-148) and domain 3 (TPR
domain, aming acids 264-400), respectively (Pirkl et al, 2001).
Therefore, it is reasonable 1o speculate that the TPR domain is
respansible for the chaperone activity of FKBPS, and that the
FKBP8 and NS5A complex transports Hsp90 to the appropriate
clients, including viral and host proteins, which in turn leads
to the stabilization of the replication complex and the en-
hancement of HCV RNA replication.

In this study, we identified human FKBP8 as a binding
partner of HCV NS5A. Qur results suggest that the interaction
between FKBP8 and HCV NS5A is essential for HCV replica-
tion. The NS5A protein forms a complex with FIKBP8 and
Hsp90, and an inhibitor of Hsp90 was shown to reduce the
efficiency of HCV replication. The elucidation of the molecu-
lar mechanisms undetlying the formation of the NSSA/
FKBP8/Hsp90 complex may lead to the development of
new therapeutics for chranic hepatitis C.

Materials and methods

Yeast two-hybrid assays

Screening for the gene-encoding host protein that interacts
with HCV NS5A was performed with a yeast two-hybrid
system, Matchmaker two-hybrid system 3 (Clontech, Palo Alto,
CA), according to the manufacturer’s protecol. Human fetal brain
and liver Hbraries were purchased from Clontech. The ¢DNA of
NSSA-encoding amino acids 1973-2419 of an HCV polyprotein
of the J1 strain {genotype 1b) {Aizaki et al, 1998) was amplified by
PCR and was cloned into the pGBKT7 vector (Clontech) (Tu et al,
1999; Hamamate et al, 2005).

Plasmids

DNA fragments encoding NSSA were ampiified from HCV genotype
1b strains J1 and €en? {provided by Dr Bartenschlager), genotype
la strain H77C {provided by Dr Bukh), and genotype 2a strain
JFH-1 (provided by Dr Wakita) by PCR using Pfu turbo DNA
polymerase (Stratagene, La Jolla, CA}. The fragments were cloned
into pCAGGs-PUR/N-HA, in which the sequence encoding an HA
tag is inserted at the 5-terminus of the cloning site of pCAGGs-PUR
(Niwa et al, 1991). The DNA fragment encoding human FKBPS was
amplified from the total cDNA of Huh7 cells by PCR, and this
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fragment was introduced into pEF-FLAG pGBK pure (Huang et al,
1997), pCAGGs-PUR/NHA, pcDNA3.1-N-HA (Tu et al, 1999;
Hamamoto et al, 2005}, and pcDNA3.1-N-EE, in which an Glu-Glu
(EE} tag is inserted in the 5-terrninus of the cloning site of
peDNA31 (+) (Invitrogen, Carisbad, CA}. The DNA fragments
encoding human Hsp%0, FKBPS2, and CypD were amplified from a
human fetal brain library (Clontech) by PCR, and were introduced
into pcDNA3.1-N-HA, The genes encoding the deletion mutanis of
hurnan FKBPS were amplified and cloned into pCAGGs-PUR/NHA.
The gene encoding an FKBPS mutant replaced Lys*® and Arg™
with Ala, designated as FKBP8TPRmut, was generated by the
method of splicing by overlap extension and introduced into pEF-
Flag pGBKpuro. The gene encoding an Hsp9® mutant lacking the
C-terminal MEEVD moftif of Hsp90, designated as Hsp90AMEEVD,
was amplified and cloned into pcDNA3.3-N-HA. All PCR products
were confirmed by sequencing by an ABL PRSM 310 genetic
analyzer (Applied Biosystems, Tokyo, Japan}.

Cell fines

Human embryonic Kidney 293T cells and the human hepatoma celi
lines Huh? and FLC-4 were maintained in Dulbecco’s modified
Eagle’s medium (DMEM} {Sigma, St Louis, MO) containing 10%
{fetal calf serum (FCS), whereas the Huh 9-13 cell line, which
possesses an HCV subgenomic replicon (Lohmann et al, 1999), was
cultured in DMEM supplemented with 10% FCS and 1 mg/ml G418.
All cells were cultured at 37°C in a humidified atmosphere with
5% CO,.

Antibodies

Mouse monoclonal antibodies to the HA and EE tags were
purchased from Covance {(Richmond, CA). Anti-Flag mouse
antibody M2, horseradish percxidase-conjugated M2 antibody,
and anti-f-actin mouse monoclonal antibody were purchased
from Sigma. Mouse monocional antiboedy to NS5A was from
Austral Biologicals (San Ramon, CA). Mouse monoclonal anti-
bodies to NS4B and NSSB have been described previously
(Kashiwagi et al, 2002). Rabbit polyclonal antibody to NSSA was
prepared as described previously (Hamamoto et al, 2005}, Rabbit
polyclonal antibody to thicredoxin was described previcusly
[Moriishi et al, 1999).

Transfection, immunoblotting, and immunoprecipitation

The transfection and immunoprecipitasion test were carried out
by a previously deseribed method [Hamamoto et al, 2005). The
immunoprecipitates boiled in the icading buffer were subjected to
12.5% SDS-PAGE. The proteins were transferred to polyvinylidene
difiuoride membranes {(Millipore, Bedford, MA) and were reacted
with the appropriate antibodies. The irmmune complexes were
visualized with Super Signal West Femio substrate (Pierce, Rock-
ford, IL} and they were detected by an LAS-3000 image analyzer
system (Fujifilm, Tokyo, Japan}. The density of protein band was
determined by using IMAGE-PRO PLUS 5.1 sofiware (Media
Cybernetics, Silver Springs, MD).

Gene silencing by siRNA

The siRNA targeted to FKBPS, Target-1: -GAGUGGCUGGACAUUC
UGG-3', and negative contrel siRNA, that is, siCONTROL Non-
Targeling siRNA-2, were purchased from Dharmacon {Lafayeite,
CO). Target-2, 5-UCCCAUGGAAGUGGCUGUU-3’, and Target-3,
5-GACAACAUCAAGGCUCUCU-3" were purchased from Qiagen
{Tokyo, Japan). The Huh? cells harboring a subgenomic HCV
replicon grown on six-well plates were transfected with 80 or
160nM of siRNA with siFECTOR (B-Bridge Interpaticnal, Sunny-
vale, CA). The cells were grown in DMEM containing 10% FCS and
were then harvested at 48 or 72 h post-transfection.

Real-time PCR

Total RNA was prepared from cell lines by using RNeasy mini kit
{Qiagen). First-strand cDNA was synthesized by using z first-strand
cDNA synthesis kit (Amersham Pharmacia Biotech, Franklin Lakes,
NJ) and random primers. Each ¢DNA was estimated by Platinum
SYBR Green gqPCR SuperMix UDG (Invitrogen) according to the
manufaciurer's protocol. Fluorescent signals were analyzed by
an AB{ PRISM 7000 (Applied Biosystems). The HCV NSSA, human
f-actin, and human FKBP8 genes were amplified using the primer
pairs of 5-AGTCAGTTGTCTGCGCTTTC-3' and
5-CGGGGAATTTCCTGGTCTTC-3,
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S -TGGAGTCCTGTGGCATCCACGAAACTACCTTCAACTC-3

and 5'-CGGACTCGTCATACTCCTGCTTGCTGATCCACATC-3,

and 5-GGCTGTTGAGGAAGAAGALG-3

and 5'-CTTCGGAGTCAGCAGTGACCA-3', respectively. The FKBPS
primers are located at different exons in order to prevent the
false-positive amplification of contaminated genomic DNA. The
values of the HCV genome and FKBP8 mRNA were normalized
with those of p-actin mRNA. Each PCR product was detected as a
single band of the correct size upon agarose gel electrophoresis
{data not shown).

Establishment of cell lines expressing an siRNA-resistant
FKBP8 mutant and knockdown FKBF8 expression

A, G, and T at nucleotides 273, 276, and 288 from the 5 end of the
open-reading frame of human FKBP8 were replaced with G, A, and
C, respectively, according to a splicing method achieved by overlap
extension; these silent mutations were then cloned into pEF-Flag
pGBKpuro. The resulting plasmid encoding a mutant FKBPS
resistant to knockdown by siRNA was transfected into Huh?7 cells
harboring the HCV RNA replicon. The culture medium was replaced
with DMEM supplemented with 10% FCS and 2 pg/ml of puromycin
{Nakarai Tesque, Tokyo, Japan) at 24 h post-transfection, and the
cells were cultured for 7 days. The surviving cells were used for the
FKBP8 knockdown experiments. The shRNAs targeted to FKBPS,
the target sequences of which were 5-GATCCGCTGGAACCTTCCA
ACAAGTTCAAGAGACTTGTTGGAAGGTTCCAGCTTA-3, and 5'-A
GCTTAAGCTGGAACCTTCCAACAAGTCTCTTGAACTTGTIGGAAGG
TTCCAGCG-3/, were annealed and introduced between the BamHI
and Hind]lI sites of pSilencer™ 2.1-U6 hygro (Ambion, Austin, TX)
according to the manufacturer's protocol. An HCV replicon cell line
cured with IFN-a was transfected with Spg of the plasmid by
electroporation. The culture medium was replaced with DMEM
supplemented with 10% FCS and S00pg/ml of Hygromycin B
{Wako, Tokyo, Japan) at 24 h post-transfection. The remaining celis
were re-seeded in 98-well plates and cloned for the colony
formation and transient replication assays.

Colony formation assay

The plasmid pFK-I3g¢ neo/NS3-3'/NK5.1 (Pietschmann et al, 2002)
was chtained from R Bartenschlager. The plasmid cleaved at the
Scal site was ftranscribed in vitro using the MEGAscript T7 kit
{Ambion) according to the manufacturer’s protocol. The linearized
plasmid (10pg) was intreduced into Huh?7 cells a1 4 mitlion cells/
0.4 ml by electroporation at 270 V and 960 pF using a Gene Pulser™
(Bio-Rad, Hercules, CA}. Electroporated cells were suspended at a
final volume of 10ml of culture medium. Three-milliliter aliquots
of cell suspension were mixed with 7ml of culture medium and
then the cells were seeded on culture dishes (diameter: 10 cmy). The
culture medivm was replaced with DMEM containing 10% FCS
and 1mg/ml of G418 (Nakarai Tesque) at 24 h post-transfection.
The medium was exchanged weekly for fresh DMEM centaining
10% FCS and 1mg/mt G418. The remaining colonies were fixed
with 4% paraformaldehyde at 4 weeks after electroporation, and
the cells were stained with crystal viclet.
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Transient replication assay

The cDNA encoding Renilla luciferase was introduced between the
Ascl and Pmel sites of the plasmid pFK-Izgo neo/NS3-3'/NK5.1, in
place of the neo gene, The resulting plasmid, pFK-T339 hRL/NS3-3'/
NKS5.1, was cleaved with Scal and was transcribed in vitro using
a MEGAscript T7 kit (Ambion). Huh? cells were suspended at 10
million cells/ml and the suspensions were mixed with 10ug of
in vitro-transcribed RNA at a 400-pl volume; the cells were then
electroperated at 270V and 960 uF by a2 Gene Pulser™ (Bio-Rad}.
The electroporated cells were suspended in 25 ml of culture medium
and then were seeded at 1ml/well on 12-well culture plates.
Luckerase activity was measured at 4 and 48h pest-transfection
using a Renilla Luciferase assay systern (Promega, Madison, WI)
according to the manufacturer’s protocol. Luciferase aciivity at 4h
after electroporation was used to determine the transfection
efficiency.

Generation of infectious HCV particles

The viral RNA of JFH1 was introduced into Huh7.5.1 according to
the method of Wakita et al (2005). The supernatant was collected
at 7 days post-transfection and used as HCV particles that are
infectious in cell culture {HCVce). The raive HuhZ7.5.1 cells
were transfected with siRNA of nontarget control or FKBP8-Target
1 at a concentration of 80nM. The siRNA-treated Huh?.5.1 cells
were inoculated with HCVcc at 24 h post-transfection. Infected ceils
and culture supernatants were harvested every day until 5 days
post-infection.

Determination of FKBP8-binding proteins

MEF purification was carried out by a previously described methad
(fchimura et al, 2005). The FKBPS gene was amplified by PCR and
introduced into pcDNA3.1 encoding the myc-TEV-Flag epitope tag
(Ichimura et al, 2005). The resulting plasmid was transfected into
2937T cells, which were then subjected to MEF purification. FKBPS-
binding proteins were separated by SDS-PAGE and visualized by
silver staining. The stained bands were excised, digested in gels
with Lys-C, and analyzed by the direct nanoflow LC-M5/MS system
(Ichimura et al, 2005).

Supplementary data
Supplementary data are available at The EMBOQ Journal Online
(htp://www.embojournal.org).
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Hepatocellular carcinoma (HCC) is a common primary cancer associated
with high incidences of genetic variations including chromosome
instability. Moreover, it has been demonstrated that hepatitis C virus
{HCV) is one of the major causes of HCC. However, no previous work has
assessed whether HCV proteins are associated with the induction of
chromosome instability. Here, we found that liver cell lines constitutively
expressing full-length or truncated versions of the HCV genome show a
high incidence of chromosome instability. In particular, the overexpression
of HCV NS5A protein in cultured liver cells was found to promote
chromosome instability and aneuploidy. Further experiments showed that
NS5A-induced chromosome instability is associated with aberrant mitotic
regulations, such as, an unscheduled delay in mitotic exit and other mitetic
impairments (e.g. multi-polar spindles). Thus, our results indicate that
HCV NS5A protein may be directly involved in the induction of
chromosome instability via mitotic cell cycle dysregulation, and provide
novel insights into the molecular mechanisms of HCV-associated
hepatocarcinogenesis.

© 2006 Elsevier Ltd. All rights reserved.
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instability; hepatocellular carcinoma

Introduction

Hepatocellular carcinoma (HCC) is a common
primary cancer that is often associated with
hepatitis B (HBV) and hepatitis C (HCV) viral

infections. In particular, more than 60% of HCV
infections lead fo chronic hepatitis, which can
sequentially progress to chronic active hepatitis,
liver cirrhosis, and HCC.””* HCV is an envelope
RNA virus and contains a single-stranded positive-
sense RNA genome that encodes a precursor
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polypeptide of approximately 300¢ amino acid
residues. Host and viral proteases cleave this
precursor polypeptide into at least ten individual
proteins; namely, core, E1, E2, p7, N52, N33, N54A,
NS4B, NS5A and NS5B proteins.™” Moreover, recent
studies indicate that HCV viral proteins can play
direct roles in oncogenesis.®”® For example, trans-
genic mice harboring HCV core protein, structural
proteins, or the full-length genome exhibit marked

0022-2836/% - see front matter © 2006 Elsevier Ltd. All rights reserved.
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liver steatosis and spontaneous HCC development
after long periods of latency”™ Interestingly, the
development of HCC appears to depend on
the host’s genetic background, HCV genotype,
and the expression levels of introduced HCV
genes.® %3 In general, it is believed that HCV
proteins significantly cause and/or enhance the risk
of liver cancer.

Previous studies suggest that in HCC, neoplastic
cells originate from rapidly dividing hepatocytes or
liver stem cells that have accumulated genetic
alterations and thus demonstrate genomic instabil-
ity."* Moreover, the majority of HCC cells display a
high incidence of chromosome instability, including
structural chromosomal alterations, and allelic
losses and gains. In addition, chromosome instabil-
ity is evident in cirrhotic liver tissues, and has been
found to increase during the hepatocarcinogenesis
process.’>’® Although chromosome aneuploidiza-
tion is found in many human cancers, it is unclear
whether aneuploidy is a consequence of cell
transformation, or whether it contributes to tumor
progression by increasing tumor suppressor losses
and protooncogene gains. Growing evidence indi-
cates that aneuploidy occurs as a result of
chromosome missegregation in response to a
number of abnormalities, such as, double-strand
DNA breaks and the loss of cell cycle checkpoint
controls.””® Faithful chromosome segregation is
controlled by the mitotic machinery, which includes
the kinetochore complex, spindle, centrosome and
cohesion complex, and the inactivation or dysregu-
lation of these components causes mitotic defects
that can lead to chromosome missegregation and
aneuploidy. Although studies have not yet estab-
lished a direct melecular link between defects in the
mitotic checkpoint and aneuploidy in cancer, a
growing list of molecular components and pro-
cesses known to cause chromosome missegregation
in vitro and in vive may be considered prime
candidates.'?*?

Normally, mitotic checkpoint controls trigger cell
cycle arrest and/or the elimination of cells harbor-
ing cell cycle defects. However, some cells with
constitutive checkpoint defects, such as those
caused by DNA tumor virus infections, are able to
escape apoptosis and adapt cell cycle progression,
thus allowing the continuation of chromosome
instability.2**? Interestingly, HTLV-1 TAX onco-
protein has been shown to target MADI1 mitotic
checkpoint protein, and thus lead to impaired
checkpoint function, multi-nucleation, and aneu-
ploidy.** Other DNA tumor virus proteins, includ-
mg E1A and E1B from adenovirus, E6 and E7 from
papillomavirus, and iarge and small T antigens
from simian virus 40 (SV40) have been shown to
interact with major ceflular regulators and induce
mitotic abnormalities.** Furthermore, HBx protein,
which is frequently integrated into the cellular
genome, and which is expressed during the HCC
development, has been reported to induce centro-
some amplification, muiti-polar spindles, and
aneuploidy.” These previous results collectively

suggest that mitotic checkpoint impairments may
represent a common pathway for viral oncogenesis,
and that viral proteins may affect chromosome
segregation, leading to mitotic abnormalities and
increased aneuploidy.

Previously, Smith et al.'* performed microarray
analyses on HCV-associated HCC specimens, and
found an association between chromosomal segre-
gation abnormalities and the improper expressions
of potential HCC marker genes, such as, Aurora A,
CDC2, mitotic cyclins, cyclin-dependent kinases,
po3-related genes, and CENP-F. Furthermore,
Kawai et al.'® showed that FICC tissues associated
with HCV infection show significant losses of
heterozygosity (LOH), although the rate of LOH
was higher in HBV-associated tissues. Consistent
with this finding, LOH was detected more frequen-
tly in malignant tumors than in normal liver
tissues®®” and was almost always accompanied
by chromosome instability. These observations raise
the possibility that HCV infection may be associated
with chromosome instability, which is a known
cause of neoplastic degeneration and hepato-
carcinogenesis. However, due to the limitations of
tissue culture and animal meodel systems, no
previous work has directly examined whether
HCV proteins are associated with the induction of
chromosome instability.

Here, we examined whether one or more HCV
proteins are directly involved in the acquisition of
chromosome instability. Qur analysis of HCV-
associated HCC tumor tissues showed marked
chromosomal aberrations, and liver cell lines
constitutively expressing full-length or truncated
versions of the HCV genome exhibited a high
incidence of chromosome instability. In particular,
the overexpression of HCV NS5A protein appeared
to result in an unscheduled delay in mitotic exit and
in mitotic abnormalities (e.g. multi-polar spindles).
Moreover, these discrepancies were associated with
chromosome instability and aneuploidy in NS5A-
expressing cells. These results indicate that there is
a direct link between HCV proteins and chromo-
some aneuploidy in hepatocytes.

Results

HCV non-structural proteins appear to act in an
integrated manner during the induction of
chromosome instability

Previously, we established stable human hepato-
blastoma-derived HepG2 cell lines expressing the
entire HCV ORF (Hep394), or ORF fragments
including core to N53 protein (Hep352) or NS52
(C-terminal 52 amino acid residues) to NS5HB
protein (Hep3294), and used immunochemical
analyses to confirm the proper expressions and
processing of these proteins in these cell lines.”® Due
to the lack of a cell culture system that supports the
efficient propagation of FHCV, these cell lines were
developed with the intention of providing a suitable
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in vitro model of HCV infection. To examine  cell line (expressing the entire HCV ORF) showed a
whether HCV proteins are involved in the induc-  significant increase in cellular chromosome number
tion of chromosome instability, we treated parental  distribution versus parental HepG2 cells. Moreover,
HepG2 cells or established Hep394, Hep352 or  Hep3294 cells (expressing NS2 to NS5B proteins)
Hep3294 cell lines with colcemid. Giemsa staining  also showed a dramatic increase in cellular
was used to visualize chromosomes, which were chromosome number distribution, whereas
counted to determine cellular chromosome number ~ Hep352 cells (expressing core to NS3 protein)
distributions (a marker of chromosome instability; showed chromosome number distributions similar
Figure 1(a) and (b)). It was found that the Hep394  to those of control HepG2 cells. This observation
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Figure 1. HCV non-structural proteins may be involved in the induction of chromosomal instability. () Schematic
diagram showing the utilized independent HepG2-based cell lines constitutively expressing the full-length HCV ORF
{(Hep394}, a truncated HCV including the core to NS3 sequences (Hep352), and a truncated HCV including the NS2 to
NS5B sequences (Hep3294). The expression and processing of HCV proteins in these cell lines was previously confirmed
by biochemical analyses.” (b) For metaphase chromosome analysis, parental HepG2 and established clones were
cultured and treated with colcemid (0.04 mg/ml), and chromosomes were visualized by Giemsa staining. Chromosome
number distributions were counted and analyzed in 200 cells per clone. (c) Expressions of HA-tagged N55A or NS5E in
selected Huh? cell clones were assayed by immunofluorescence using an anti-HA antibody (red), and DNA was
visualized by staining with Hoechst dye (blue). (d) Huh? clones expressing HA-tagged NS5A (Huh7-NS5A) or NS5B
(Huh7-N55B) and control Huh? cells were prepared (as described for (b)) for metaphase chromosome spreading
analysis. Mitotic cells were randomly selected (n=200 per clone) and chromosomes were counted.
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provides first evidence that HCV proteins are
directly involved in the induction of chromosome
instability.

To identify the protein responsible for this effect,
we compared the effects of expression plasmids
encoding N54A /4B or NS5A and NS5B on hepato-
cyte growth, Consistent with the previous find-
ings,*? flow cytometry revealed that cells co-
transfected with NS5A and NS5B expression
plasmids exhibited a shortened 5 phase and a
significantly increased proportion of cells arrested
in the G2 and M phases, as compared to cells
transfected with N54A /4B alone or with empty
vector (data not shown), indicating that NS5A
and/or NS5B may affect the cell cycle by
regulating chromosome replication or chromosome
segregation. To address whether HCV proteins,
especially NS5A and NS5B, play roles in chromeo-
somal instability and aneuploidy, we generated
stable cell lines expressing IHCV N55A and N55B in
HBV genome-negative hepatocellular carcinoma-
derived Huh? cells (Figure 1(c) and (d)). Individual
(G418-resistant stable Huh7 cell clones were
screened for NSGA and NSOGB expression by
immunofluorescence (Figure 1(c)) and immuno-
blotting (data not shown) using an anti-HA
antibody. The data described below were obtained
using single clones showing moderate levels of
NSE5A or NS5B expression, and all results were
confirmed by examining two additional indepen-
dent clones per cell line. NS5A-expressing and
control Huh?/ cells were cultured, treated with
colcemid and subjected to Giemsa staining. As
shown in Figure 1(d), Huh7-N55A cells showed
markedly increased chromosomal number distri-
butions {143-155 chromosomes in ~60% of cells) as
compared with control Huh7 cells grown under the
same conditions (72-82 chromosomes in ~80% of
cells). In contrast, Huh7-NS5B cells showed vir-
tually the same chromosome number distribution
profile as control Huh7 cells. To ruie out the
possibility that the induction of chromosome
instability by NS5A protein may have been depen-
dent on the cell line used, we performed parallel
experiments in control Chang-HA (empty vector-
transfected) and Chang-NS5A cells. As expected,
chromosome spreading analysis revealed that
Chang-NS5A cells showed a significantly higher
incidence of chromosome instability than the
control Chang-HA cells {data not shown). Collec-
tively, these results demonstrate that HCV NS5A
protein expression induces chromosomal instability.

HCV NS5A protein expression affects the normal
timing of mitotic progression by delaying mitotic
exit

Aberrant chromosome distributions were
observed in cells expressing HCV NS5A, and thus
we compared cell cycle progressions through 5,
G2, and mitosis (M) In the established Chang
clones, ie. vector-transfected control Chang-HA
cells, Chang-NS5A cells, and Chang-NS5B cells

(Figure 2(a)). Cells were synchronized at the G1/S
boundary using a double thymidine block, and
following release from G1/5 arrest cells were
harvested and analyzed for DNA content by flow
cytometry {Figure 2(b}). Interestingly, at 10 h and
12 h after release, cells expressing NS5A showed a
significant delay in mitotic exit, as evidenced by an
accumulation of cells at G2/M and a decrease in the
G1 population. In contrast to Chang-NS5A, Chang-
NS5B cells and control Chang-HA cells progressed
similarly. To determine whether NS5A expression is
associated with the accumulation of cells in G2 or
M, we treated cells with nocodazole and monitored
the populations of MPM2-positive cells (an indi-
cator of the mitotic phase of the cell cycle)
(Figure 2{c}). In control Chang cells, mitotic indexes
increased rapidly from 12 h to 24 h after nocodazole
treatment and then decreased sharply at 36 h post-
treatment. In contrast, cells expressing NS5A
protein maintained a constant mitotic index for up
to 36 h after nocodazole treatment, indicating that
INS5A protein expression interferes with the normal
timing of mitotic ceil cycle progression by delaying
mitotic exit. Next, we observed the effect of NS5A
protein expression on the timing and morphology
of NSbA-expressing mitotic cells using time-lapse
photomicroscopy at 2 min intervals. As each cell
entered mitosis, nuclear envelope breakdown
(NEBD) was set as time zero, and the relative
times for individual cell types to complete chromeo-
some separation were then determined
(Figure 2(d)). In control Chang-HA cells, the time
to completion of chromosome separation was
67.6(+12.6) min (Figure 2(e)}. Interestingly, NS5A-
expressing cells showed a significant retardation of
mitotic cell cycle progress, with an 86.2( £ 31.3) min
interval between NEBD and complete chromosome
separation (Figure 2(e)). In addition, a significant
proportion of NS5A-expressing cells failed to
complete chromosome separation over the duration
of imaging (4h); 57% of Chang-NS5A cells
remained in metaphase at the end of observation
period as compared with only 10% of Chang-HA
cells (Figure 2(f)). These results collectively indicate
that NS5A-expressing cells remain arrested in
mitosis for an abnormally long time, thus delaying
chromosome separation.

Delayed mitotic exit induced by NS5A
expression may be associated with mitotic
abnormalities

Normal cells display two centrosomes and iwo
spindle poles during mitosis, ensuring bipolar
microtubule attachment to sister chromatids, and
abnormal centrosomes or mitotic spindies lead to
unequal chromosome segregation and subsequent
aneuploidy. Thus, since NS5A protein overexpres-
sion delays mitotic exit, it is possible that NS5A
protein contributes to mitotic machinery defects
associated with chromosome missegregation.
Therefore, we examined whether aberrant mitotic
arrest by NS5A overexpression is related to mitotic
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Figure 2. Exogenous expression of HCV NSBA protein results in delayed mitotic exit. (a) Expression of HA-tagged
NS55A (Chang-NS5A) or NS5B {Chang-NS5B) in selected Chang cell clones was assayed by immunofluorescence using
an anti-HA antibody (green) and Hoechst dye (blue). (b) Chang liver cells expressing NS5A (Chang-NS5A, red) or NS5B
(Chang-NS5B, green} and empty vector-transfected control cells (Chang-HA, gray) were synchronized at the G1/8
boundary by a double thymidine block (see Materials and Methods). After release from G1/S arrest, cells were harvested
and subjected to flow cytometry at the indicated time points. Asyn indicates asynchronized cells. (¢) Control Chang-HA
and Chang-NS5A cells were treated with nocodazole, harvested, stained with FI and an FITC-conjugated anti-MPM?2
antibody, and examined by flow cytometry. Distributions of MPM2-positive ceils after nocodazole treatment were
graphed based on comparisons between Chang-HA and Chang-INS5A cells. The values shown are the means of three
independent experiments, and bars indicate standard deviations. (d) Chang-HA and Chang-NS5A cells were cultured
and imaged by time-lapse photomicroscopy during mitotic progression; nuclear envelope breakdown (NEBD) was
designated time zero. Times from NEBD to complete chromosome separation were measured (an example is indicated
by the arrowhead). Representative time-lapse images are shown. (e) Mitotic progression data from randemly selected
Chang-HA and Chang-NS5A cells obtained from the image in (d). The percentages of cells showing aberrant mitotic
durations of less than 2 h were compared. P-values were obtained using the Student’s { test. (f} Percentages denote the
population of cells showing incomplete mitosis at 4 h.

abnormalities, such as mitotic spindle defects,  mitotic spindles and centrosomes, respectively, in
abnormal centrosome formation, or cytokinesis  NS5A-expressing and control cells (Figure 3(a)).
failure. Immunofluorescence analyses using  Interestingly, Huh7-NS5A cells exhibited micro-
g-tubulin and y-tubulin were used to visualize  tubule disarray and increased numbers of celis
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Figure 3. Cells expressing NS5A exhibited more mitotic spindle assembly defects. (a) To analyze mitotic spindles,
control Huh? and Huh7-NS5A cells were co-immunostained with anti-a-tubulin (green) and anti-y-tubulin (red)
antibodies. DNA was visualized with Hoechst dye (blue). Representative confocal microscopic images are shown. More
than two centrosomes and spindles per cell were considered to indicate multi-polar (abnormal) spindles. (b) Graphical
comparison of multi-polar spindle numbers in Huh? and Huh7-NS5A cells. The values shown are the means of three
independent experiments, in which more than 300 mitotic phase cells were counted, and bars indicate standard
deviations. (c) Control Chang-HA and Chang-NS5A cells were co-immunostained with anti-a-tubulin (green) and anti-
pericentrin (red) antibodies and DNA was visualized with Hoechst dye (blue). Populations of cells harboring mitotic
abnormalities were determined by the presence of multi-polar spindles and/or unattached chromosomes.
Representative confocal microscopic images are shown. The arrowhead designates unattached chromosomes.
{d) Profiles of mitotic abnormalities in Chang-HA and Chang-NS5A cells. The frequencies of multi-polar spindles
and unattached chromosomes were estimated from three independent experiments during which more than 331 mitotic
phase cells were counted.

with more than two centrosomes and mitotic
spindle poles (~155% of cells) as compared
to vector-transfected control cells (~8.5%)

control Chang cells (Figure 3(d)). The overexpres-
sion of NS5A also slightly increased the population
of cells with unattached chromosomes (Figure 3(d)).

(Figure 3(b)), suggesting that cells expressing
INS5A protein show mitotic machinery abnormal-
ities. Similarly, we immunoassayed control Chang-
HA and Chang-NS5A cells using antibodies against
a-tubulin and pericentrin (Figure 3(c)), and found
that about 14% of NS5A-expressing cells displayed
multi-polar spindles as compared with about 4% of

In addition, recent reports show that cytokinesis
failure and subsequent binucleation result in
tetraploidization, Which frequently is able to
proceed to aneuploidy.*** Therefore, we investi-
gated whether the overexpression of NS5A contri-
butes to cytokinesis failure and binucleation.
However, cells expressing NS5A showed no





