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shown) and was inhibited by the addition of a 10-fold excess of
unlabeled NMU-25 as a competitor (Fig. 4C fop and bottom),
suggesting the specific interaction of NMU-25 to these cells.
Biologically active ligands for GPCRs have been reported to bind
specifically to their cognate receptors and cause an increase in
second messengers such as intracellular-Ca** and/or cAMP levels.
We therefore determined the ability of NMU for the induetion of
these second messengers in LC319 cells through its interaction
with GHSRIb/NTSRI. Enhancement of cAMP production (Fig. 4D),
but not of Ca®" flux, was detected by NMU-25 in a dose-dependent
manner in LC319 cells that expressed both GHSR1b and NTSR1,
when the cells were cultured in the presence of NMU-25 in final
concentrations of 3 to 100 pmol/L in the culture media {data not
shown). The results showed that NMU-25 activated the NMU-25-
related signaling pathway possibly through functional GHSR1b/
NTSR1 in NSCLC cells. This effect was likely to be NMU-25-specific,
because the addition of the same amount of GHRL and NTS,
known ligands for GHSR/NTSR1, did not enhance cAMP produc-
tion (Fig. 4). On the other hand, treatment with NTS, but not that

with GHRL, caused the mobilization response of intracellular Ca®
in LC319 cells (data not shown}, similar to previous reports (23, 24),
suggesting the ligand-dependent and diverse physiologic function
of GHSR1b and/or NTSR1 in mammalian cells.

We then examined the biological significance of the NMU-
receptor interaction in pulmonary carcinegenesis using plasmids
designed to express siRNA against GHSR or NTSRI (si-GHSR-1,
si-NTSR1-1, and si-NTSRI-2). Transfection of either of these
plasmids into LC319 or A549 cells suppressed the expression of
the endogenous receptor in comparison with cells containing any
of the three control siRNAs (Supplementary Fig. $4, fop). In
accordance with the reduced expression of the receptors, LC319
and A549 cells showed significant decreases in cell viability and
number of colonies {(Supplementary Fig. $4, middle and bottom).
These results strongly support the possibility that NMU, by
interaction with GHSR1b and NTSRI, might play a very significant
role in the development/progression of lung cancer.

Internalization of GHSR1b/NTSR1 receptors after binding
with NMU. To determine the mechanism involved in the regulation
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Figure 4. Functional association of NMU with endegenous GHSR1b/NTSR1 on the NSCLC cells. A, expression of NMU, candidate receptors, and their known ligands
as detected by semiquantitative RT-PCR analysis in NSCLC cell lines. B, immunchistochemical staining of representative surgically resected and autopsy samples
including NSCLC (lung adenocarcinoma {(ADC) and squamous ceill carcinoma (SCC)] and SCLC as well as normal Jung, using anti-NTSR1 (top) or anti-GHSRtb
(bottom} antibedy (original magnification, %200). G, binding of CyS-labeled NMU-25 to the cef surface of NSCLC cells analyzed by laser scanning imaging. Digital
fluorescence images of Cy5-labeled NMU-25 {1 pmol/L) bound to LC319 and PC14 cells with/without 10 umol/L of ronlabeled NMU-25 peptides as a competitor was
detected by the 8200 Cellular Detection System (top). Columns, the average fluorescence values of Cy5-labeled NMU-25 bound to each cell in dugplicate assays
{bottorn). D, specific signal transduction by NMU as represented by cAMP release in LC319 cells. Dose-response curves of infraceliular cAMP preduction by NMU-25
(@), GHRL (O), or NTS {O) treatment {3-100 pmolfL) in LC319 celis were shown.
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of NMU-GHSR1b/NTSRI signaling, we examined whether GHSR1b/
NTSR] is internalized when they are exposed to NMU, through
confocal microscopy observation of the subcellular distribution of
the two receptors after NMU-25 stimulation. After they were
introduced in COS-7 cells, the GHSR1b and NTSRI receptors were
mainly colocated at the plasma membrane in the condition without
the exposure to NMU-25. However, once NMU-25 was added to the
cell culture, both of the receptors were cointernalized and
predominantly formed the vesicle-like structures in a time-depen-
dent manner (Fig, 54 ). Similarly, in LC319 cells, in which GHSR1b and
NTSRI1 were endogenously overexpressed, NMU stimulation induced
the cointealization of the two receptors (Supplementary Fig. $5).
The results suggest the possible physical interaction between
GHER1b and NTSR1, as well as NMU-induced cointernalization.

To further confirm whether NMU is internalized after binding to
its receptors, internalization of NMU was investigated using Alexa
Fluor 594-labeled NMU-25 (NMU-25-Alexa 594) and a confocal
microscopy. The binding of agonists to GPCRs on the cell surface is
generally known to initiate receptor-mediated endocytosis. In the
course of this process, receptors are passed through multiple
intracellular pathways that lead to lysosomal degradation or
recycling them to the cell surface (25, 26), On the other hand, far
less is known about whether all GPCR ligands are internalized
together with their receptor. In the case of neuropeptides, the ligand
is usually internalized with its receptor (27, 28). As shown in Fig. 58,
the xz- and yz-projections indicated that NMU-25-Alexa 594 was
incorporated within the cells. After 15 minutes of incubation, the
internalized ligand was concentrated in dots or irregnlar clusters
at more peripheral parts of the cytoplasm in cells (Fig, 5B, left). In
contrast, after 45 minutes of incubation, flucrescence was concen-
trated within small spots clustered in the center of the cells, close to
the nucleus (Fig. 55, right). These results are similar to the previous
reports demonstrating that internalization of NTS proceeded
through small endosome-like organelles and the internalized ligand
to accumulate at the core of the cell surrounding the nucleus (29).

Functional receptor dimnerization of GHSR1b and NTSR1. To
examine the direct association between GHSR1b and NTSRI, we
transiently expressed either FLAG-tagged GHSR1b or FLAG-tagged
NTSR1 individually, and also coexpressed both the FLAG-tagged
receptors in COS-7 cells (representative data for GHSRIb was
shown in Fig. 5C). COS-7 cells were confirmed by semiquantitative
RT-PCR analysis to endogenously express both GHSRIP and
NTSRI, but not NMU. Cell lysates preincubated with the cross-
linking reagent were immunoprecipitated by anti-FLAG antibody,
and were served for Western blot analysis using anti-FLAG, anti-
NTSRL, or anti-GHSR antibody. We found coprecipitation of the
following proteins: the GHSR1b monomer { ~ 30 kDa), the NTSR1
monomer {~45 kDa), the GHSR1b/NTSRI heterodimer { ~ 70-75
kDa). the GHSR1b homodimer {~60-65 kDa), and the NTSRI1
homodimer (~ 90-95 kDa; Fig. 5C). No such species were detected
when empty vector {mock) was transfected to COS-7 cells as a
negative control. In the cells expressing only FLAG-tagged NTSR1
and those coexpressing both the FLAG-tagged receptors (NTSR1
and GHSRIb), similar results were observed (data not shown).
These results confirm an interaction between GHSR1b and NTSR1,
implying the existence of a GHSR1b/NTSR1 heterodimer.

To further confirm the functional importance of the activation and
heterodimerization of GHSR1b and NTSR1 at the signal transduction
level, we examined the dose-dependent intracellular cAMP produc-
tion by NMU-25 in lung cancer cell lines representing various
expression patterns of the two receptors as detected by semiquan-

titative RT-PCR analysis (Fig. 50). In LC319 cells expressing high
levels of both receptors, treatment with NMU-25 resulted in a marked
and reproducible cAMP accumulation (Fig. 5D, top left). RERF-LC-Al
cells expressing low levels of both receptors, showed significant
but low cAMP production in response to NMU-25 (Fig. 5D, fop right),
NCI-H358 and SK-MES-1 cells expressing either of the receptors
did not show detectable cAMP preduction (Fig. 55, botfom),

Identification of dowmstream genes of NMU. To further
elucidate the NMU-signaling pathway, siRNA against NMU
(si-NMU) or LUC (control siRNA) were transfected inte LC319
cells overexpressing NMU, and genes that were down-regulated in
the former cells were screened using a ¢cDNA microarray containing
32256 genes. By this approach, we selected 70 genes whose
expression was significantly decreased in accordance with NMU
suppression by performing the self-organizing map clustering
analysis (22). Semiguantitative RT-PCR analysis confirmed the
reduction of candidate transcripts in a time-dependent manner in
L.C319 cells transfected with si-NMU, but not with control siRNA for
LUC (Fig. 64). We also evaluated the transactivation of these genes
in accordance with the introduction of NMU expression in lung
cancer cell lines (data not shown) and finally identified six candi-
date NMU-target genes, FOXMI, GCDH, CDK5RAPI, LOCI34145,
NUP158, and one unannotated transeript (clone IMAGE: 3835141;
Fig. 68). Among these six genes selected, FOXMI mRNA levels were
found to be significantly elevated in clinical cases of lung cancer
and showed good concordance with expression levels of NMU and
two receptors, GHSRIb and NTSRI (Fig. 6C). To validate the
induction of the FOXMI expression by the NMU ligand-receptor
signaling, we cultured LC319 cells expressing GHSR1b and NTSR1
in the presence of NMU-25 or BSA (control) at final concentrations
of 25 ymol/L in the culture media, and confirmed an enhanced
expression of FOXMI in the NMU-treated cells (Fig. 62). Further-
more, we did immunohistechemical analysis of NSCLCs with anti-
FOXM1 polyclonal antibodies using tissue microarrays. Of the 325
cases of NSCLC available for this assay, FOXM1 staining was
positive for 230 (70.8%; Supplementary Fig. 564). The expression
pattern of FOXM1 was significantly concordant with NMU
expression in these tumors (x* = 68 P < 0.0001). We found that
patients with NSCLC with FOXMI-positive tumors showed shorter
survival times than patients whose tumors were negative for
FOXM1 (P = 0.0495 by the log-rank test; Supplementary Fig. S65).
These results independently show that NMU, by the interaction
with GHSR1b/NTSRI heterodimer and subsequent activation of its
downstream targets, such as FOXM!, could significantly affect the
growth and malignant nature of lung cancer cells.

Discussion

Recent acceleration in the identification and characterization of
novel molecular targets for cancer therapy has stimulated
considerable interest in the development of new types of
anticancer agents (3). Molecular-targeted drugs are expected to
be highly specific to malignant cells, with minimal risk of adverse
effects due to their well-defined mechanisms of action. As a
promising strategy to identify such molecules, we combined the
power of genome-wide expression analysis with high-throughput
screening of loss-of-function effects by means of the RNAi
technique. In addition, we used tissue microarrays to analyze
hundreds of archived clinical samples for validation of the poten-
tial target proteins. Using this approach, we have shown here that
NMU and its cancer-specific receptors, as well as its target genes,

www.aacrjournals.org

9415

Cancer Res 2006; 66: (19). October 1, 2006

=100~



Cancer Research

are frequently overexpressed in clinical samples of lung cancer and
in cell lines, and that those gene products play indispensable roles
in the growth and progression of lung cancer cells.

A COOH-terminal asparaginamide structure and the CQOOH-
terminal heptapeptide core of NMU protein are essential for its
contractile activity in smooth muscle celis (30). Recent studies have
indicated that NMU acts at the hypothalamic level to inhibit food
intake; therefore, this protein might be a physiologic regulator of
feeding and body weight (18, 31, 32). NMU was also expressed in
several types of human tumors (33-35), but no reporis have thus
far suggested the involvement of NMU overexpression in pulmo-
nary carcinogenesis, and its precise biological function in cancer
cells have never been clarified.

Our treatment of NSCLC cells with specific siRNA to reduce the
expression of NMU resulted in growth suppression. We also found
other evidence supporting the significance of this pathway in
carcinogenesis; e.g, the addition of NMU into the medium
promoted the growth of COS-7 cells in a dose-dependent manner.
The expression of NMU also resulted in the significant promotion of
cell growth and invasion in in vitro assays. Moreover, clinicopath-
ologic evidence obtained through our tissue microarray experi-

ments showed that NSCLC patients with tumors expressing NMU
showed shorter cancer-specific survival periods than those with
negative NMU expression. The results obtained by in vitro and
in vive assays strongly suggested that overexpressed NMU is likely
to be an important growth factor and might be associated with
cancer cell growth and invasion, functioning in an autocrine
manner, and that screening molecules targeting the NMU receptor
growth-promoting pathway should be a promising therapeutic
approach for treating lung cancers. Because NMU is a secreted
protein and mest of the clinical NSCLC samples used for our
analysis were at an early and operable stage, NMU might also serve
as a biomarker for diagnosis of early stage lung cancer, as well as an
indicator for a highly malignant phenotype of lung cancer cells, in
combination with fiberscopic transbronchial biopsy or bleod tests.

NMU was already known to interact with at least two receptors,
NMUIR (FM3/GPR66) and NMU2R (FM4), each of which has seven
predicted o-helical transmembrane domains containing highly
conserved muotifs, as do other members of the rhodopsin GPCR
family (17-19). The results presented here, however, indicated that
these two known receptors were not the targets for the autocrine
NMU-signaling pathway in NSCLCs; instead, the GHSRIb and
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Figure 5. Characterization of GHSR1b/ANTSR1
heterodimers and their internalization as cognate
receptors for NMU. A, internalization of
GHSR1b/MNTSR1 protein induced by NMU-25.
COS-7 cells fransienily expressing both GHSR1D
and NTSR1 were exposed to NMU-25 (10 pmol/L)
for 30 minutes (left) or 120 minutes (right).
CQS-7 cells withcut exposure to the NMU-25
treatment served as controls, Cells were
subsequenily fixed and stained using secondary
anlibodies conjuegated fo Alexa Fluor 488—labeled
anti-GHSR antibody or Alexa Fluor 534-labeled
anti-NTSR1 antibody. Subcellular distribution

of the twe receptor proteins was examined by
confocal microscopy. Boftom, LC319 celis
expressing both endogenous GHSR1b and
NTSR1 were exposed to NMU-25 (10 umol/L)
for 30 minutes (feft) or 120 minutes (right).

B, internalization of NMU-25-Alexa 594 in LC319
celts. The cells were incubated with 35 umol/L

of NMU-25-Alexa 594 for 15 minutes (left) or 45
minutes (right) at 37°C, and subsequently washed
and fixed. Red NMU-25-Alexa 594; blue, cell
nuelei (with DAPI). The xz- and yz-projections
proved that the ligands were [ocalized within

the cells. Dofted lines, where the xz- and
yz-projections were taken.
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NTSRI heterodimer was implied to be the possible targets for the
growth-promoting effect of NMU in lung tumors. GHSR is a known
receptor of GHRL, a recently identified 28-amino acid peptide
capable of stimulating the release of pituitary growth hormone and
appetite in humans (23, 36, 37). Of the two transcripts known to be
receptors for GHRL, GHSRla and GHSR1b, we detected over-
expression of only GHSRIb in NSCLC tissues and cell lines. In
NSCLC, GHRL was not significantly expressed in the cell lines
examined (Fig. 44), therefore, we suspected that GHSRIb could
have a growth-promoting function in lung tumors through binding
to NMU, but not to GHRL. Interestingly, it was reported that GHRL

and GHSRI1b, but not GHSRIa genes were overexpressed in the
erythroleukemic HEL cells, whose proliferation was regulated by
des-acyl GHEL in an autoerine manner (38). NTSRI is one of three
receptors of NTS, a brain and gastrointestinal peptide that fulfills
many central and peripheral functions (24). NTS modulates the
transmission of dopamine and secretion of pituitary hormones,
and exerts hypothermic and analgesic effects in the brain, whereas
it functions as a peripheral hormone in the digestive tract and
cardiovascular system. Others have reported that NTS is produced
and secreted in several human cancers, including SCLCs (24). We
detected the expression of NTS in 4 of the 15 NSCLC cell lines we
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Figtre 5 Continued. C, immunoprecipitation of cell lysates from COS-7 cells transiently expressed FLAG-tagged GHSR1b, and ones coexpressed both
FLAG-tagged GHSR1b and NTSR1. The proteins immunoprecipitated by anti-FLAG antibody were subjected to SDS-PAGE and immunoblotted with anti-FLAG
antibody (feft), with anti-NTSR1 antibody (middle), or with anti-GHSR antibody {right). Arrows, monomers, heterodimers, and homodimers of the receptors. The
molecular weight (kDa) markers are indicated on the left side of individual panels; *, nenspecific immunoreactive protein band detected by anti-FLAG antibody.

D, relaticnship between the expression levels of GHSR1b/NTSR1 and intracelfular cAMP production by NMU-25 in lung cancer cell lines. The expressian levels

of receptors in LC319, RERF-LC-Al, NCI-H358, and SK-MES-1 cells were detected by semiquantitative RT-PCR analysis. Dose-response curves of intraceliular cAMP
production by NMU-25 treatment (3-50 pmolfL) in individual cell lines are shawn. Al experiments were done in triplicate.
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examined (Fig. 44), but the expression pattern of N7§ was not
necessarily concordant with that of NMU or NTSRI. Therefore, we
assume that NTS might contribute to the growth of NSCLC
through NTSR1 or other receptor(s) in a small subset of NSCLCs.

In our experiments, the majority of the cancer cell lines and
clinical NSCLCs that expressed NMU also expressed GHSR1b and
NTSR], indicating that these ligand-receptor interactions were
likely to be involved in a pathway that is central to the growth-
promoting activity of NMU in NSCLCs. GHSR and NTSRI were also
expressed in COS-7 cells used to examine the growth and invasion
effect of NMU; the data strongly supported the importance of these
two receptors for oncogenesis. Our experiments further revealed
that NMU-25 functionally bound to these receptors on the cell
surface of NSCLC cells and subsequently induced the production of
a second messenger, cAMP. We also showed that treatment of
NSCLC cells with siRNAs for GHSR or NTSRI reduced the
expression of these receptors and resulted in cancer growth
inhibition. Elevated cAMP levels were generally observed via
activation of adenylate cyclase, which activated protein kinase A
(PKA). It was reported that GHRL did not displace **Llabeled rat
NMU binding to NMU1R-expressing cells when tested at concen-
trations up to 10 mmol/L (39). However, GHRL or NTS
competitively inhibited NMU-induced cAMP production in NSCLC
cells.® Moreover, we provide biochemical and physiologic evidence
for the internalization and heterodimerization of the two
neurcpeptide GPCRs, GHSR1b and NTSR1 (Fig. 54; Supplementary
Fig. 55). These results independently suggest that NMU stimulates
NSCLC cell proliferation by a pathway through the GHSR1b-NTSR1
heterodimer whose function is quite different from the two known
NMU-receptors, NMUIR and NMU2R. Heterodimerization has been
shown to contribute to both ligand-binding affinity and signaling
efficacy of GPCRs (40, 41). Heterodimers can be formed by
receptors for varions ligands/transmitters; for example, GPCRs for

® Unpublished dnti

angiotensin and bradykinin {42), or those for opioid and adrenergic
Hgands (43). Moreover, it has been reported that coexpression of
GHSRI1z and GHSRIb resulted in an attenuation of the signaling
capability of GHSR1a, suggesting that GHSR1b possibly interacted
with GHSRlia through receptor heterodimerization (44). Based on
the fact that GHSRIb exhibits no function towards GHRL (45),
heterodimerization of GHSRla and GHSRIb might in fact be a
common feature for GHSR. The combination of our data with
previous reports suggests that binding of NMU to GHSR1b/NTSRI
heterodimer, which cooperated with G proteins of the G, subfamily,
leads to the activation of adenylate cyclase, accumulation of
intracellular cAMP, and activation of cAMP-dependent protein
kinase (PKA), and that the subsequent release of catalytic subunits
of PKA {C) from the regulatory subunits (R) activates downstream
target genes, thus, finally resulting in the activation of growth-
promoting pathways.

Microarray data of LC319 cells treated with siRNA for NMU
suggests that the NMU signaling pathway could affect the growth
promotion of lung cancer cells by transactivating a set of
downstream genes. We provided evidence that the FOXMI1
transcription factor is one of the downstream targets in the
NMU signaling pathway. In our tissue microarray experiments, we
observed that the expression pattern of FOXMI was significantly
concordant with that of NMU in the same set of tumors, and that
lung cancer patients with FOXM]1-positive tumors showed shorter
survival periods than patients with FOXMI-negative tumors, thus,
independently confirming the effect of NMU-FOXMI signaling on
the promotion of the malignant nature of hing cancer cells. FOXM1
was known to be overexpressed in several types of human cancers
{46-48). We also confirmed that treatment of NSCLC cells with
specific siRNA to reduce the expression of FOXMI resulted in
growth suppression.’ To predict the transcriptional regulation of
the FOXMI1 gene by cAMP-response element (CRE)-binding
protein, we also screened the CRE-like sequence within a 1-kb
upstream region of the putative transcription start sequence using
the computer prediction program and found that the region
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contains three CRE-like elements (data not shown). Moreover, it
should be noted that the luciferase reporter gene assay suggested
that two of the CRE-like sequences are essential for effective
augmentation of FOXM! promoter activity following NMU
stimulation.® We speculate that CRE-binding proteins phosphory-
lated by PKA might be directly responsible for the regulation of
FOXMI expression. Previous reports suggested that some cyclin
genes are possible transcription targets of FOXMI transcription
factor and that FOXM1 controls the transcription network of genes
which are essential for cell division and exit from mitosis (29). In
fact, we observed the activation of CCNBI and CCNA2 in the
majority of a series of clinical NSCLC we examined and its good
concordance of the expression to FOXMI expression. These data
indicate the possibility that the NMU-FOXM1 pathway is finally
linked to cyclin-dependent pathways.

In summary, we have shown that NMU and the recently identified
heterodimerization of GHSR1b and NTSR1 are likely to play an
essential role for an autocrine growth-promoting pathway in NSCLCs
by modulating the transcription of downstream target genes
including FOXMI. The data reported here strongly imply the
possibility of designing new anticancer drugs, specific for lung
cancer, that target the NMU-GHSR1b/NTSR1 pathway as well as the
development of novel diagnostic/prognostic markers for lung cancer.
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Abstract
Objective: Gastrointestinal stromal tumors (GISTs) are the
most common mesenchymal tumors of the digestive tract,
Nuclear (nMS1) and mitochondrial microsatellite instability
(mtMSl) play important roles in tumorigenesis in various or-
gans, The aim of this study was to evaluate the role of nMSI
and mtMSl in GISTs. Methods: Samples from 74 mesenchy-
mal tumnors were collected. nMS! and mtMS| were examined
by microsatellite assay at BAT26 and D310 mononucleotide
repeats in mtDNA, respectively, We compared nMS5i, mtMS|
and clinicopathologic features, including patient age and
sex, tumor location, tumor size, presence of tumor ulcer-
ation and presence of distant metastasis, for 51 GISTs for
which these data were available. Results: nMSI and mtMSI
were detected in 3 {5%) and 10 {16%) of the 62 GISTs, respec-
tively. There was no significant relationship between nMs,
mtMSi and clinicopathologic features. Conclusion: These re-
sults suggest that mtMSI may play a role, but that nMSI may
play little role in the development of GISTs.

Copyright © 2006 5. Karger AG, Basel

Introduction

Gastrointestinal stromal tumors (GISTs), previously
classified as smooth muscle tumors, are the most com-
mon primary mesenchymal tumors of the gastrointesti-
nal tract [1]. GISTs represent a spectrum of tumeors in-
cluding benign and malignant variants. The immuno-
phenotypic characteristics and genetic profiles of GISTs
have clearly distinguished them as a tumor entity sepa-
rate from other mesenchymal tumors. GISTs are usually
positive for the expression of CD34 and c-kit oncopro-
tein, a transmembrane tyrosine kinase receptor for stem
cell factor [2]. Recent studies have shown that mutations
of the c-kit gene resulting in constitutive activation of the
tyrosine kinase play a significant role in tumor pathogen-
esis [3, 4]. Although c-kit mutation was identified in 60—
90% of tumors [2, 5], some other molecular alterations
may be associated with the development and progression
of GISTs [6-9).

Several types of hereditary and sporadic human tu-
mors show high rates of spontaneous mutations due to
malfunction of one or more of the mismatch repair genes
[10]. Disrupted function of mismatch repair genes mani-
fests itself as nuclear microsatellite instability (nMSI).
nMSI has been reported in 80-95% of hereditary nonpol-
yposis colorectal cancers, in 10-30% of sporadic colorec-
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Fig. 1. Representative examples of immu-
nohistochemical staining for KIT. Posi-
tive staining was observed, HE. a x40. s
b x200. Vi

tal cancers and in 15-39% of sporadic gastric cancers
[10]. Eukaryote cells not only have.a nuclear genome but
also cytoplasmic genomes that are compartmentalized in
the mitochondria. Mitochcondrial microsatellite insta-
bility (mtMSI} is also reported in several types of tumors
[11]. However, there are few studies on nMSI and mtMSI
in GISTs. We therefore analyzed the nMSI and mtMSI in
these tumors in the present study.

Materials and Methods

Tissue Samples

At the Hiroshima University Hospital 74 mesenchymal tu-
mors of the stomach were collected during the period of 1980
through 2000. The mesenchymal tumors were identified as GISTs
on the basis of positive immunohistochemical staining for KIT
and/or CD34 (fig. 1). With this criterion 62 of the 74 tumors (84%)
were identified as GISTs. For each case tumorous and normal tis-
sues were obtained. Clinicopatholoegic data, including age, sex,
tumor location, tumor size, presence of tumor ulceration and
presence of distant metastasis, were obtained for 51 of the pa-
tients. This study was approved by the local ethics committee (No.
I-RIN-HI-45).

Histologic Examination

Four-micron-thick sections were prepared from formalin-
fixed, paraffin-embedded specimens. The sections were stained
with hematoxylin and eosin (HE) for histologic examination.

DNA Extraction

Ten-micron-thick tissue sections were placed onto glass slides
and stained with HE. The sections were then dehydrated in grad-
ed ethanol and dried without a cover glass. Tumorous and normal
tissues on the slides were scraped up separately with sterile nee-
dles. DNA was extracted from the tissues with 20 ul of extraction
buffer 100 mM of Tris-HCL, 2 mM of EDTA, pH 8.0,and 400 pl/ml
of proteinase K) at 50°C overnight. The samples in tubes were
boiled for 7 min to inactivate proteinase K, and 2 pl of aliquots
were used for each polymerase chain reaction {PCR) amplifica-
tion.

94 Pathobiology 2006;73:93-97
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Analysis of nMSI

Each tumor was evaluated for nMSI by microsatellite assay
with BAT26. The microsatellite assay was performed as described
elsewhere {12, 13]. Briefly each 15 pl of reaction mixture contain-
ing 10-20 ng of genomic DNA, 6.7 mM of Tris-HCl {pH 8.8},
6.7 mM of EDTA, 6.7 mM of MgClz, 0.33 uM of labeled primer
with [y-**P]dATP, 0.175 M unlabeled primer, 1.5 mM of each de-
oxynucleotide triphosphate and 0.75 U of AmpliTag Gold DNA
polymerase {(Perkin-Elmer, Branchburg, N.J., USA) was amplified
for 40 cycles as follows: denaturation at 94°C for 30 s, annealing
at 55°C for 30 s and strand elongation at 72°C for 30 s. The PCR
products were electrophoresed on 6% polyacrylamide-8 M urea-
32% formamide gels and autoradiographed overnight 2t -80°C on
Fuji RX film. Tumors with shifted bands at the BAT26 were clas-
sified as nMSI [14].

Analysis of miMSI

A 109-bp fragment containing the D310 repeat of mitochon-
drial DNA (mtDNA; D-loop region) was amplified [15]. The
primer sequences were as follows: 5-ACAATTGAATGTCTG-
CACAGCCACTT-3' for the sense primer and 5-GGCAGAGAT-
GTGTTTAAGTGCTG-3' for the antisense primer. Microsatellite
assays were performed. Tumors with shifted bands at the D310
repeat were classified as mtMSI [11].

Statistical Analysis

Fisher’s exact probability test was used to identify the relation-
ship between D310 mutation and clinicopathologic features. A
p value <0.05 was significant.

Resulits

Clinicopathologic Features of GISTSs

Clinicopathologic data including age, sex, tumor loca-
tion, tumor size, presence of tumor ulceration and pres-
ence of distant metastasis were available for 51 cases. All
of the 51 GISTs analyzed were located in the stomach and
obtained during surgical resection. The male-to-female
ratio of the patients was 31:20. The mean age of these pa-
tients was 59.0 years (range 20-81). The mean tumor di-
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Fig. 2. Representative examples of nMSI.
Agsterisks indicate a 1-bp deletion of the
BAT26 locus.

ameter was 52.1 mm (range 15-200). Thirty-four GISTs
(67%) were located in the upper and 17 (33%]} in the low-
er stomach. Forty-two cases (82%) were negative for dis-
tant metastasis, and 9 (18%) were positive. Fourteen cas-
es (27%) showed ulceration of the tumor surface and 37
(73%]) did not.

Analysis of nMSI

nMSI was detected in 3 of the 62 tumors (5%; fig. 2).
Of the 3 positive tumors 1 (33%) showed deletions of 1 bp,
1 (33%) of 3 bp and 1 of 5 bp. We then compared nMSI
with the clinicopathologic features in 51 tumors for which
clinicopathologic data were available (table 1). No signif-
icant relationship was identified between nMSI and each
clinicopathologic feature.

Analysis of mtMSI

mtMSI was detected in 10 of the 62 tumors (16%:;
fig. 3). Of the 10 positive tumors 6 (60%) showed inser-
tions of 1bp, the remaining 4 (40%) deletions of 1bp. We
then compared mtMSI with the clinicopathologic fea-
tures in the 51 tumors for which clinicopathologic data
were available (table 2). No significant relationships were
identified between mtMSI and each clinicopathologic
feature.

Relationship between nMSI and mtMSI

We then examined the relationship between nMSIand
mtMSI (table 3). There was no significant relationship
between nMSI and mtMSI in GISTs.

NMSI and mtMSI in GISTs

Fig. 3. Representative examples of mtMSI. Asterisks indicate a
1-bp deletion of the D310 mononucleotide repeat.

Table 1. nMSI in relation to clinicopathologic characteristics of
GISTs

Characteristics nMSI Frequency p
" : of nMSI  value
positive  negative 9%

Patient age, years
<60 0 27 0 NS
=60 2 22 8

Patient sex
Male 2 29 6 NS
Female 0 20 0

Tumor location
Upper 1 33 3 NS
Lower 1 16 6

Tumor size (diameter), mm
<50 1 32 3 NS
=50 1 16 6

Tumor ulceration
Positive 1 13 7 NS
Negative 1 36 3

Distant metastasis
Positive 1 8 11 NS
Negative 1 4] 2

NS = Not significant.

Discussion

The molecular pathogenesis of GIST is not fully under-
stood. Alterations in the mismatch repair genes (hMLHI,
hMSH2, hMSHS, etc.} are responsible for colorectal, gas-
tric and endometrial tumor formation [10, 11]. Disrupted
function of mismatch repair genes manifests itself as
nMSI. The cases are classified as having high-frequency
MSI (2 or more of 5 microsatellite loci show instability),
low-frequency MSI (only 1 of the loci shows instability)

Pathobiology 2006;73:93-97 95
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Table 2, mtDNA mutation in relation to clinicopathologic char-
acteristics of GISTs

Characteristics miMSI Frequency p
" : of mtMSI  value
positive negative 9 ’

Patient age, years

< 60 4 23 15 NS
=60 4 20 17

Patient sex
Male 7 24 23 NS
Female 1 19 5

Tumor location
Upper 5 29 15 NS
Lower 3 14 18

Tumor size (diameter), mm
<50 6 27 18 NS
=50 2 16 11

Tuamor ulceration
Positive 2 12 14 NS
Negative 6 31 16

Distant metastasis
Positive 1 8 11 NS
Negative 7 35 17

NS = Not significant.

Table 3, Relationship between nMSI and mtMSI in GISTs

mtMS] p value
positive negative
nMSI
Positive 0 3 NS
Negative 8 40

NS = Not significant.

and microsatellite stable (none of the loci show instability)
(16]. As a single test of BAT26 can identify cases positive
for high-frequency MSI {13], we evaluated nMSI with mi-
crosatellite assay at the BAT26 locus. There are only 2
studies on nMSI in GISTs [17, 18]. One study [18] showed
that nMSI was detected in 27% of the tumors and another
(17} that no nMSI was found. In the present study nMSI
was detected in 4% of the tumors, and it showed that there
is no significant relationship between nMSI and clinico-
pathologic features. These data suggest that nMSI may
play little role in the development of GISTs.

96 Pathobiology 2006;73:93-97

The importance of mtDNA in apoptosis has been sug-
gested in several studies[e.g. 19]. Cytochrome c is re-
leased from mitochondria, and this is inhibited by the
presence of Bcl-2. Cytochrome c interacts with Apaf-1
and procaspase-9 and activates other caspases, leading to
apoptosis. This process may be disrupted by mitochon-
drial dysfunction sach as that occurring with mtMSI,
and unlimited cell proliferation may result in affected tis-
sues. Tan et al. {20] reported that 22 of 27 breast cancers
(81%) had mtMSIL. mtMSI was evaluated with alteration
of the D-loop region in mtDNA. The region is known to
be the start site for replication of the closed, circular mi-
tochondrial genome [21]. Replication of mtDNA begins
with the synthesis of the heavy strand with primer RNA,
and the 3’ termini of primer RNA have been mapped to
CSBs I-I11 [22]. The identification of alterations in this
region indicates the necessity of further research into the
mechanisms of late replication and processing of mtDNA
in tamors. There have been no studies on mtMSI in
GISTs; the present study is the first one. We detected
mtMSI in 15% of GISTs, indicating that mtMSI may be
involved in the pathogenesis of GISTs. We found no sig-
nificant relationship between mtMSI and clinicopatho-
logic features. These data suggest that mtMSI may play
an important role in the development, but not in the pro-
gression of GISTs.

What is the relationship between nMSI and mtMS],
and what is the functional importance of these events for
the evolution of cancer cells? Recently Habano et al. [23]
reported the existence of an association between nMSI
and mtMSI in gastric cancers. However, no such associa-
tion was found by several other researchers [24, 25]. In
addition to these studies no relationship between nMSI
and mtMSI has been reported in colorectal, breast and
hepatocellular carcinoma [26, 27]. We did not find any
relationship between nMSI and mtMSI in GISTs in the
present study. NMSI and mtMSI may be independent
events in human carcinogenesis.

In conclusion our results suggest that mtMSI may play
a role, but that nMSI plays little role in the development
of GISTs.
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with distinct mucin phenotype: Li-cadherin is associated with

intestinal phenotype
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Gastric carcinomas (GC) are classified into four phenotypes
on the basis of the mucin expression profile: G type (gastric
or foveolar phenotypse), | type {intestinal phenotype), Gl type
(intestinal and gastric mixed phenotype) and N type (neither
gastric nor intestinal phenotype). Immunohistechemistry
was used to examine the expression of epidermal growth
factor receptor (EGFR), E-cadherin, liver-intestine (LI)-
cadherin, CD44v9 and p53 and correlation of these
molecules with mucin phenotype and tumor stage was
evaluated. Overexpression of EGFRB and Li-cadherin,
reduced expression of E-cadherin and abnormal expression
of p53 were observed more frequently in advanced GC than
in early GC. Among I-type GG, overexpression of EGFR and
reduced expression of E-cadherin were observed more
frequently in advanced tumors than in early tumors. Among
G-type GC, reduced expression of E-cadherin was signifi-
cantly associated with advanced tumors. With respect to the
relationship hbetween mucin phenotype and expression of
cancer-related molecules, overexpression of Ll-cadherin
was observed more frequently in Itype (12/25, 48.0%) than
in G-type (1114, 7.1%) GC. |-type GC tended to express LI-
cadherin more frequently than Gl-type GC. These results
provide insights into the molecular characteristics of the
distinct mucin phenotype of differentiated-type GC and sug-
gest that Ll-cadherin may contribute to the biological
behavior of I-type GC.

Key words: CD44v9, differentiated-type gastric carcinoma, E-
cadherin, epidermal growth factor receptor, immunchistochem-
istry, liver-intestine-cadherin, mucin phenotype, p53, stomach

Gastric carcinomas (GC) are histologically classified into two
major groups. Nakamura et al. described the ‘differentiated’
and ‘undifferentiated’ types' and Lauren described the ‘intes-
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tinal' and ‘diffuse’ types based on glandular structure? GC
are also classified into four phenotypes on the basis of the
mucin expression profile: G type (gastric or foveolar pheno-
type), | type (intestinal phenotype), Gl type (intestina! and
gastric mixed phenotype) and N type {(neither gastric nor
intestinal phenotype).*® However, these classifications are
confusing because of the presence of a gastric phenotype
with the intestinal type of Lauren or the differentiated type,
and of intestinal phenotypic cancers with diffuse structure®

It has been suggested that G-type GC behave more
aggressively than |-iype GG’ Tatematsu ot al. demon-
strated, using a rat model, that the proportion of I-typs cancer
cells increased significantly as gastric lesions progressed
from small fo large differentiated-type GC.® Several distinct
genetic differences have been reported between I-type and
G-type GC. Mutations of p53 and loss of heterozygosity of
the adenomatous polyposis coli (APC) gene occur more fre-
quently in Itype GC than in G-type GC.*™ Microsatellite
instability and alterations of the p73 gene were shown to be
more common in G-type GC than in I-type GC.™*2 Expression
of mucin 2 (MUC2), a marker of intestinal epithelial cells, was
associated with DNA methylation of human Mut L homelog
1 (hMLH1) and Of-methylguanine-DNA methyltransferase
(MGMT)." Howaver, the molecular mechanism that underlies
aggressive behavior of I-type GC remains unclear.

During the progression of GC, multiple genetic and epige-
netic alterations accumulate.’'® These include overexpres-
sion of growth factors/receptors, abnormalities in cell cycle
regulators and loss of cell adhesion motecules.” Abnormal-
ifies in the epidermal growth factor (EGF)receptor system
contribute to the malignant bahavior of GC.** Loss of E-
cadherin is associated with the invasive phenctype of
GC."*1% The expression of CD44ve is associated not only
with tumor advancemsent but also with recuirence mortality
of GC.'5#® It was recently reported that overexpression of
liver—intestine (LI)-cadherin, also known as cadherin-17, is
associated with metastasis of GC to the lymph nodes* 2 We



reported recently that expression of Li-cadherin correlates
with tumor invasion and poor prognosis.?

To clarify the molecular characteristics of G-type and I-type
differentiated-type GC, we examined the expression of
cancer-related molecules such as epidermal growth factor
receptor (EGFRY), E-cadherin, Li-cadherin, CD44v9 and p53
and evaluated correlation with the mucin phenotypes and
tumor stage.

MATERIALS AND METHODS
Tumor samples

Seventy-one samples of differentiated-type GC (38 eatly GC
and 33 advanced GC) from 71 patients were studied. These
samples were obtained by surgery at Hireshima University
Hospital or associated facilities between 1986 and 2000. The
71 tumors were classifiedas la (n=36), Ib (n=11), 1 {r=11},
Ma (n=6), lllb {n=1) and IV (n=6) according to the
post-surgical histopathological tumor, nodes, metastasis
classification system (pTNM) classification system? For
immunchistochemical staining, tissues were fixed in 10%
buffered-formalin and embedded in paraffin. Because written
informead consent was not obtained, for strict privacy protection
all identifying information was removed from samples prior to
molecular expression analysis to protect patient privacy.

Phenotype analysis

GC were classified as G type, | type, Gl type or N type
according to the results of immunostaining for gastric-type
markers (human gastric mucin (HGM) and mucin-recognizing
gastric mucous cells {M-GGMC-1)) and intestinal-type mark-
ers (MUC2 and CD10) as described previousiy.™ in briet, G
type consisted of those samples in which >30% of the tumor
cells were positive for gastric-type markers and showed little
staining of intestinal-type markers. | type consisted of sam-
ples in which >30% of the fumor cells were positive for MUG2
or in which >5% of the tumor celis were positive for CD10
and showed little staining of gastric-type markers. GC show-
ing positive staining for both gastric- and intestinal-type mark-
ers were classified as Gl type, and those with no staining of
any of the four markers were classified as N type. Among the
71 GC used in the present study, the mucin phenotype of the
33 advanced GG had been analyzed previously and reported
elsewhere.™

Immunochistochemistry

Tissue sections (4 um thick) were prepared from paraffin
blocks, and representative sections were immunostained.
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immunostaining was done by the immunoperoxidase tech-
niques with a Histofine Simple Stain Kit (Nichirei Biosciences,
Tokyo, dJapan).” Deparaffinized tissue sections were
immersed in methanol containing 3% hydrogen peroxide for
15 min to block endogenous peroxidase activity. Sections
weare microwaved in citrate buffer for 1545 min {o retrieve
the antigenicity. Sections were then incubated with primary
antibodies against the following antigens: HGM (1:50, NCL-
HGM-45M1, Novocastra, Newcastle upon Tyne, UK), M-
GGMC-1 (1:50, HIK1083, Kanto Kagaku, Tokyo, Japan),
MUC2 (1:200, Ccp58, Sania Cruz Bictechnology, Santa
Cruz, CA, USA), CD10 (1:50, NCL-CD10-270Q, Novocastra),
E-cadherin (1:50, HECD-1, Takara Bio, Ohtsu, Japan), LI-
cadherin {1:200, s¢-6978, Santa Cruz Biotechnology) and
p53 (1:100, NCL-p53-DO7, Novocastra), for 1.5 h at 37°C
followed by incubation with the secondary antibody for
30 min. Immunocomplexes were then visualized with 3,3'-
diaminobenzidine. Sections were counterstained with
hematoxylin. For immunostaining of EGFR and CD44v8, a
modified immunoglobulin enzyme bridge technique (avidin—
biotin peroxidase complex method) was used as described
previously.”® Antibody against EGFR (1:50, NCL-EGFR.113,
Novocastra) or antibody against CD44v8 (1:5000, NCL-
CD44, Novocastra) was used.

Immunoreactivity was graded according to the number of
cells stained and the intensity of the reaction in individual
cells. Grades were assigned as follows: EGFR and CD44v8,
tumors containing >5% immunoreactive tumer cells were
considered positive (overexpression); Ll-cadherin, tumors
containing >25% immunoreactive tumor cells were consid-
ered positive (overexpression);”® and E-cadherin, tumors
containing <5% immunoreactive tumor cells were classified
as having reduced expression.?” For p53, staining was clas-
sified as: -, no staining; 1+, <20% of tumor cells stained
either intensely or weakly; 2+, 20-50% of tumor cells stained
intensely; and 3+, >50% of tumor cells stained intensely.
Grades 1+, 2+ and 3+ were regarded as positive and indi-
cated abnormal expression.

Statistics
Fisher's exact test was used for stafistical analysis. P < 0.05
was regarded as statistically significant.
RESULTS
Mucin phenotypes of gastric carcinoma
The mucin phenotypes and tumor stages of the differenti-

ated-type GC used in the present study and their tumor stage
are summarized in Table 1. On the basis of the profile of
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Table 1 Mucin phenotypes and tumor stage of differentiated-type
GC used in the present study

Table 2 Expression of EGFR, E-cadherin, Ll-cadherin, CD44vo
and p53 in differentiated-type GC

Stage G-type I-type Gl-type N-type Total Phenotyp Early Advanced Total
Early 9 13 9 7 38 n (%) n (%) Pt 1 (%)
Advanced 5 14 9 5 33 EGFR: ovarexpression
TNM Giype  0/8 (0) 2/5 (40,0)  0.18 213 (15.4)
i 12 17 12 12 53 I-type 2/13 (15.4)  9/13(63.2) 00082 11/26 (42.3)
i, v 2 10 6 ] 18 Gltype 1/8 (12.5) 3/9 (33.3) 0.58 417 (23.5)
Totat 14 27 18 12 71 N-type 07 (0) 3/5 {60.0) 0.045 312 (25.0)
G-type, gastric or foveolar phenotype; Gi-type, intestinal and gastric Total 5/36 (8.3) 17/32 (53.1) 0.000056  20/68 (29.4)
mixed phenotype; I-type, intestinal phenotype; N-type, neither gastric nor E-cadherin: reduced expression
intestinal phenotype; TNM, tumer, nodes, metastases classification. G-type 0/ (0) 3/5(60.0) 0.027 314 (21.4)
\-type 213 (154) 1114 (84.3) 0.018 11/27 {(40.7)
Gl-type 1/8 (12.5) 4/8 (50.0) 0.28 516 {31.2)
N-type  2/7(288)  2/5(40.0) 10 4/12 (33.3)
. i . Total 537 (13.5) 18/32 (66.2) 0.00047 23/69 (33.3)
expression of the four mucin markers, we classified the 38 Li-cadheri .
. . ~CAadnern; overaxpression
eariy GC as nine (23.?%) G-type. 13 (3‘4.2%) I-typa, nine G-type 0/9 {0 P 1/5 (20.0) 0.36 1114 (7.1)
{23.7%) Gl-type, and seven {18.4%) N-type GC. The mucin  Itype 4113 (30.8) 8/12(66.7) 0.16 12/25 (48.0)
o Gltype  2/8 (25.0} 1/8 (125) 1.0 3/15 (18.8)
phengtypes of the 33Dadvanced GC B (1 5.02 %) G type, 14 N-typa o7 0) 4/5(800) 001010 4112 (33.3)
(42.4%) 1 type, 9 (27.2%) Gl type and 5 (15.2%) N-typs) were iz 6/37 (16.2) 14/30 (46.7) 0.015 20/67 (29.9)
3 13
reported previously.” Most G-type and all N-type GC Were  nnasve: overexpression
of stages | and il, whereas 10 of 27 (37.0%) I-type and six ~ G-type 5/ (55.6) 3/5(60.0) 1.0 8/14 (57.1)
f 18 (33.3%) Gl-type GC were of stages Ill and IV, ype 513385 8/13(69.2) 0.24 14/26 {53.8)
of 18 { o) Gltyp 9 Gltype 349 (33.3) 3/8(333) 1.0 6/18 (33.3)
Ntype 37 (42.9) 1/5 (200)  0.58 4712 (33.3)
Total 16/38 (42.1) 16/32 (0.0} 0.51 32/70 (45.7)
Correlation between expression of cancer-refated p5a: abnormal expression
molecules and tumor stage G-type 3/9 (33.3} 3/5(60.0) 058 6/14 (42.9)
Hype 413 (30.8) 10/14 (71.4) 0.084 1427 (51.9)
) _ Gliype  5/0{55.8)  4/0 (44.9) 1.0 9/18 (50.0)
We first compared the expression of cancer-related mole-  N-ype 17 (14.3) 4/5 (80.0)  0.072 512 (41.7)
cules between early and advanced differentiated-type GC. ~ fotal _ 13/38 (34.2) 21/33 (63.6) 0.013 34171 {47.9)

Representative staining patterns for EGFR, E-cadherin, LI-
cadherin and p53 are shown in Fig. 1, and the overall results
are summarized in Table 2. Overexpression of EGFR and Li-
cadherin, reduced expression of E-cadherin and abnormal
expression of p53 were cbserved more frequently among
advanced GC than among early GG (P=0.000058,
P=0.00047, P=0.0156 and P=0.013, respectively). These
results are consistent with those of pravious reports.}5%28.20

We then studied the relation between tumor stage and
molecular exprassion for each mucin phenotype of differen-
fiated-type GC. In general, aberrant expression of EGFR, E-
cadherin, Ll-cadherin and p53 tended to be more common
in advanced tumors than in early tumors regardiess of the
mucin phenotype, except for Ll-cadherin expression in Gl-
type and p53 expression in Gl-type GC. There was no clear
trend for CD44v9 expression. The following statistically sig-
nificant correlations were detected: |-type GC, overexpres-
sion of EGFR and reduced expression of E-cadherin were
observed more frequently in advanced tumors than in early
tumors (P=0.0082 and P = 0.018, respectively); G-type GC,
reduced expression of E-cadherin was significantly associ-
ated with advanced cases (P=0.027)%; and N-type GC
advanced cases frequently showed overexpression of EGFR
and Ll-cadherin, whereas none of the early cases showed
overexpression of these molecules. Because all N-type
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EGFR, epidermal growth factor receplor; GC, gastric carcinoma; G-
type, gastric or foveolar phanotype; Gl-type, intestinal and gastric mixed
phanotype; I-iype, intestinal phenotype; L, liver-intestine; N-type, neither
gastric nor intestinal phenotype.

Early, early GC, advanced, advanced GC.

tFisher's exact test.

advanced GC were stage |l cancers, no significant associa-
tion between overexpression of EGFR and Li-cadherin and
TNM stage was detected (data not shown).

Association between mucin phenotype and expression
of cancer-related motecules

Finally, we examined the relation between mucin phenotype
and expression of cancer-related molecules. As shown in
Table 3, there was a significant association between Li-
cadherin expression and mucin phenotype. Overexpression
of Li-cadherin was observed more frequently in itype {12/
25, 48.0%) than in G-type (1714, 7.1%) GC (P=0.013).
Moreover, |-type GC tended to express Ll-cadherin more
frequently than Gl-type GC (P = 0.097). No such trends were
noticed for expression of EGFR, E-cadherin, CD44v9 and
p53.



Figure 1 Reprasentative immunohis-
tochemical staining of epidermal
growth factor recaptor (EGFR), E-cad-
harin, liver-intestine (LI)-cadherin and
pS3 in differentiated-type gastric carci-
nomas (GC). (a) In the intestinal and
gastric mixed phenotype (Gl typs) of
advanced GC, EGFR is expressed in
the cell membrane of many tumor cells.
{b} In the gastric or foveolar phenotype
(G typa) of early GC, E-cadherin is
expressed in the cell membrane of
some tumor cells located superficially,
and it is lost in many fumor cells. (¢} In
the intestinal phenotype (l-type} of
advanced GG, Li-cadherin is unlformly
expressed in cell membrane of most
tumor cells. (d) In IHype early GC,
almost all tumor cells express p53 in
their nuclei.
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Table 3 Correlation between mucin phenotype and expression of cancer-related molecules

Phenotype P

EGFR E-cadherin LI-cadherin CD44v9 p53

G-type vs I-type 0.15 0.30 0.013 0.89 0.83
G-type vs Gl-type 0.67 .69 0.60 0.32 0.88
G-type vs N-type 0.64 0.67 0.15 0.41 0.74
I-type vs Gl-type 0.35 0.77 0.097 0.30 0.86
Hype vs N-type 047 0.93 0.63 0.41 0.81
Gl-type vs N-type 1.0 0.77 0.42 0.69 0.94

EGFR, epidenmal growth factor receptor; GC, gastric carcinoma; G-type, gastric or foveclar phenotype; Gi-type, intestinal and gastric mixed
phenctype; -type, intestinal phenotype; LI, liver-intestine; N-type, neither gastric nor intestinal phenotype.

{Fisher’s exact test.

DISCUSSICN

To clarify the molecular bases of possible biological differ-
ences between the mucin phenotypes of GC, we examined
expression of representative molecules associated with inva-
sion and metastasis. Qur present data for the relation
between molecular expression and tumor stage in all of our
differentiated-type GC were consistent with the results of
previous studies.'5**#52% With respect to specific mucin phe-
notypes, the expression profiles of certain molecules had
statistically significant associations with turnor stage. Among
I-type GC, overexpression of EGFR and reduced expression
of E-cadherin were detected more frequently in advanced
tumors than in early tumors. Among G-type GC, reduced
expression of E-cadherin was significantly associated with
advanced tumors. Therefore, foss of E-cadherin may be
associated with invasion and progression of both G-type and

I-type GC, whereas overexpression of EGFR may participate
strongly in Htype GC.

Examination of the relationship between expression of
specific molecules and mucin phenotypes revealed a signif-
icant difference in the expression of Li-cadherin between
phenotypes. Overexpression of Li-cadherin was observed
more frequently in |-type than in G-type GC, and there was
a tendency for Itype GC to express Ll-cadherin more
frequently than Gl-type GC. These results suggest that LI-
cadherin may contribute to distinct biological behaviors of |-
type GC. Li-cadherin is a structurally unique member of the
cadherin superfamily®®' Ll-cadherin has only 20 amino
acids in the cyloplasmic domain, whereas classical
cadherins have a highly conserved cytoplasmic domain that
consists of 150-160 amino acids. We previously examined
gene expression profiles of GC by serial analysis of gene
expression and found that Li-cadherin was one of the most
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upregulated genes in the advanced GC, and the levels of
expression as measured by quantitative reverse transcrip-
tion—polymerase chain reaciion were significantly associated
with tumor invasion.®* Although it has been reported that
Ll-cadherin is expressed in some intestinal metaplasias and
the intestinal-type GG of Lauren,®* to our knowledge this
is the first demonstration that LI-cadherin expression is sig-
nificantly associated with |-type GC.

Caudal-type homeobox {CDX) 1 and CDX2 are members
of the caudal-related homeobox gene family, and CDX
proteins act as intestine-specific transcription factors and
increase expression of goblet-specific MUC2 gene3®®
Expression of CDX1 and CDX2 is strongly associated with
intestinal metaplasia and |-type GC.2*% CDX2 binds to the
promoter of the Li-cadherin gene and upregulates gene
expression.” However, unlike classical cadherins, in which
reduced expression is associated with fumor progression, the
mechanism by which overexpression of LI-cadherin is asso-
ciated with tumor progression remains unknown. Biological
study should be performed in the near future.

In conclusion, our results provide some molecular charac-

terization of the distinct mucin phenotypes of diffserentiated-

type GC and suggest that Li-cadherin may be associated
with the biological behavior of i-type GC.
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tumour was not of endometrioid subtype. Papers were
excluded if they consisted of cases that had been
included in other studies, had no {ollow-up or were in a
foreign language with no English translation. A case of
carcinomatous transformation in a focus of adeno-
myosis was excluded. It is perhaps a little disappointing
that none of the series included control groups with
which the outcome of these patients could have been
compared, but this may reflect the difficulty of defining
such groups in pathology series.

A total of 136 cases were recorded. Following
aggregation of the data, 41 cases had residual or
recurrent atypical polypoid adenomyoma [30.1%,
confidence interval (CI) 23.1, 38.8], 12 had evidence
of background endometrial hyperplasia (8.8%) and 12
had endometrial adenocarcinoma (8.8%, CI 23.1,
38.8). Carcinoma was identified in the adjacent
endometrium in three cases, whilst in the remaining
nine cases the carcinoma was located within the
atypical polypoid adenomyoma or in association with
its base. :

Aggregating the published series indicates an aver-
age risk of endometrial carcinoma in women with
atypical polypoid adenomyoma of 8.8%, which is
considerably higher than the overall risk of 0.8%
reported in a recent series of endometrial polyps,?
although this increased to 32.6% (24.3-41.2%) in
another series’ of women with polyps aged over
65 years but is less than that described in complex
atypical hyperplasia, where an overall frequency of
cancer of up to 45% has been described.*> Persistence
of complex atypical hyperplasia has been described in
14% of cases,” whilst in atypical polypoid adenomyoma
it was 8.8%.

These results have originated from a variety of case
reporis and series described over the years by pathol-
ogists, many with recognized expertise in gynaecolo-
gical pathology and indicate that in some cases at
least, atypical polypoid adenomyoma is associated
with adenocarcinoma, suggesting that this lesion
should be carefully evaluated and cannot be anto-
matically regarded as being a totally benign entity.
The presence of recurrent or residual atypical polypoid
adenomyoma in 30.1% of the cases described would
seem to indicate a continued risk for the development
of malignant disease in patients in whom complete
excision of the atypical polypeid adenomyoma cannot
be guaranteed.

M K Heatley

Department of Histopathology,
St James' University Hospital, Leeds, UK
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Lack of pericryptal fibroblastic cells adjacent
to intestinal epithelial metaplastic gastric
glands

DOL 10.1111/j.1365-2559.2005.02271.x

Sir: In colorectal mucosa, fibroblasts are located in
two different sites, randomly distributed throughout
the Jamina propria or in the pericryptal fibroblast
sheath surrounding the crypts and in the most
superficial portion of the lamina propria, tightly
apposed to the subepithelial basement membrane
complex.!? Fibroblasts in the pericryptal areas,
namely pericryptal fibroblasts (PCFs), express not only
e-smooth muscle actin (ASMA) but also, high-molecu-
lar-weight caldesmon (HCD), suggesting that PCFs are
well-differentiated pericryptal smooth muscle cells
rather than pericryptal myofibroblasts/fibroblasts.’
Colorectal PCFs play an important role in the inhi-
bition of tumorigenesis and tumour invasion®*®
and progression of inflammatory bowel disease to
dysplasia.”

In order to examine the distribution of PCFs in areas
adjacent to intestinal epithelial metaplasia in gastric
mucosa, we performed immunostaining for HCD in
gastric mucosa with intestinal epithelial metaplasia.
A total of 51 gastric neoplastic tissues and associated
non-neoplastic mucosa (28 surgically resected intesti-
nal-type gastric carcinomas and 23 endoscopically
resected gastric adenomas and their non-neoplastic
tissues} from the Surgical Pathology Files of the
Department of Pathology, Kochi Medical School, Kochi
University and its affiliated hospitals from 1994 1o
2002 were examined. All of the 51 non-neoplastic
gastric tissues contained areas of intestinal epithelial
metaplasia. The definitions used for histological classi-
fication were based on the criteria of Lauren® and
our previous report.” Immunohistochemical studies
were performed using a Histofine SAB-PO (mulii) kit

© 2006 Blackwell Publishing Ltd, Histopathelegy. 48, 605-626.



{(Nichirei, Tokyo, Japan). A monoclenal antibody
against HCD (clone h-CD; Dakopatts (Glostrup, Den-
mark), 1:50 dilution, microwave treatment} was
used.®> We regarded HCD-positive stromal cells adjacent
to glands to be PCFs.* Vascular media and muscularis
mucosa served as positive controls for HCD.

No HCD-positive stromal cells were detected adjacent
to intestinal epithelial metaplastic gastric glands in any
of the cases examined, i.e. no PCFs were detected
adjacent to intestinal epithelial metaplastic gastric
glands (Figure 1). HCD-positive thin smooth muscle
bundles arising from the muscularis mucosa and
extending vertically up to the surface of the mucosa
were detected (Figure 1). No HCD-positive stromal cells
were observed in the areas adjacent to non-neoplastic
non-metaplastic gastric glands (not shown). As in the
gastric mucosa with intestinal metaplasia, HCD-posit-
ive thin smooth muscle bundles arising from the

iy - oy
e -'.P»} i - e
": - % .';

(LT

I “;“ %

N
g;:l-; \" ¥ %::.‘
w2 %
o

Figure 1. Immunoreactivity for high-molecular-weight caldesmon
(HCD) in gastric mucosa with intestinal metaplasia. No HCD-positive
siromal cells are detected in the areas adjacent to intestinal epithelial
metaplastic gastric glands: HCD Is positive in thin smooth muscle
bundles extending from the muscularis mucosa vertically up to the
surface of the mucosa.

© 2006 Blackwell Publishing Ltd. Histopathology, 48, 605-626.
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muscularis mucosa and extending vertically up to the
surface of the mucosa were seen (not shown). No HCD-
positive stromal cells were detected in the areas
adjacent to neoplastic glands (not shown).

Fetal gut mesenchymal cells modulate epithelial cell
differentiation.* Reciprocal stromal—epithelial interac-
tions in the digestive tract are maintained beyond
embryonic life;* mature colonic mucosa contains PCFs
exhibiting smooth muscle morphological features and
regulating the growth and differentiation of adjacent
epithelial cells.*

Reduction of PCFs is assoctated with colorectal
tumorigenesis and tumour progression. PCFs gradually
decrease in the sequence of adenoma, intramucosal
carcinoma, and submucosal invasive carcinoma.’
Depressed adenomas are considered to be a subtype
of flat adenomas.® The depletion of PCEs seems to
correlate with the depressed growth of colorectal
adenoma.® Reduction of PCEs in background mucosa
may relate to the development of villous change and
dysplasia in ulcerative colitis.”

Intestinal metaplasia is proposed (o be a precancer-
ous lesion of intestinal-type gastric carcinoma.® In the
present study, no PCEs surrounding intestinal epithelial
metaplastic gastric glands were detected. Neoplastic
intestinal-type gastric glands also have no accompany-
ing PCFs. The stromal environment adjacent to intes-
tinal epithelial metaplastic gastric glands may be
similar to that adjacent to colorectal depressed aden-
oma glands, but quite different from that adjacent to
normal colorectal crypts. There is a possibility that the
siromal environment lacking PCFs makes intestinal
epithelial metaplastic gastric glands unstable. Thin
bundies of smooth muscle from the muscularis mucosa
penetrate into the lamina propria.> These smooth
muscle cells are not PCFs.'®

In conclusion, intestinal metaplasia is intestinal
epithelial metaplasia without PCFs. There is a possi-
bility that lack of PCFs is associated with gastric
epithelial tumorigenesis. Purther molecular and biclo-
gical investigations are needed into those areas
adjacent to intestinal epithelial metaplastic gastric
glands.

H Nakayama
H Enzan®
W Yasni

Department of Molecular Pathology,

Graduate School of Biomedical Sciences,
Hiroshima University, Hiroshima, and

1 Department of Pathology, Kochi Medical School,
Kochi University, Kochi, Japan
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Expression of CD73 and its
ecto-5"-nucleotidase activity are elevated
in papillary thyroid carcinomas

DOI: 10.1111/j.1365-2559.2005.02277.x

Sir: CD73, known as ecto-5'-nucleotidase, is a glycosyl-
phosphatidylinosttol-linked 70-kDa molecule whose
enzymatic activity involves catalysing the dephospho-
rylation of ribo- and deoxyribonucleotide 3’-mono-
phosphates to their corresponding nucleosides. This
surface antigen may regulate the availability of adeno-
sine for interaction with the cell surface adenosine

Figure I, Immunohistochemistry for CD73. A, Papillary thyroid
carcinoma. CD73 is strongly immunopositive at the apical celt
membrane. B, Normal thyroid. CD73 is negative in follicular
epithelial cells, while endothelial cells are immunopositive,

C, Nodular goitre. CD73 is immunonegative in hyperplastic
follicular epithelial cells which are forming papillary structures.

D, Pollicutar adenoma. CD73 is immunonegative in benign neoplastic
follicular epithelial cells which are forming lollicle structures.
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