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Hypoxia selects for high-metastatic Lewis lung carcinoma cells
overexpressing Mcl-1 and exhibiting reduced apoptotic potential

in solid tumors
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Low oxygen tension (hypoxia) is a common feature of
solid tumors and stimulates the expressions of a variety of
genes including those related to amgiogenesis, apoptosis
and endoplasmic reticulum (ER) stress response. Here we
show a close correlation between metastatic potential and
the resistance to hypoxia- and ER stress-induced apopto-
sis among the cell lines with differing metastatic potential
derived from Lewis lung carcinoma. An apoptosis-specific
expression profiling and immunoblot analyses revealed
that the expression of antiapoptotic Mcl-1 increased as
the resistance to apoptosis increased. Downregulation of
the Mecl-1 expression in the high-metastatic cells by Mcl-1
small interfering RNA increased the sensitivity to
hypoxia-induced apoptosis and decreased the metastatic
ability. The hypeoxia-induced apoptosis was not associated
with pS3 accumulation, although at present it is net
possible to conclude that apoptosis-induced apoptosis is
p53-independent. There was no correlation between the
expression levels of ER stress-response proteins
GADD153, GRP78 and ORP150 and the resistance to
hypoxia or ER stresses. In vifro, small numbers of the
high-metastatic cells overtook the low-metastatic cells
after exposure to several rounds of hypoxia and
reoxygenation. In solid tumors initially established from
equal mixtures, the proportion of the high-metastatic cells
to low-metastatic cells was significantly higher in hypoxic
areas. Moreover, the high-metastatic cells were over-
taking the low-metastatic cells in some of the tumors.
Thus, tumor hypoxia and ER stress may provide a
physiological selective pressure for the expansion of the
high-metastatic cells overexpressing Mcl-1 and exhibiting
reduced apoptotic potential in solid tumors,
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Introduction

Response to low oxygen tension (hypoxia) is a funda-
mental biological phenomenon and therefore hypoxia
gives rise to a variety of physiological responses at
cellular, local and systemic levels. The cells placed under
hypoxic conditions activate many genes including those
related to cell survival, glycolysis, angiogenesis, erythro-
cyte production and iron metabolism to adapt the
environment (Semenza, 2000, 2002; Harris, 2002). The
oxygen sensing mechanisms have been intensively
studied and found to involve hypoxia-inducible factors
(HIFs) as key regulatory transcription factors that are
composed of HIF-z subunit and HIF-§/aryl hydrocar-
bon receptor nuclear translocator subunit (Semenza,
2000, 2002; Harris, 2002). HIF binds to the hypoxia-
responsive element of hypoxia-responsive genes such as
vascular endothelial growth factor (VEGF) and proa-
poptotic Bnip3, a member of the Bel-2 family (Semenza,
2000, 2002; Harris, 2002).

Most solid tumors harbor areas of hypoxia, both acute
and chronic, due to aberrant vasculature formation and
high interstitial pressure (Chaplin and Hill, 1995; Brown
and Giaccia, 1998). Although most of the tumor cells die
in chronic hypoxia, some of them actually can survive
for more than several days in a quiescent or the so-called
dormant state (Durand and Sham, 1998) and restart to
divide once closed vessels reopen or new vasculatures
reach the hypoxic areas. It has been shown that hypoxia
induces genetic instability, DNA over-replication and
gene amplification in a variety of cultured cells (Rice
et al., 1986; Russo et al., 1995; Coquelle er al., 1998). A
short-term hypoxia followed by reoxygenation transi-
ently enhances invasive and metastatic potential of some
tumor cells (Young and Hill, 1990; Graham et «/., 1999;
Cairns et al., 2001). Tumor hypoxia selects p33~-
transformed cells and thereby expands cells with
diminished apoptotic potential in vitro (Graeber et al.,
1996). These mechanisms all together are likely to
influence the malignant progression of tumor cells (Hill,
1990; Russo ef al., 1995; Graeber ef al., 1996, Coquelle
et al., 1998; Dachs and Chaplin, 1998). Besides, since
hypoxic tumor cells cease to divide, they are resistant to
conventional radiotherapy and chemotherapy (Rice
et al., 1986; Young and Hill, 1990; Teicher, 1994).
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Physiological endoplasmic reticulum (ER) stress such
as glucose starvation is also present in solid tumors.
Hypoxia has been shown to upregulate ER stress-
response genes including growth arrest/DNA damage-
inducible protein 153 (GADDI153/CHOP), which is a
proapoptotic transcription factor (Friedman, 1996} and
ER chaperones such as glucose-regulated protein
{(GRP)78/BIP (Munro and Pelham, 1986) and oxygen-
regulated protein (ORP)150, which are antiapoptotic
proteins (Kuwabara et al., 1996). Upregulation of these
ER stress proteins is HIF-independent.

There is accumulating evidence that developing
resistance to common apoptotic stimuli is one of the
factors that confer high metastatic capability to tumor
cells (Glinsky and Glinsky, 1996; McConkey ef af., 1996;
Bufalo er al, 1997; Glinsky, 1997; Inbal er af., 1997;
Shtivelman, 1997; Takaoka er al., 1997; Fernandez et af.,
2000; Lowe and Lin, 2000; Wong et al, 2001). The
apoptosis-resistant phenotype may be advantageous for
tumor cells to survive in the metastatic process. We
reported that the high-metastatic clone (A1l cells)
established from Lewis lung carcinoma is more resistant
to apoptosis induced by serum starvation, hypoxia and
glucose deprivation than the low-metastatic clone (P29
cells) (Takasu et al, 1999). However, it remained to be
examined whether there is a correlation between meta-
static ability and resistance to apoptosis induced by
various stresses among various clones with differing
metastatic potential. In addition, molecular mechanisms
of the apoptosis resistance of the high-metastatic cells
remained chscure. We addressed here these points and,
furthermore, if hypoxia could act as a physiological
selective pressure in solid tumors for the expansion of
high-metastatic tumor cells that possess diminished
apoptotic potential. The results showed that the high-
metastatic Lewis lung carcinoma cell lines are more
resistant to hypoxia- and ER stress-induced apoptosis
than the low-metastatic cell lines, that the high-metastatic
cells overexpress antiapoptotic Mcl-I, and that hypoxia
selects for the high-metastatic cells in solid tumors.

Results

Correlation between metastatic potential and resistance to
hypoxia- and ER stress-induced apoptosis in the low- and
high-metastatic cell lines

To investigate the correlation between susceptibility to
hypoxia-induced cell death and metastatic potential, we
exposed the five cell lines with differing metastatic
potential derived from a mouse Lewis lung carcinoma
(metastatic capability; P29 =P34 <C2<Dé <All) to
hypoxia {(~0.1% O,), corresponding to oxygen concen-
trations commonly found in solid tumors. Cell death
was monitored after culturing the cell lines for 72h
under hypoxia. The results showed that only less than
8% of P29 and P34 cells were viable while about 20% of
C2 cells and over 45% of D6 and All cells remained
viable (Figure la). Thus, we observed a tendency where
the resistance to hypoxia-induced cell death is correiated
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with the metastatic ability. The time course showed that
hypozxia induced cell death more rapidly in P29 cells
than in All cells (Figure 1b). Clonogenic assays in
which the cells were exposed to hypoxia for 3 or 4 days
and then reoxygenated to form colonies also demon-
strated that All cells survived longer than P29 cells
under hypoxic conditions (Figure 1c). The cells positive
for annmexin V and TUNEL staining increased in
hypoxic P29 cells (Figure 1d). An increase in the number
of cells exhibiting chromatin condensation and
fragmentation as assessed by DAPI staining was
also observed in hypoxic P29 cells (0.1 and 26.1% for
normoxic and hypoxic P29 cells, respectively)
(Figure Id). In addition, flow cytometric analysis
revealed an increase in the percentage of sub-Gl
population in these cells (0.7 and 20.6% for normoxic
and hypoxic cells, respectively) (Figure 1¢). Thus, these
data indicate that hypoxic P29 cells were dying through
apoptosis. We confirmed that hypoxic All cells died of
apoptosis based on the same criteria.

To test whether the high-metastatic cell lines are also
resistant to ER stresses compared with the low-meta-
static cell lines, we treated P29, P34, D6 and All cells
with chemical ER stress inducers for 2 days and
examined their viability. As shown in Figure 2, com-
pared to P29 and P34 cells, D6 and A1l cells were much
more resistant to apoptosis induced by tunicamycin
(5 pg/ml), brefeldin A (5 ug/ml), thapsigargin (250 nM)
and A23187 (1 pM).

Mecl-1 is overexpressed in the high-metastatic cell lines
To find out the genes responsible for the susceptibility to
hypoxia-induced apoptosis, we compared the expression
profile of apoptosis-related genes among normoxic and
hypoxic P29 and All cells using a cDNA expression
microarray cumulated apoptosis-related genes. The data
showed that All cells expressed antiapoptotic Mel-/
gene at higher levels than P29 cells (not shown).
Immunoblot analysis confirmed a higher expression of
Mecl-1 in ALl cells than in P29 cells under both
normoxic and hypoxic conditions (Figure 3A). We
detected two close bands (40 and 37kDa) on the blots.
Since the expressions of the bands were decreased by
treatment with Mcl-1 siRNA (see below), the 37kDa
band may be a degradation product of Mcl-1 or, though
less likely, a splicing variant of Mcl-I gene. It is of note
that the cell lines expressed Mcl-1 {(40kDa) at the levels
according to the resistance to hypoxia- and other stress-
induced apoptosis (Figure 3A and B). Consistent with
the recent report that hypoxia enhances Mel-1 expres-
sion in hepatoma HepG2 cells through HIF-1 (Piret
et al., 2005), the amount of Mcl-1 was increased by
hypoxia in C2, D6 and All celis (Figure 3B). Im-
munohistochemistry for Mcl-1 on the sections prepared
from paraffin-embedded P29 and A1l tumors showed a
higher expression of Mcl-1 in A1l cells than in P29 cells,
indicating that Mcl-1 overexpression is persistent even in
vive (Figure 3C).

The expression profiling also showed that hypoxia
induced proapoptotic Buip3 gene expression in both P29
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Figure 1  Sensitivity to hypoxia-induced apoptosis of the Lewis lung carcinoma cell lines. {a} Hypoxia-induced <ell death of the cell
lines with differing metastatic potential. The cell lines were exposed to hypoxia for 72h. Percentage of living cells was determined on
the basis of trypan blue exclusion. Bars; s.d. of triplicate determinations. (b) Time course of cell death induced by hypoxia. P29 (O)
and Al1 cells {») were exposed to hypoxia for the indicated time period. Percentage of living cells was determined on the basis of trypan
blue exclusion Bars; s.d. of triplicate determinations. *Significant at P<0.002. {¢) Clonogenic assay of cell survival. P29 and A1l cells
(100 cells/well) were cultured under hypoxic conditions for 3 or 4 days followed by culturing under normeoxic conditions. Colonies were
stained with crystal violet (left panel) and then counted (right panel). Bars; s.d. of triplicate determinations. (d) Annexin V, TUNEL
and DAPI stainings of normoxic (left panels) and hypoxic P29 cells (right panels). P29 cells were cultured under hypoxic conditions for
I8, 27 or 28h, and then stained for annexin V-EGFP, TUNEL (green) and PI (red), or DAPI, respectively. Arrowheads show
apoptotic cells, (e) Flow cytometric analysis of DNA fragmentation, P29 cells cultured under hypoxic conditions for 27h were
subjected to FACscan analysis. The percentage of sub-G1 fraction is also shown.
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Figure 2 Sensitivity to ER stress-induced apoptosis of the Lewis
lung carcinoma cell lines. (a) Time course of cell death of P29 (C)
and A1l cells {») exposed to ER stress-inducing agents. The cells
were exposed to tunicamycin (5 pg/ml), brefeldin A (5 pg/ml),
thaspigargin (250 nm), A23187 (I pmM)). (b) Sensitivity of the cell
lines with differing metastatic potential to ER stress-inducing
agenis. P29, P34, D6 and All cells were exposed to tunicamycin
(5pg/ml), brefeldin A (5pug/ml), thaspigargin {250nM), A23187
(1 1)) for 2 days. Percentage of living cells was determined on the
basis of trypan blue exclusion. Bars; s.d. of triplicate determina-
tions.

and All cells (data not shown). Actually, Brnip3 mRNA
expression was induced in all of the cell lines, but the
expression level was not correlated with the suscep-

tibility to hypoxia- and other stress-induced apoptosis
(Figure 3D).
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To investigate whether the hypoxia-induced apoptosis
is associated with p33 accumulation, we examined the
expression of p53 in hypoxia- and doxorubicin-treated
P29, P34, D6 and All cells. Immunoblot analysis
revealed that hypoxia reduced pS53 expression
(Figure 3E) and failed to induce endogenous down-
stream p53 effector proteins, Bax and p21WAFNGPL ip
these cell lines (not shown). By contrast, doxorubicin
caused the accumulation of p53 (Figure 3E).

We next compared the expression levels of ER stress-
response proteins, GADD153, GRP78 and ORP150,
which are known to be induced by hypoxia, between P29
and All celis. As shown in Figure 3F and G, the
expressions of these proteins were induced by tunica-
mycin and hypoxia, but there was no difference between
29 and All cells.

Effects of Mcl-1 siRNA on hypoxia-induced apoptosis
and metastatic potential

To examine if the expression of Mcl-1 is responsible
for the resistance to hypoxia-induced apoptosis, we
transfected All cells with either Mcl-1 siRNA or
control siRINA. As shown in Figure 4a and b, the
expression of Mcl-1 was suppressed by Mcl-1 siRNA,
but not by control siRNA. We then cultured these cells
under hypoxic conditions for 60h and monitored cell
death. The results showed that Mcl-1 siRNA-treated
All cells were more sensitive to hypoxia-induced
apoptosis than mock and control siRNA-treated cells
in both normal growth medium and serum-starved
medium (Figure 4¢). Importantly, Mcl-1 siRINA-treated
All cells were less metastatic than control siRNA-
treated cells, as assessed by lung weight and the number
of metastatic nodules in the lung (Figure 4d). Thus, it
appeared that Mecl-1 is at least in part involved in
resistance to hypoxia-induced apoptosis and metastatic
potential of All cells.

Apoptosis of the low- and high-metastatic cells in hypoxic
areas of solid tumors

To examine whether the difference in the susceptibility
to hypoxia-induced apoptosis can also be observed in
vivo, we injected EFS, a nitroimidazole compound, into
mice bearing subcutaneous P29 or All tumors of nearly
equal size for detecting hypoxic areas and stained
cryosections of the tumors first with TUNEL assay
using fluorescein-labeled nucleotides, and then with
Cy3-labeled antibodies against EF5-cellular macromo-
lecule adducts (Figure 5a). EFS binding occurs under
low-oxygen conditions and only in viable cells (Lord
et al., 1993). The number of TUNEL-positive cells per
100 um? in EF5-positive (hypoxic) and -negative (nor-
moxic) areas was counted (Figure 5b). We omitted
necrotic areas from the investigation. The results
showed that the number of apoptotic cells in hypoxic
areas of P29 tumors was fourfold larger than that in
hypoxic areas of All tumors. In normoxic areas, the
number of apoptotic cells was small but statistically
larger in P29 tumors than in All tumors.
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Figure 3 Expressions of apoptosis-related genes in Lewis lung carcinoma cell lines. (A) Western blot analysis of the effect of hypoxia
on Mecl-1 expression. The cells exposed to hypoxia (~0.1% Oy} for § h were subjected to immunoblot analysis for Mel-I expression. -
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separate experiments in which similar results were obtained. (C) Immunohistochemical analysis of Mcl-1 expression in P29 and A1l
tumors. Sections from P29 tumors (a and c) and All tumors (b and d) were immunostained with anti-Mcl-1 antibody (2 and b} and
control IgG (¢ and d). Bars; 50 um. {D} Effects of hypoxia on Bnip3 mRNA expression. The cells exposed to hypoxia (0.1% O,) for 8h
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5 pg/ml tunicamycin for the indicated periods of time. fActin served as loading controls. (G} Western blot analysis of the effects of
hypoxia on the expressions of GADDI153, GRP78 and ORP150. P29 and All cells were exposed to hypoxia (0.1% O,) for the
indicated periods of time. S-actin served as loading controls.
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Survival advantage of the high-metastatic cells under
hypoxic conditions

The above resuits prompted us to examine whether A1l
cells have a survival advantage over P29 cells under hypo-
xic conditions. To this end, we established genetically
labeled P29 (P29ESFP cells) and All cells (A]]RES-EGFP
cells) after selecting P29 and All cells stabiy trans-

fected with pEGFP-NI and pIRES2-EGFP, respecti-
vely (Figure 6a), and characterized their properties.
P2OECSH? cells grew faster than A11'RESECE gells in vivo,
and at 17 days after tumor cell inoculation P295GFF
tumors were twice larger than A11™ESESFR tumors
(Figure 6b). P295SFF tumors contained large necrotic
regions. P29FCFP and A[[RESEGFF cells were low- and
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are shown as a percentage of the value for mock-transfected All
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siRNA or 25nM Mel-1 siRNA for 2 days were cultured under
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Cell death was examined by trypan blue staining. Bars; s.d. of
triplicate determinations. (d) Metastatic potential of Mcl-1 siRNA-
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250M Mecl-1 siRNA for 2 days were injected intravenously into
C57BL/6 mice (6 mice/group). At 17 days after the injection, the
weight of the lungs (left panel} and the number of metastatic
noduies {right panel} were measured. Bars; s.d.

high-metastatic, respectively, in both experimental and
spontaneous metastasis assays (Figure 6¢) and showed a
similar apoptosis resistance to their parental cells
(Figure 6d).

To obtain a standard curve by which the percentage

of A11RES-ESFE cells in mixtures of unknown proportions
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Figure 3 Apoptosis of P29 and A1l cells in tumor hypoxic areas.
(a) TUNEL staining (green) and EF5 staining (red) of frozen
sections of subcutaneous tumors established from P29 and All
cells. (b) Frequency of apoptotic (TUNEL-positive) cells in
normoxic (N) and hypoxic (H) areas. Bars; s.e.m.

of P29ECSFP and A1 I'RES-EGFP cells could be calculated, we
extracted genomic DNA from mixtures of known
proportions of the cells and performed PCR followed
by Scouthern blot with an EGFP probe (Figure 6e). By
plotting the relative intensities of the bands correspond-
ing to EGFP and IRES-EGFP against the known
proportion of ALI™ESEGEP celis a standard curve,
although slightly sigmoid, was obtained (Figure 6f).
The value at each point did not significantly fluctuate
even when we carried out PCR under various conditions
(1-100ng DNA, 20--35 PCR cycles) (not shown).

We then mixed A1I'RES-ESFP gnd P29ESFF celis at a 1:1,
1:10 or 1:100 ratio and treated them with multiple
rounds of hypoxia and reoxygenation (recovery in
normoxia). The percentage of A11'RESEGFY cells at the
time of cell harvesting was determined from the
standard curve after quantitation of radioactive inten-
sity of the PCR bands. We found that the percentage of
AIRES-EGFR callg increased dramatically after several
rounds of hypoxia-reoxygenation in every case (Figure
7a and b). The intensity of the band corresponding to
EGFP and IRES-EGFP in P29%¢*F and Al]'RESEGFP
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(c) Metastatic potential of P29"9°F and A11/RESEST cells, For experimental metastasis, the cells {2 x 10° cells/mouse) were injected
intravenously, and the lungs were excised 17 days after the injection. For spontanzous metastasis, the cells {2 x 10° celis/mouse) were
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cells, respectively, treated with the same protocol was seven mixed tumors. However, the proportion was over
constant (Figure 7c), indicating that the integrated  70% in #2 and #5 tumors (Figure 8b). Intriguingly, the
marker genes was stable. percentage of A1I'WESEOFP cells in hypoxic areas was
quite high in five out of the seven tumors. Overall, the
proportion of Al I'RES-EGFP cellg in normoxic and hypoxic
Survival advantage of the high-metastatic cells in solid areas was 36.4126.0 and 69.0421.0%, respectively
tumors (P<0.011). The intensity of bands corresponding to
We next examined the proportion of A11IRESEGFr cellsin EGFP and IRES-EGFP of the cells collected from
normoxic and hypoxic areas of solid tumors established  normoxic and hypoxic areas of P295%FF and A]l'REs-EGFP
from a 1:1 mixture of P295SF" and A11™ESEGFP eells,  tumors was constant (Figure 8c), indicating that the
Since P295CF cells grew faster than A11'RESESFP el iy integrated marker genes was also stable in vive. Thus,
vive (Figure 6b), the percentage of A11™ESECP cellg i A11'RESEGTP cefls showed a clear survival advantage over
both normoxic and hypoxic areas of the heterogeneous ~ P29%¢™ cells in hypoxic areas. _
tumors should be lower than 50% if no selection of cells The loss of P2959FF cells in normoxic areas of some
occurs in the tumors. We cut out EF5-negative and -  heterogeneous tumors (#2 and #5 tumors) suggests a
positive areas (approximately total 1 mm?®) from cryo-  possibility that a greater portion of P29°¢** cells was lost
sections of the tumors excised at 17 days after tumor in the tumors. To test this possibility, we ext_racted geno-
inoculation by using laser-assisted microdissection,  mic DNA from the whole tumors and examined the pro-
extracted genomic DNA, and then examined the  portion of A11"™ESESFP cells The results showed that the
percentage of AIIMES-EGFF cefls in these areas as  proportion was over 90% in #2 tumor, indicating that
described above (Figure 8a and b). The data showed  A11™FS5°F cells nearly overtook P29%6FP cells in this
that the proportion of A11'™ESECFP cefls in normoxic  tumor (Figure 8d and e). In #5 tumor, it was below 50%.
areas decreased from the initial 50% in five out of the  This and the above results suggest that A]1'RESEGFP
Oncogene
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