Molecular Medicine # Statins Protect Human Aortic Smooth Muscle Cells From Inorganic Phosphate-Induced Calcification by Restoring Gas6-Axl Survival Pathway Bo-Kyung Son, Koichi Kozaki, Katsuya Iijima, Masato Eto, Taro Kojima, Hidetaka Ota, Yuka Senda, Koji Maemura, Toru Nakano, Masahiro Akishita, Yasuyoshi Ouchi Abstract—Vascular calcification is clinically important in the development of cardiovascular disease. It is reported that hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase inhibitors (statins) inhibited vascular calcification in several clinical trials. However, the mechanism is poorly understood. Recently, it has been suggested that apoptosis is one of the important processes regulating vascular smooth muscle cell (VSMC) calcification. In this study, we investigated the effect of statins on VSMC calcification by testing their effect on apoptosis, focusing in particular on regulation of the survival pathway mediated by growth arrest-specific gene 6 (Gas6), a member of the vitamin K-dependent protein family, and its receptor, Axl. In human agric smooth muscle cells (HASMC), stating significantly inhibited inorganic phosphate (Pi)-induced calcification in a concentration-dependent manner (reduced by 49% at 0.1 µmol/L atorvastatin). The inhibitory effect of statins was mediated by preventing apoptosis, which was increased by Pi in a concentration-dependent manner, and not by inhibiting sodium-dependent phosphate cotransporter (NPC) activity, another mechanism regulating HASMC calcification. Furthermore, the antiapoptotic effect of statins was dependent on restoration of Gas6, whose expression was downregulated by Pi. Restoration of Gas6 mRNA by statins was mediated by mRNA stabilization, and not by an increase in transcriptional activity. Suppression of Gas6 using small interfering RNA and the Axl-extracellular domain abolished the preventive effect of statins on Pi-induced apoptosis and calcification. These data demonstrate that statins protected HASMC from Pi-induced calcification by inhibiting apoptosis via restoration of the Gas6-Axl pathway. (Circ Res. 2006;98:1024-1031.) Key Words: calcification ■ statins ■ apoptosis ■ Gas6 ■ Axl T ascular calcification, such as coronary and aortic calcification, is a significant feature of vascular pathology, because this lesion is associated with cardiovascular disease.1,2 It has been recognized that statins exhibit various protective effects against atherosclerosis, including modification of endothelial function,3 decreased inflammation,4 and inhibition of vascular smooth muscle cell (VSMC) proliferation and migration,⁵ all of which cannot be accounted for by lipid reduction. One of the interesting pleiotropic effects of statins is the inhibition of vascular calcification. Results from clinical trials suggest an association of statin use with slowed progression of calcific aortic stenosis⁶⁻⁸ and coronary artery calcification.9 Statins also inhibited calcification of atherosclerotic plaques in experimental hyperlipidemic animals. 10,11 On the other hand, some recent clinical trials were not able to find such an inhibitory effect. 12,13 To clarify these discrepancies, it is important to identify the detailed regulatory mechanism of vascular calcification and the target of effect of statins. Based on clinical findings,¹⁴ inorganic phosphate (Pi) has been shown to be an important inducer of VSMC calcification, which is morphologically similar to that observed in calcified human heart valves and the aortic media. Transport of Pi into VSMC has been suggested to play an important role in the initiation of extracellular matrix calcification.¹⁵ Recently, it has been shown that similar structures to matrix vesicles, derived from apoptotic VSMC, have been identified in human calcified arteries.¹⁶ These vesicles have the capacity to concentrate and crystallize Ca, initiating calcification. Pi has been shown to induce apoptosis of hypertrophic chondrocytes, which is associated with cell maturation and extracellular matrix mineralization.¹⁷ However, it is not clear whether or not apoptosis plays a regulatory role in the occurrence of VSMC calcification induced by Pi. Recently, it was shown that growth arrest-specific gene 6 (Gas6), a member of the vitamin K-dependent protein family, and its receptor, Axl, a membrane receptor tyrosine kinase, are decreased on calcification of vascular pericytes. 18 Original received April 19, 2005; revision received August 8, 2005; resubmission received February 20, 2006; accepted March 14, 2006. From the Departments of Geriatric Medicine (B.-K.S., K.K., K.I., M.E., T.K., H.O., Y.S., M.A., Y.O.) and Cardiovascular Medicine (K.M.), Graduate School of Medicine, The University of Tokyo; and Discovery Research Laboratory (T.N.), Shionogi & Co Ltd, Osaka, Japan. Current address for K.K.: Department of Geriatric Medicine, Kyorin University School of Medicine, Tokyo, Japan. Correspondence to Yasuyoshi Ouchi, MD, PhD, Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. E-mail youchi-tky@umin.ac.jp © 2006 American Heart Association, Inc. Gas6 is a secreted protein that harbors a y-carboxylglutamic acid-rich domain and 4 epidermal growth factor-like repeats.¹⁹ Gas6-Axl interaction has been shown to be implicated in the regulation of multiple cellular functions, including growth, survival, adhesion, and chemotaxis.20-23 In particular, they are known to protect a range of cell types from apoptotic death. However, there is no evidence that Gas6-Axl interaction is involved in Pi-induced apoptosis and calcification of VSMC. In the present study, we found that statins inhibited Pi-induced calcification by preventing apoptosis in human aortic smooth muscle cells (HASMC). The effect of statins was dependent on restoration of the Gas6-Axl pathway. Furthermore, this beneficial effect was mediated by Gas6 mRNA stabilization, and not by increasing the transcription rate. Our results reveal a novel pathway by which statins regulate Pi-induced calcification in HASMC. #### Materials and Methods #### Materials Pravastatin, atorvastatin, and fluvastatin were supplied by Sankyo Co Ltd, Pfizer Inc (New York), and Tanabe Seiyaku Co Ltd, respectively. Recombinant human Gas6 (rhGas6) and Axl-ECD were prepared as described previously.^{22,24} All other reagents were of analytical grade. #### Cell Culture HASMC were obtained from Clonetics. They were cultured in DMEM supplemented with 20% FBS, 100 U/mL penicillin, and 100 mg/mL streptomycin at 37°C in a humidified atmosphere with 5% CO₂. HASMC were used up to passage 8 for the experiments. #### **Induction and Quantification of Calcification** For Pi-induced calcification, Pi (a mixed solution of Na₂HPO₄ and NaH₂PO₄ whose pH was adjusted to 7.4) was added to serumsupplemented DMEM to final concentrations of 2.0, 2.6, and 3.2 mmol/L ("calcification medium"). After the indicated incubation period, cells were decalcified with 0.6 mol/L HCl, and Ca content in the supernatant was determined by the o-cresolphthalein complexone method (C-Test, WAKO). The remaining cells were solubilized in 0.1 mol/L NaOH/0.1% SDS, and cell protein content was measured by Bio-Rad protein assay. Calcification was visualized by von Kossa's method. Briefly, the cells were fixed with 4% formaldehyde and exposed to 5% aqueous AgNO3. #### **Induction of Apoptosis** Two different time courses were tested to investigate Pi-induced apoptosis and examine the effect of statins. (1) Short-term condition: Pi was added at final concentrations of 2.0, 2.6, and 3.2 mmol/L for 24 hours at confluence, after the cells were incubated with serumfree DMEM for 48 hours. To test the effect of statins on apoptosis, they were added 24 hours after incubating the cells with serum-free DMEM (12 hours before adding Pi). (2) Long-term condition: at confluence, the medium was switched to calcification medium and cells were cultured for up to 10 days. The medium was changed every 2 days. To test the effect of statins, each was added simultaneously when the medium was switched to the calcification medium. ## RNA Extraction, Northern Blot, and mRNA **Stability Analysis** The 304-bp product of the Gas6 cDNA probe (forward, 5'-GCGTGGCCAAGAGTGTGAAGT-3'; reverse, 5'-CGCCACTCC-TCAACAGAGAT-3') was amplified by RT-PCR. For Northern blot analysis, harvested RNA (≈5 to 10 μg) was fractionated on 1.4% formaldehyde-agarose gel and transferred to a nylon filter. The filter was hybridized at 68°C for 2 hours with 32P-labeled Gas6 cDNA and 18S probe in QuickHyb solution (Stratagene) and autoradiographed. To examine Gas6 mRNA stability, serum-starved HASMC were incubated with actinomycin D (Act D, 5 µg/mL) in the presence of 2.6 mmol/L Pi after 12 hours of atorvastatin (0.1 \(mu\text{mol/L}\)) treatment. Total RNA was harvested at 0, 1, 3, and 6 hours for Northern blot analysis. Signal density of the Gas6 mRNA was normalized to that C Ca deposition(µg/mg protein) 120 100 80 60 40 20 Ω Pi 2.6 mmol/L Atorvastatin Figure 1. Statins prevent HASMC calcification. A, HASMC were cultured with the indicated concentrations of atorvastatin in the presence of 2.6 mmol/L Pi for 6 days. Ca deposition was measured by o-cresolphthalein complexone method and normalized by cell protein content. All values are presented as mean±SEM (n=6). *P<0.05 vs statin (-) by Fisher's test. N.D. indicates not detected. B, On day 6, the inhibitory effect of atorvastatin (0.1 µmol/L) on 2.6 mmol/L Pi-induced Ca deposition was evaluated at the light microscopic level with von Kossa's staining. The arrow points to an area of Ca deposition. C, HASMC were cultured with mevalonate (100 µmol/L), farnesylpyrophosphate (1 µmol/L), or geranylgeranylpyrophosphate (1 µmol/L) in the presence of atorvastatin (0.1 µmol/L) and 2.6 mmol/L Pi for 6 days. All values are presented as mean ± SEM (n=6). Figure 2. Pi induces apoptosis, and ZVAD.fmk inhibits
Pi-induced calcification. A, After incubation with 1.4 (Pi-) and 3.2 mmol/L (Pi+) Pi for 10 days, apoptotic cells were identified by TUNEL staining (green). Nuclei were counterstained with 4'.6-diamidino-2-phenylindole (DAPI) (blue). B. Serum-starved HASMC were cultured with the indicated concentration of Pi for 24 hours. A quantitative index of apoptosis, determined by ELISA, is presented as the relative value to that with 1.4 mmol/L Pi. All values are presented as mean ± SEM (n=3). *P<0.05 vs 1.4 mmol/L Pi by Fisher's test. C, HASMC were incubated with the indicated concentration of ZVAD.fmk in the presence of 2.6 mmol/L Pi for 6 days. Ca content was measured and normalized by cell protein content. All values are presented as mean±SEM (n=6). **P<0.01 vs 2.6 mmol/L Pi, ZVAD.fmk(-) by Fisher's test. Experiments were performed with at least 3 different cell populations. of the 18S RNA at each time point, and the half-life was calculated by linear extrapolation. ## Preparation of Small Interfering RNA Targeting Gas6 and Transfection Two small interfering RNAs (siRNAs) were designed to target human Gas6 (accession no. NM_000820) using siRNA design software (Dharmacon). The sequences for Gas6 were 5'-GGACCTGCCAAGACATAGA-3' and 5'-ACCTCGTGCAGCCT-ATAAA-3'. Nonspecific control siRNA was synthesized using standard templates (Dharmacon). Twenty-four hours after HASMC seeding onto 12-well plates, cells were cultured in serum-free medium for an additional 24 hours, then transfected with Gas6 (100 nmol/L) and control siRNA using transfection reagent (Upstate). To evaluate the effect of Gas6 siRNA on Ca deposition, siRNA was transfected when HASMC had reached 80% to 90% confluence and then transfected every time the medium was changed (every 2 days) up to 6 days. The loss of Gas6 by transfection of siRNA was validated by immunoblotting for Gas6 protein in the cell lysates 48 hours and 6 days after siRNA transfection. #### Statistical Analysis All results are presented as mean \pm SEM. Statistical comparisons were made by ANOVA, unless otherwise stated. A value of P<0.05 was considered to be significant. An expanded Materials and Methods section can be found in the online data supplement available at http://circres.ahajournals.org. ## Results #### Statins Inhibit Pi-Induced HASMC Calcification To induce HASMC calcification, cells were incubated with calcification medium for 10 days. We confirmed that high phosphate (≥2.6 mmol/L) induced Ca deposition in a concentration- and time-dependent manner, whereas 1.4 mmol/L Pi, equivalent to the human physiological serum phosphate level, was not able to induce Ca deposition up to 10 days. To investigate the effect of statins on Pi-induced calcification, HASMC were incubated with atorvastatin in the presence of 2.6 mmol/L Pi. On day 6, Ca deposition was significantly suppressed by atorvastatin in a concentrationdependent manner (51.1±1.9% of control at 0.1 µmol/L) (Figure 1A). An inhibitory effect of the statins on Ca deposition was also found by von Kossa's staining (Figure 1B). Atorvastatin was able to be added at as high a concentration as 0.1 µmol/L without cell damage. The inhibitory effect was also observed with fluvastatin (0.001 to 0.1 μ mol/L) and pravastatin (0.01 to 50 μ mol/L) (data not shown). The inhibitory effect of statins was not blocked by mevalonate (100 \(\mu\text{mol/L}\), farnesylpyrophosphate (1 \(\mu\text{mol/L}\)), or geranylgeranylpyrophosphate (1 µmol/L), suggesting that the effect is not dependent on the mevalonate pathway (Figure 1C). ## Inhibitory Effect of Statins on Calcification Is Caused by Preventing Apoptosis, Not by Inhibiting Sodium-Dependent Phosphate Cotransporter Activity Two different time courses were tested to examine the effect of Pi on HASMC apoptosis: short-term (up to 24 hours) and long-term (up to 10 days; practical time course of calcifica- tion process). During calcification, Pi increased the rate of apoptotic cell death detected by terminal deoxyribonucleotidvl transferase-mediated dUTP-digoxigenin nick-end labeling (TUNEL) assay (Figure 2A). Furthermore, cytoplasmic histone-associated DNA fragments determined by ELISA, as a quantitative index of apoptosis, were also increased by Pi in a concentration- and time-dependent manner in both shortterm (Figure 2B) and long-term conditions (supplemental Figure I). In addition, caspase 3 activation, detected by immunoblotting, by 2.6 mmol/L Pi was observed in shortterm and long-term conditions (data not shown). To investigate the relationship between apoptosis and calcification, we used ZVAD.fmk, a general caspase inhibitor. We found that ZVAD.fmk significantly inhibited Pi-induced apoptosis as well as calcification in a concentration-dependent manner (Figure 2C). It has been reported that sodium-dependent phosphate cotransporter (NPC) activity is an important pathway regulating Pi-induced HASMC calcification. We confirmed that type III NPC (Pit-1) was expressed in the HASMC that we used, and its activity was enhanced by Pi treatment. Furthermore, a specific inhibitor of NPC, phosphonoformic acid (PFA), inhibited Ca deposition (reduced by 90.4% at 0.1 μ mol/L), indicating that NPC-mediated Pi uptake is also essential for HASMC calcification. To investigate the mechanisms of these statins, we examined the effect of atorvastatin on apoptosis and NPC activity. Atorvastatin, at concentrations exerting inhibition of calcification, reduced apoptosis in a concentration-dependent manner (Figure 3A). A beneficial effect of statins was also observed in the long-term condition (supplemental Figure II). On the other hand, statins did not inhibit NPC activity induced by Pi treatment (Figure 3B). ## Downregulation of Gas6-Axl Interaction Is Associated With Pi-Induced Apoptosis Immunoblot analysis showed that the expression of Gas6 and Axl was markedly downregulated by 2.6 mmol/L Pi in both short-term (Figure 4A) and long-term (supplemental Figure III) conditions. To further examine whether Pi affects the secretion of Gas6 by HASMC, conditioned medium was collected after Pi treatment. Gas6 production in the medium was reduced by 2.6 mmol/L Pi, along with a reduction in its intracellular expression (Figure 4B). Gas6 production was also reduced in an immunoprecipitation-immunoblotting study on day 10 (Figure 4C). Next, to investigate the role of Gas6-Axl interaction in the process of apoptosis and calcification, rhGas6 and Axl-ECD were supplemented in Pi-treated HASMC. The addition of rhGas6 significantly inhibited both Pi-induced apoptosis and calcification. Addition of Axl-ECD to block the binding of Gas6 to Axl clearly abrogated the inhibitory effect of rhGas6 (Figure 4D and 4E). These results indicate that Pi-induced apoptosis and calcification are associated with downregulation of the Gas6-Axl interaction. ## Statin-Mediated Induction of Gas6 Expression Is Dependent on mRNA Stabilization, Not on Transcription To investigate whether the antiapoptotic effect of statins is dependent on restoration of the Gas6-Axl interaction, we first assessed the effect of statins on Gas6 expression. As shown in Figure 5A, atorvastatin increased Gas6 expression, which was downregulated by Pi at both the mRNA and protein levels. Upregulation of Gas6 expression was also observed in the long-term condition (supplemental Figure IV). Furthermore, to elucidate the mechanism of statins on restoration of Gas6 mRNA, a promoter study was undertaken. Reporter assay using the -1.9 kb Gas6-luciferase DNA construct revealed that atorvastatin did not have a significant effect on Gas6 promoter activity (supplemental Figure V), as well as mRNA expression under the condition in which it was significantly inhibited by PDGF-BB (data not shown). Next, we investigated the effect of atorvastatin on mRNA stabilization using an RNA polymerase inhibitor, actinomycin D (ActD). As shown in Figure 5B, Gas6 mRNA expression was more stable in the presence of atorvastatin than in its absence under Pi and ActD treatment. The half-life was 15.9 hours with atorvastatin and 5 hours without atorvastatin, suggesting the capacity of statins to improve Gas6 mRNA stabilization (Figure 5C). Taken together, these findings suggest that the restoration of Gas6 mRNA by statins appears to be mediated by decreasing the mRNA degradation rate, and not by stimulating transcriptional activity. Furthermore, to determine whether Gas6 is required for statin-mediated effects, we tried to knock down the action of Figure 3. Effect of atorvastatin on Pi-induced apoptosis and NPC activity. A, HASMC were cultured with the indicated concentration of atorvastatin for 12 hours and then incubated with 2.6 mmol/L Pi for an additional 24 hours. All values are presented as mean±SEM (n=3). *P<0.05 vs 2.6 mmol/L Pi, statin (-) by Fisher's test. B, HASMC were treated with (dotted line) or without (solid line) 0.1 μ mol/L atorvastatin in the presence of 2.6 mmol/L Pi. On day 6, NPC activity was determined in Earl's balanced salt solution containing 0.1 mmol/L H₃³²PO₄ (1 μ Ci/mL) with 143 mmol/L sodium chloride for the indicated period. All values are presented as mean±SEM (n=6). Pi 2.6 mmol/L rhGas6 Pi 2.6 mmol/L rhGas6 Axl-ECD Figure 4. Pi reduces production of Gas6 and AxI. and rhGas6 inhibits Pi-induced apoptosis and calcification via Axl. A, HASMC were cultured in the presence of 2.6 mmol/L Pi for 12 hours. Cell lysates were subjected to SDS-PAGE followed by immunoblotting with antibodies to Gas6, Axl, or β-tubulin. B, Conditioned medium of HASMC in the absence (lane 1) or presence (lane 2) of 2.6 mmol/L Pi at 12 hours was concentrated and separated by SDS-PAGE along with cell lysates. C, Conditioned medium of HASMC on day 10 in the absence (lanes 1 and 3) or presence (lanes 2 and 4) of 2.6 mmol/L Pi was subjected to immunoprecipitation with anti-Gas6 antibody (lanes 1 and 2) or control goat IgG (lanes 3 and 4). Precipitates were immunoblotted with anti-Gas6
antibody. D, After pretreatment with rhGas6 (400 ng/mL) with or without AxI-ECD (1 µg/mL), apoptosis was induced by 2.6 mmol/L Pi. All values are presented as mean±SEM (n=3). *P<0.05 by Fisher's test. E, For measurement of Ca deposition, HASMC were cultured with rhGas6 (400 ng/mL) with or without AxI-ECD (1 μ g/mL) in the presence of 2.6 mmol/L Pi for 6 days. All values are presented as mean±SEM (n=6). *P<0.05 by Fisher's test. Experiments were performed with at least 3 different cell populations. Gas6 and examined the effect of atorvastatin on Pi-induced apoptosis and calcification. Transfection of Gas6 siRNA markedly decreased Gas6 expression in the short-term and long-term conditions (Figure 6A). The inhibitory effect of atorvastatin on Pi-induced apoptosis and calcification was reversed by Gas6 siRNA (Figure 6B and 6C). Similarly, the beneficial effect of atorvastatin was also abolished by blocking the binding of Gas6 to Axl using Axl-ECD (Figure 6D and 6E). These data support a critical role of Gas6 in the preventive effect of statins on apoptosis and calcification. + #### Discussion The present study demonstrated that statins protected HASMC from Pi-induced calcification. The clinical effect of statins on vascular calcification is controversial. Many retrospective clinical studies^{6,7,9} and a prospective study⁸ have shown beneficial effects, whereas recent prospective studies were unable to show such effects.^{12,13} The reason is not yet clear, and the time window of statin use has been raised as an important matter. The discrepancy may also derive from the complex in vivo effects of statins. In this regard, it is important to analyze the detailed regulatory mechanism of statins in a simple model. In Pi-induced calcification, HASMC undergo apoptosis. A causal link between apoptosis and calcification was evident from the finding that both apoptosis and calcification were inhibited by the general caspase inhibitor, ZVAD.fmk. As reported previously,²⁵ we confirmed that NPC-mediated Pi uptake is another essential mechanism for HASMC calcification. Given that apoptosis does not always lead to calcification, Pi-induced HASMC calcification is presumably dependent on both an NPC-mediated phenotypic transition from SMC to an osteoblastic phenotype and apoptotic cell death. With respect to the mechanism of action of statins, they clearly inhibited Pi-induced apoptosis, although they did not have an effect on Pi-induced NPC activity or osteoblastic differentiation; Pi-induced upregulation of matrix Gla protein (MGP) mRNA was not inhibited by atorvastatin (supplemental Figure VI). These results suggest that apoptosis is the target of statins in inhibiting HASMC calcification. Another important signal in Pi-induced calcification is an increase in intracellular Ca ([Ca²⁺]_i). Statins have been shown to inhibit VSMC proliferation⁵ and reduce the acute increase of [Ca2+], in a mevalonate and isoprenoid pathway-independent manner.26 On the other hand, [Ca2+]i is reported to modulate Pi-induced apoptosis of terminally differentiated chondrocytes.27 Therefore, modulation of [Ca2+]i is another possible mechanism of the inhibition of apoptosis by statins. In this study, we investigated the association of proliferation with Pi-induced apoptosis and calcification. We found that Pi did not affect proliferation, measured by the incorporation of 5-bromo-2'-deoxyuridine (BrdU) during calcification (data not shown). We also found that the inhibitory effect of statins on calcification was not affected by an inhibitor of Rho kinase (Y-27632), an important modulator of the mevalonate and isoprenoid pathway affecting proliferation and apoptosis (supplemental Figure VII). These results suggest that proliferation is not associated with Pi-induced calcification. The inhibitory effect of statins on calcification was not blocked by mevalonate, farnesylpyrophosphate, geranylgeranylpyrophosphate, or Rho kinase inhibitor, suggesting that the effect of statins is not dependent on the mevalonate and isoprenoid pathways. Indeed, a mevalonate pathway-independent effect of statins has been reported previously,26,28-30 although the precise mechanism has not been shown. The pleiotropism of statins is of continuing interest. (hrs) Figure 5. Atorvastatin enhances Gas6 mRNA stabilization, but not transcription, A. After pretreatment with atorvastatin (0.1 µmol/L) for 12 hours, apoptosis was induced by 2.6 mmol/L Pi. At 12 hours, mRNA was isolated and Northern blot analvsis for Gas6 and 18S was performed. Simultaneously, cell lysates were collected and subjected to SDS-PAGE followed by immunoblotting with antibodies to Gas6 and β-tubulin. B, Serumstarved HASMC were incubated with actinomycin D (Act D) (5 μ g/mL) in the presence of 2.6 mmol/L Pi after 12 hours of atorvastatin (0.1 μmol/L) treatment. Total RNA was harvested at 0, 1, 3, and 6 hours for Northern blot analysis. C, Signal density of Gas6 mRNA with (solid line) or without (dotted line) atorvastatin (0.1 µmol/L) in the presence of 2.6 mmol/L Pi and Act D (5 μg/mL) was normalized to that of 18S RNA at each time point. Gas6 mRNA level at time 0 was given the value 1. Each experiment was performed in triplicate for each condition. An antiapoptotic effect of statins has been shown in various cell types.31-34 In cardiomyocytes, apoptosis induced by hypoxia or protein kinase C (PKC) inhibitors was inhibited by 10 µmol/L pravastatin or 0.1 µg/mL atorvastatin, respectively.31,32 Simvastatin (1 µmol/L) promoted endothelial cell survival.33 In VSMC, 7-ketocholesterolinduced apoptosis was inhibited by 10 µmol/L pravastatin.34 However, in contrast to the results of the present and other studies, a proapoptotic effect of statins has also been reported in VSMC,35 endothelial cells,36 and cardiac myocytes.37 Although the precise mechanism is not understood, it can be postulated that statins have biphasic effects on cell survival (an antiapoptotic effect at low concentrations and a proapoptotic effect at high concentrations) depending on the type of cell, statins, and apoptotic stimulus. Indeed, Weis et al showed dose-dependent biphasic effects of statins on apoptotic activity in microvascular endothelial cells.30 Consistent with these data, we found that 3 different statins displayed an antiapoptotic effect at low concentrations and a proapoptotic effect at high concentrations (>1 \(\mu\text{mol/L}\) for atorvastatin and fluvastatin; $>100 \mu \text{mol/L}$ for pravastatin) (data not shown). During Pi-induced apoptosis, we have shown that Pi downregulates the Gas6-Axl interaction, resulting in blockade of a survival signal, thereby promoting apoptosis and calcification. We previously proposed that Gas6 may allow Axl-expressing phagocytic cells, eg, macrophages and VSMC, to recognize cells exposing phosphatidylserine (PS) on the outer cell membrane, the initial step of the apoptotic process.³⁸ Proudfoot et al also showed that in vascular calcification, several PS-exposing cells are observed within and on the periphery of the nodules.¹⁶ PS exposure by apoptotic bodies generates a potential Ca-binding site and membrane surface suitable for hydroxyapatite deposition.^{39,40} Based on these observations, Gas6-Axl downregulation is presumably involved in decreased cell survival and clearance, both directing cells to apoptosis-mediated mineral deposition. With regard to the molecular pathway of the restoration of Gas6 by statins, we have shown that statins retarded degradation of Gas6 mRNA, not increasing the transcriptional rate. Indeed, it was reported that statins improve mRNA stability as well as transcription. ^{41,42} In addition, the result that suppression of the action of Gas6 by siRNA and Axl-ECD abrogated the inhibitory effect of statins on apoptosis and inhibition clearly indicates a pivotal role of Gas6 in the effect of statins. We conclude that statins inhibit Pi-induced HASMC calcification by preventing apoptosis via restoration of the Gas6-Axl pathway. The regulation of Gas6 by statins occurs at the posttranscriptional level. The present study provides evidence of a preventive role of statins in vascular calcification and further indicates the pleiotropic effects of statins, which could potentially contribute to the treatment of cardiovascular disease. Figure 6. Gas6 knockdown abolishes inhibition of Pi-induced apoptosis and calcification by atorvastatin. A, Gas6specific siRNA (100 nmol/L) and nonspecific siRNA (Ctrl siRNA) were transfected into HASMC, and immunoblotting was performed at 48 hours and 6 days after transfection. B, Serum-starved HASMC were transfected with 100 nmol/L Gas6 siRNA and control (Ctrl) siRNA. After transfection, cells were treated with atorvastatin (0.1 µmol/L) for 12 hours, then with 2.6 mmol/L Pi for an additional 24 hours before measurement of apoptosis (n=3). C, For measurement of Ca deposition, HASMC were transfected with 100 nmol/L Gas6 siRNA and control siRNA and incubated with atorvastatin (0.1 μ mol/L) and 2.6 mmol/L Pi for 6 days (n=3). D, In the case of AxI-ECD, HASMC were pretreated with atorvastatin (0.1 μ mol/L) and AxI-ECD (1 μ g/mL) for 12 hours, then incubated with 2.6 mmol/L Pi for an additional 24 hours. Thereafter, a quantitative index of apoptosis was determined by ELISA (n=3). E, HASMC were cultured with atorvastatin (0.1 μ mol/L) and AxI-ECD (1 μ g/mL) in the presence of 2.6 mmol/L Pi for 6 days. Ca content was measured and normalized by cell protein content. All values are presented as mean±SEM (n=6). *P<0.05 by Fisher's test. Each panel shows a representative example of 3 independent experiments. #### Acknowledgments This study was supported by a grant-in-aid for scientific research from the Ministry of Education, Science, Sports, and Culture of Japan (grant 15390239) and by the Mitsui Sumitomo Insurance Welfare Foundation, the Ono Medical Research Foundation, the Kanzawa Medical Research Foundation, the Novartis
Foundation for Gerontrogical Research, and the Takeda Research Foundation. We thank Yuki Ito for technical assistance. ## References - Eggen DA. Relationship of calcified lesions to clinically significant atherosclerotic lesions. Ann NY Acad Sci. 1968;149:752–767. - Wexler L, Brundage B, Crouse J, Detrano R, Fuster V, Maddahi J, Rumberger J, Stanford W, White R, Taubert K. Coronary artery calcification: pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association Writing Group. Circulation. 1996;94:1175–1192. - Mullen MJ, Wright D, Donald AE, Thorne S, Thomson H, Deanfield JE. Atorvastatin but not L-arginine improves endothelial function in type-I diabetes mellitus: a double-blind study. J Am Coll Cardiol. 2000;36: 410–416. - Bustos C, Hernandez-Presa MA, Ortego M, Tunon J, Ortega L, Perez F, Diaz C, Hernandez G, Egido J. HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol. 1998;32:2057–2064. - Axel DI, Riessen R, Runge H, Viebahn R, Karsch KR. Effects of cerivastatin on human arterial smooth muscle cell proliferation and migration in transfilter cocultures. J Cardiovasc Pharmacol. 2000;35:619 –629. - Shavelle DM, Takasu J, Budoff MJ, Mao S, Zhao XQ, O'Brien KD. HMG CoA reductase inhibitor (statin) and aortic valve calcium. *Lancet*. 2002;359:1125–1126. - Novaro GM, Tiong IY, Pearce GL, Lauer MS, Sprecher DL, Griffin BP. Effect of hydroxymethylglutaryl coenzyme A reductase inhibitors on the progression of calcific aortic stenosis. Circulation. 2001;104:2205–2209. - Achenbach S, Ropers D, Pohle K, Leber A, Thilo C, Knez A, Menendez T, Maeffert R, Kusus M, Regenfus M, Bickel A, Haberl R, Steinbeck G, Moshage W, Daniel WG. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation. 2002;106:1077–1082. - Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med. 1998;339: 1972–1978. - Williams JK, Sukhova GK, Herrington DM, Libby P. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol. 1998;31:684-691. - Bea F, Blessing E, Bennett B, Levitz M, Wallace EP, Rosenfeld ME. Simvastatin promotes atherosclerotic plaque stability in apoE-deficient mice independently of lipid lowering. Arterioscler Thromb Vasc Biol. 2002;22:1832–1837. - Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, Boon NA. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352:2389–2397. - Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, Ritz E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–248. - 14. Goodman WG, London G, Amann K, Block GA, Giachelli C, Hruska KA, Ketteler M, Levin A, Massy Z, McCarron DA, Raggi P, Shanahan CM, Yorioka N; Vascular Calcification Work Group. Vascular calcification in chronic kidney disease. Am J Kidney Dis. 2004;43:572–579. - Giachelli CM, Jono S, Shioi A, Nishizawa Y, Mori K, Morii H. Vascular calcification and inorganic phosphate. Am J Kidney Dis. 2001;38: S34-S37 - Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM, Weissberg PL. Apoptosis regulates human vascular calcification by apoptotic bodies. Circ Res. 2000;87:1055–1062. - Mansfield K, Rajpurohit R, Shapiro IM. Extracellular phosphate ions cause apoptosis of terminally differentiated epiphyseal chondrocytes. J Cell Physiol. 1999;179:276–286. - Collett G, Wood A, Alexander MY, Varnum BC, Boot-Handford RP, Ohanian V, Ohanian J, Fridell YW, Canfield AE. Receptor tyrosine kinase Axl modulates the osteogenic differentiation of pericytes. Circ Res. 2003;92:1123–1129. - Mark MR, Chen J, Hammonds RG, Sadick M, Godowsk PJ. Characterization of Gas6, a member of the superfamily of G domain-containing proteins, as a ligand for Rse and Axl. J Biol Chem. 1996;271:9785–9789. - Yanagita M, Arai H, Ishii K, Nakano T, Ohashi K, Mizuno K, Varnum B, Fukatsu A, Doi T, Kita T. Gas6 regulates mesangial cell proliferation through Axl in experimental glomerulonephritis. Am J Pathol. 2001;158: 1423–1432. - Goruppi S, Ruaro E, Schneider C. Gas6, the ligand of Axl tyrosine kinase receptor, has mitogenic and survival activities for serum starved NIH3T3 fibroblasts. Oncogene. 1996;12:471–480. - Nakano T, Ishimoto Y, Kishino J, Umeda M, Inoue K, Nagata K, Ohashi K, Mizuno K, Arita H. Cell adhesion to phosphatidylserine mediated by a product of growth arrest-specific gene 6. J Biol Chem. 1997;272: 29411–29414. - Fridell YW, Villa J Jr, Attar EC, Liu ET. Gas6 induces Axl-mediated chemotaxis of vascular smooth muscle cells. J Biol Chem. 1998;273: 7123–7126. - 24. Ming Cao W, Murao K, Imachi H, Sato M, Nakano T, Kodama T, Sasaguri Y, Wong NC, Takahara J, Ishida T. Phosphatidylinositol 3-OH kinase-Akt/protein kinase B pathway mediates Gas6 induction of scavenger receptor a in immortalized human vascular smooth muscle cell line. Arterioscler Thromb Vasc Biol. 2001;21:1592–1597. - Jono S. McKee MD, Murry CE, Shioi A, Nishizawa Y, Mori K, Morii H, Giachelli CM. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000;87:e10-e17. - Bergdahl A, Persson E, Hellstrand P, Sward K. Lovastatin induces relaxation and inhibits L-type Ca(2+) current in the rat basilar artery. *Pharmacol Toxicol*. 2003;93:128–134. - Mansfield K, Pucci B, Adams CS, Shapiro IM. Induction of apoptosis in skeletal tissues: phosphate-mediated chick chondrocyte apoptosis is calcium dependent. *Calcif Tissue Int.* 2003;73:161–172. - Weitz-Schmidt G, Welzenbach K, Brinkmann V, Kamata T, Kallen J, Bruns C, Cottens S, Takada Y, Hommel U. Statins selectively inhibit - leukocyte function antigen-1 by binding to a novel regulatory integrin site. *Nat Med*. 2001;7:687-692. - Wagner AH, Gebauer M, Guldenzoph B, Hecker M. 3-Hydroxy-3methylglutaryl coenzyme A reductase-independent inhibition of CD40 expression by atorvastatin in human endothelial cells. Arterioscler Thromb Vasc Biol. 2002;22:1784-1789. - Weis M, Heeschen C, Glassford AJ, Cooke JP. Statins have biphasic effects on angiogenesis. Circulation. 2002:105:739-745. - Bergmann MW, Rechner C, Freund C, Baurand A, El Jamali A, Dietz R. Statins inhibit reoxygenation-induced cardiomyocyte apoptosis: role for glycogen synthase kinase 3β and transcription factor β-catenin. J Mol Cell Cardiol. 2004;37:681–690. - Tanaka K, Honda M, Takabatake T. Anti-apoptotic effect of atorvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac myocytes through protein kinase C activation. Clin Exp Pharm Phy. 2004;31:360-364. - Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ. Sessa WC, Walsh K. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. *Nature Med.* 2000;6:1004–1010. - Miyashita Y, Ozaki H, Koide N, Otsuka M, Oyama T, Itoh Y, Mastuzaka T, Shirai K. Oxysterol-induced apoptosis of vascular smooth muscle cells is reduced by HMG-CoA reductase inhibitor, pravastatin. *J Atheroscler Thromb*. 2002;9:65–71. - 35. Guijarro C, Blanco-Colio LM, Ortego M, Alonso C, Ortiz A, Plaza JJ, Diaz C, Hernandez G, Egido J. 3-Hydroxy-3 methylglutaryl coenzyme A reductase and isoprenylation inhibitors induce apoptosis of vascular smooth muscle cells in culture. Circ Res. 1998;83:490-500. - Newton CJ, Ran G, Xie YX, Bilko D, Burgoyne CH, Adams I, Abidia A, McCollum PT, Atkin SL. Statin-induced apoptosis of vascular endothelial cells is blocked by dexamethasone. J Endocrinol. 2002;174:7–16. - Ogata Y, Takahashi M, Takeuchi K, Ueno S, Mano H, Ookawara S, Kobayashi E, Ikeda U, Shimada K. Fluvastatin induces apoptosis in rat neonatal cardiac myocytes: a possible mechanism of statin-attenuated cardiac hypertrophy. J Cardiovasc Pharmacol. 2002;40:907–915. - Ishimoto Y, Ohashi K, Mizuno K, Nakano T. Promotion of the uptake of PS liposomes and apoptotic cells by a product of growth arrest-specific gene, gas6. J Biochem (Tokyo). 2000;127:411-417. - Cotmore JM, Nichols G Jr, Wuthier RE. Phospholipid-calcium phosphate complex: enhanced calcium migration in the presence of phosphate. *Science*. 1971;172:1339–1341. - Skrtic D, Eanes ED. Membrane mediated precipitation of calcium phosphate in model liposomes with matrix vesicle-like lipid composition. *Bone Miner*. 1992;16:109-119. - Walter DH, Zeiher AM, Dimmeler S. Effects of statins on endothelium and their contribution to neovascularization by mobilization of endothelial progenitor cells. *Coron Artery Dis.* 2004;15:235–242. - Menschikowski M, Hagelgans A, Heyne B, Hempel U, Neumeister V, Goez P, Jaross W, Siegert G. Statins potentiate the IFN-gamma-induced upregulation of group IIA phospholipase A2 in human aortic smooth muscle cells and HepG2 hepatoma cells. *Biochim Biophys Acta*. 2005; 1733:157–171. ## CASE REPORT # Elderly patient presenting with severe thyrotoxic hypercalcemia Reiko Kikuchi, ¹ Satoru Mochizuki, ¹ Masahiko Shimizu, ¹ Noriko Sudoh, ¹ Koichi Kozaki, ¹ Masahiro Akishita ² and Kenji Tobal ¹Department of Geriatric Medicine, Kyorin University School of Medicine, and ²Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan An 81-year-old woman with Graves' disease and osteoporosis was referred to the hospital because of anorexia over one month and impaired consciousness. She also presented with low-grade fever and emaciation. Laboratory tests revealed marked hypercalcemia (corrected serum calcium level of 12.4 mg/dL), which was initially suspected to result from vitamin D toxicity, because she had been taking vitamin D3 (alphacalcidol of $0.5\,\mu g/day$) for the treatment of osteoporosis. However,
discontinuation of vitamin D3 and fluid infusion did not ameliorate hypercalcemia one week later. After excluding hyperparathyroidism and malignancy-related hypercalcemia, hypercalcemia was considered to be attributable to the exacerbation of hyperthyroidism (free T4 of 6.69 ng/dL, free T3 of 13.27 pg/mL and thyroid stimulating hormone (TSH) <0.015 μ IU/mL) with increased bone resorption. Finally, the increased dose of thiamazole (30 mg/day) normalized serum calcium level and thyroid function three months later Laboratory tests suggested that normal bone formation in spite of increased bone resorption contributed to hypercalcemia in hyperthyroid state. **Keywords:** deoxypyridinoline, hypercalcemia, hyperthyroidism, osteoporosis, p-N-telopeptides of collagen cross-links. ## Introduction Hypercalcemia has been associated in approximately 20% of the patients with hyperthyroidism, but is mild in most cases, ranging from the upper normal limit to the slightly elevated level. 1-3 Consequently, we rarely see hyperthyroidism with symptomatic hypercalcemia. Many genotypes have been associated with Graves' disease. 4 Also, a small number of studies have shown that polymorphisms in calcium-regulating genes such as calcium-sensing receptor and vitamin D receptor may influence calcium metabolism in adults. However, no study has reported the association of those polymorphisms with thyrotoxic hypercalcemia. More studies as well as more polymorphisms including haplotype Accepted for publication 15 March 2006. Correspondence: Dr Kënji Toba; MD, PhD, Department of Geriatric Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan. Email: toba@kyorinu.ac.jp analysis should be performed to clarify the underlying mechanism. Here, we report an elderly patient presenting with severe symptomatic hypercalcemia resulting from hyperthyroidism. #### Case report An 81-year-old woman was admitted to the Department of Geriatric Medicine, Kyorin University Hospital because of hypercalcemia on February 14 2004. She had Basedow's disease and osteoporosis, and had been taking thiamazole 5 mg/day and alphacalcidol 0.5 µg/day. In January 2004, anorexia had gradually developed followed by gait disturbance. When she was referred to the hospital on February 14, she also presented with confusion and low-grade fever of 37.2°C. Her blood pressure was 122/62 mmHg with a pulse rate of 98 bpm. Physical examination showed a soft diffuse goiter and a systolic ejection murmur of Levine II/VI at the apex, while abdominal and neurological findings were normal. Table 1 Laboratory tests on admission | | · | |------|----------------------------| | Test | Result | | Hb | 10.5 g/dL | | Ht | 32.6% | | RBC | $367 \times 10^{4}/\mu$ L | | PLT | 22.2 × 10 ⁴ /μL | | WBC | 3200/µL | | Na | 144 mEq/L | | K | 3.1 mEq/L | | Cl | 100 mEq/L | | Ca | 11.7 mg/dL | | IP | $3.4~\mathrm{mg/dL}$ | | BUN | 19.3 mg/dL | | Cr | 0.7 mg/dL | | TP | 6.4 g/dL | | Alb | 3.3 g/dL | | ALP | · 226 IU/L | | AST | 37 IU/L | | ALT | 35 IU/L | | LDH | 333 U/L | | CK | 25 IU/L | | Glu | 126 mg/dL | | CRP | 0.2 mg/dL | Alb, ...; ALP, ...; ALT, ...; AST, ...; BUN, ...; CK, ...; CRP, ...; LDH, ...; PLT, ...; RBC, ...; TP, ...; WBC, Table 2 Results of thyroid function test | Test | Result (normal range) | |---------------------------|---| | FreeT4 | 6.69 ng/dL (0.73-1.53) | | FreeT3 | 13.27 pg/mL (1.63–3.20) | | Thyroid stimulating | 0.015 IU/mL (0.41\(\text{\text{\text{0.41}}}\)5,27) | | hormone (THS) | | | TSH receptor antibody | 51.2% (15<) | | TSAb (thyroid stimulatory | 540% (180<) | | antibody) | | | Antithyroid peroxydase | 43.8 U/mL (0.3<) | | antibody | 4. / ** | | Serum thyroglobulin | 0.3 < U/mL (0.3<) | | autoantibodies | | | | | On laboratory tests (Table I), she showed blood hemoglobin of 10.5 g/dL, white blood cell counts of 3200/µL and serum calcium of 11.7 mg/dL (corrected calcium of 12.4 mg/dL). Other electrolytes as well as liver and kidney function were normal. Thyroid function tests (Table 2) revealed marked hyperthyroidism; free T4 of 6.69 (reference, 0.90–1.70) ng/dL, free T3 of 13.27 (2.3–4.3) pg/mL and thyroid stimulating hormone (TSH) of <0.01% (0.5–5.0) µIU/mL. Plasma levels of TSH receptor antibody thyroid stimulating antibody and anti-TPO antibody were elevated, compatible with the findings in Graves' disease. Plasma intact PTH was Table 3 Results of markers of bone metabolism | Marker | Result (normal range) | |------------------------------------|----------------------------| | Östeocalcin | 9.5:ng/mL (2.5–13) | | Bone-specific alkaline phosphatase | 24.2 U/I (9.6–35.4) | | p-N-telopeptides | 43.3 nMBCE/L (10.7-24.0) | | Deoxypyridinoline/Cr | 43.8 nmol/L/nMCr (2.8-7.6) | | calcitonin | 33.pg/mL | | 1-25(OH)VitD ₃ | 6 pg/mL (20–60) | Figure 1 X-ray of lumbar vertebrae. 13 (10-65) pg/mL and PTH-related protein was not detected. As shown in Table 3, markers of bone resorption such as deoxypyridinoline (DPD) and N-telopeptides of collagen cross-links (NTx) were elevated, whereas those of bone formation such as osteocalcin and bone-type alkaline phosphatase were not. Bone mineral density of lumbar vertebrae was –3.29 (T score), and that of femur was –3.72 (T score). Multiple compression fractures and remarkable reduction in bone mineral density were found on spinal lateral X-rays and dual energy X-ray absorptiometry, respectively (Fig. 1). Initially, vitamin D toxicity was suspected as a cause of hypercalcemia; thus, alphacalcidol was ceased with fluid infusion to wash out calcium. However, the Figure 2 Clinical course of the patient. Thyroid stimulating hormone (TSH) was below the detection limit throughout the clinical course. c-Ca, collected serum calcium; u-Ca, urinary calcium; FT4, free thyroxine; FT3, free triiodothyronine. hypercalcemia had not improved one week later. Laboratory and imaging tests were carried out to exclude hyperparathyroidism, humoral hypercalcemia of malignancy, osteolytic bone metastases and multiple myeloma. Finally, hypercalcemia was considered to be attributable to the exacerbation of hyperthyroidism with high bone turnover. Consequently, the dose of thiamazole was increased to 30 mg/day to normalize thyroid function. As shown in Figure 2, free T4 and free T3, as well as serum calcium were gradually decreased, and the patient was discharged on May 14 2004. In August 2004, her thyroid function returned to normal (free T4 of 0.95 ng/dL and free T3 of 2.28 pg/mL) with corrected serum calcium concentration of 9.2 mg/dL. ## Discussion Hypercalcemia associated with hyperthyroidism has been reported to occur more frequently in elderly patients than in younger patients; the incidence of hypercalcemia was 2.3% in hyperthyroid patients under 60 years of age and was 18.8% in those over 60 years of age.2 The severity of hypercalcernia, however, is generally mild, ranging from the upper normal limit to the slightly elevated level,3 and other complications should be suspected when serum calcium concentration is over 12 mg/dL7 Actually, case reports have shown that hyperparathyroidism is uncommonly associated with hypercalcemia in thyrotoxicosis.8 Only several cases have been reported that hyperthyroidism was considered the only cause of hypercalcemia over 12.0 mg/ dL9-11 In our case laboratory tests and diagnostic imaging excluded hyperparathyroidism as well as malignant neoplasms. Furthermore, hypercalcemia was ameliorated in parallel with the improvement of hyperthyroidism, indicating that hypercalcemia resulted from hyperthyroidism. Thyroid hormones play a crifical role in bone development because hypothyroidism in childhood results in the impaired skeletal development 12 In adults, thyroid hormones are important in the maintenance of bone mass. Thyroid hormone receptors are expressed in bone cells such as osteoblasts and osteoclasts.12 In adult hyperthyroidism, there is increased bone remodelling, characterized by an increase in both bone resorption and formation, and an imbalance between bone resorption and formation, which results in bone loss and an increased risk for osteoporotic fracture.12 In our case, however, the markers of bone resorption were elevated but those of bone formation were not. This pattern is consistent with the changes of bone metabolism in older osteoporotic patients,13 but is different from that in hyperthyroidism as mentioned above. This might be due to the age-related decline in thyroid hormone signaling that leads to bone formation. However, no reports including animal experiments to support this hypothesis can be found so far. This should be investigated in the future. Anti-thyroid drugs restore not only serum calcium levels¹⁴ but also bone mineral density¹⁵ in patients with thyrotoxic hypercalcemia. It has been also reported that a β blocker, propranolol, ^{16,17} and radioiodine therapy¹⁰ may ameliorate thyrotoxic hypercalcemia. In our case, an increased dose of thiamazole normalized both thyroid function and serum calcium levels several months later, but bone mineral density was not increased. Longer time periods would be necessary to see the recovery of bone mass if possible. ## References - 1 Daniel T, Aran B. The skeletal system in thyrotoxicosis. In: Lewis EB, Robert DU, (eds). Werner and Ingbar's the Thyroid, 8th edn. Philadelphia, PA: A Wolters Kluwer Co., 2000; 659-666 - 2 Szabo ZS, Ritzl F. Hypercalcemia in hyperthyroidism. Role of age and goiter type. Klin Wochenschr 1981; 59: 275–279. - 3 Mosekilde L, Melsen F, Bagger JP et al. Bone changes in hyperthyroidism: interrelationships between bone morphometry, thyroid function and calcium-phosphorus metabolism. Acta Endocrinol 1977; 85: 515–525. - 4 Dittmar M, Kahaly GJ. Immunoregulatory and susceptibility genes in thyroid and polyglandular autoimmunity. Thyroid 2005; 15: 239–250. - 5 Cole DE, Vieth R, Trang HM et al. Association between total serum calcium and the
A986S polymorphism of the calcium-sensing receptor gene. Mol Genet Metab 2001; 72: 168-174. - 6 Akcay A, Ozdemir FN, Sezer S et al. Association of vitamin D receptor gene polymorphisms with hypercalcemia in peritoneal dialysis patients. Perit Dial Int 2005; 25: S52– S55. - 7 Ryo M, Shigeru Y, Hyo ES et al. The parathyroid function in patients with hyperthyroidism. Nippon Naibunpi Gakkai Zasshi 1984; 60: 892–898. - 8 Maxon HR, Apple DJ, Goldsmith RE. Hypercalcemia in thyrotoxicosis. Surg Gynecol Obstet 1987; 147: 694-696. - 9 Inaba M, Hamada N, Itoh K et al. A case report on disequilibrium hypercalcemia in hyperthyroidism. Comparison of calcium metabolism with other patients with hyperthyroidism. Endocrinol Jpn 1982; 29: 389-393. - 10 Akihan Z, Singh A. Hyperthyroidism manifested as hypercalcemia. *South Med J* 1996; 89: 997–998. 11 Reular JB, Wise RW, Thorpe JB. Anemia, renal insufficiency, and hypercalcemia in a man with hyperthyroidism. South Med J 1985; 78: 59-63. - 12 Bassett JH, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab 2003; 14: 356-364. - 13 Chan GK, Duque G. Age-related bone loss: old bone, new facts. Gerontology 2002; 48: 62-71. - 14 Hedman I, Tisell LE. Life-threatening hypercalcemia in a case of thyrotoxicosis: clinical features and management. A case report. *Acta Chir Scand* 1985; 151: 487–489. 15 Diamond T, Julie V, Richard S, Ptriek B. Thyrotoxic bone - disease in women: a potentially reversible disorder. Ann Intern Med 1994; 120: 8-11. - 16 Shahshahani MN, Palmieri GM. Oral propranolol in hypercalcemia associated with apathetic thyrotoxicosis. - Am J Med Sci 1978; 275: 199–202. 17 Mallette LE, Rubenfeld S, Silverman V. A controlled study of the effects of thyrotoxicosis and propranolol treatment on mineral metabolism and parathyroid hormon immunoreactivity. *Metabolism* 1985; 34: 999–1006. 〈原 蓍〉 超高齢者におけるクレアチニンクリアランス推定式の比較検討 平山 俊一¹⁾ 菊池 令子²⁾ 井上慎一郎²⁾ 塚原 大輔²⁾ 末光 有美²⁾ 小林 義雄²⁾ 杉山 陽一²⁾ 長谷川 浩²⁾ 神崎 恒一²⁾ 井上 剛輔³⁾ 鳥羽 研二²⁾ 要 約 目的:高齢患者は外来では24時間クレアチニンクリアランスの測定が困難であり、服用薬物数も多いため、クレアチニンクリアランス実測値をできるだけ正確に反映する推定式を利用することは臨床上重要である.対象:各種基礎疾患を有する85歳以上の超高齢者67名を含む入院高齢者143名(男性73名女性70名 平均年齢82.9 ± 8.6歳).方法:4種のクレアチニンクリアランス推定式から得られた推定値と24時間クレアチニンクリアランスの実測値との相関を比較検討した.結果と結論:全体として今回の検討では超高齢者においてもCockcroft and Gaultの式による推定値が最もよい相関を示した.85歳以上の女性超高齢者において実測値と推定式の相関が低く、推定式の改定についても今後の検討課題と思われる. Key words: 超高齢者, クレアチニンクリアランス, 推定式, Cockcroft and Gault の式, 安田の式 (日老医誌 2007;44:90-94) ## 緒 言 高齢社会の到来により、外来入院を問わず、高齢患者 が増加の一途をたどっている. 厚生労働省の推計による と, 2004 年度において 85 歳以上の超高齢者は 273.4 万 人と報告されている¹⁾. 高齢者に腎排泄型薬剤を投与す る際、適正な用量を設定するため腎機能を正確に評価す る必要がある. 腎機能を表す指標として. 糸球体濾過量 には一般的に内因性クレアチニンクリアランス(以下 Ccr と略す) が使われている. クリアランス試験には 24 時間蓄尿が必要であるが、時間を要することや被験者に 排尿、蓄尿という負担があり繁雑であることから外来で 測定することは容易ではない. このため血清クレアチニ ン値(以下 Scr と略す)から Ccr を推定するいくつか の数式が提案されている. しかしこれらの数式は実際に 投薬の必要な諸疾患を有する高齢者に当てはめる際、筋 肉量の減少などのため Scr による Ccr 推定値と実測し た Ccr がかけ離れた値を取ることがある. 外来の超高 齢患者においても適切な薬物療法を行うためには腎機能 を正確に評価する必要がある.このため種々の推定式に よる相関を調べどの推定式が最もよく超高齢者に適合す るか検討を行った. ## 対象及び方法 杏林大学病院高齢医学科に 2004年9月から 2006年1 月の間に入院した60歳以上の症例のうち、短期入院や、 蓄尿不可能症例を除外し, 尿道留置カテーテルを使用し ている患者や蓄尿が可能と判断された症例全例を対象に した.疾患や治療による除外は設けず.脳血管障害.感 染症,経口摂取不良,利尿剤,補液などの様々な基礎疾 患、治療を有する高齢者(平均年齢82.9±8.6歳(男性 82.0±8.8歳 女性83.8±8.3歳))例を対象に行った. 男 女比及び84歳以下と85歳以上の症例数に偏りはなかっ た (表 1). 対象高齢者全体の平均 Scr は 1.31 ± 0.87mg/ d1であった. 身体測定, 血液検査, 尿検査などを測定 し 24 時間蓄尿による Ccr を計算した. なお. Ccr は未 補正のものを使用した. 安田の式²⁾, Cockcroft and Gault の式³⁾(以下 C&G 式と略す), 折田の式⁴⁾. Walser の式⁵⁾ の推定値を算出し、それぞれ推定値と実測値の相関を回 帰分析,相関係数の差の検定により解析し比較検討した. さらに、層別解析として、84歳までの前期及び後期高 齢者群76名と、85歳以上の超高齢者67名について男 女別に層別解析を行った. また実測値と推定式からの値との一致を箱ヒゲ図で求 ¹⁾ S. Hirayama:東京薬科大学 ²⁾ R. Kikuchi, S. Inoue, D. Tsukahara, Y. Suemitsu, Y. Kobayashi, Y. Sugiyama, H. Hasegawa, K. Kouzaki, K. Toba: 杏林大学病院高齢医学科 ³⁾ G. Inoue: 都東村山老人ホーム診療所内科 受付日: 2006. 4.18, 採用日: 2006. 7.12 表 1 対象年齢分布 | Age(歳) | n | | | |--------|----|----|-----| | | 男性 | 女性 | 全体 | | ~ 84 | 42 | 34 | 76 | | 85 ~ | 31 | 36 | 67 | | 全体 | 73 | 70 | 143 | め, 値が外れ値となった症例については, 患者の疾患や 治療の背景, 測定時の問題点について調査した. 本研究は、杏林大学高齢医学の入院に際して、CCr 測定値を臨床研究に使用することを口頭で説明し同意を 得て試行した. ## (1) 安田の式 男性: $Ccr(ml/min) = (176 - 年齢) \times 体重(kg) ÷ (100 \times Scr(mg/100 ml))$ 女性: Ccr (m l/min) = (158 - 年齢) × 体重 (kg) ÷ (100 × Scr (mg/100 m l)) #### (2) Cockcroft and Gault の式 男性: Ccr(ml/min) = (140-年齢) × 体重(kg) ÷ (72×Scr(mg/100 m l)) 女性: Ccr (m l/min) = {(140-年齢) × 体重(kg) ÷ (72×Scr (mg/100 m l))} × 0.85 ### (3) 折田の式 男性: Ccr (m l/min) = (-0.065×年齢-0.493× BMI+33) ÷ (体重 (kg) × Scr (mg/100 m l))×14.4 女性: Ccr (m l/min) = (-0.052×年齢-0.202× BMI+21) ÷ (体重 (kg) × Scr (mg/100 m l))×14.4 ## (4) Walser の式 男性: $Ccr (m l/min) = 7.57 \div Scr (mM) - 0.103 \times$ 年齢 $+ 0.096 \times$ 体重 (kg) - 6.66 女性: $Ccr (m l/min) = 6.06 \div Scr (mM) - 0.08 \times$ 年齢 + 0.08 × 体重 (kg) - 4.81 ## 成 績 85 歳未満の前期及び後期高齢者群において、安田、 C&G、折田、Walser の推定値と 24 時間蓄尿による実 測値の相関係数 (r) は安田 r=0.761、C&G r=0.761、折田 r=0.693、Walser r=0.553 と安田の式、C&G 式で 強い傾向があった。超高齢者群において、各々の推定式による推定値と実測値の相関係数は安田 r=0.718、C&G r=0.739、折田 r=0.697、Walser r=0.645 と、安田の式、C&G 式で相関が強い傾向があった(図 1、図 2)、超高齢者を男女に分け両群で各々の推定値と実測値の相関係数 r を比較したところ、男性で安田 r=0.840、r=0.841、折田 r=0.791、Walser r=0.736、女性で安田 r=0.678, C&G r=0.690, 折田 r=0.667, Walser r=0.582 となり、男性に強い相関傾向があり、女性の相関係数は低かった(図 3、図 4). また、超高齢者群において回帰係数を比較したところ、男性で安田 =0.796, C&G =0.988, 折田 =0.577, Walser =0.375 女性で安田 =1.088, C&G =1.262, 折田 =0.776, Walser =0.395 となった. 図5は超高齢者を男女で比較したものである. 縦軸は 実測値と推定値のずれの割合を示したもの((実測値-推 定値)×100/実測値)である. 折田, Walserの式では, 男女共に推定値が高く評価される傾向がある. 85歳以上の超高齢者での箱ひげ図における外れ値を検討し、実測値が高値となる6例の患者背景を調べた、輸液4例、利尿剤やCa拮抗薬など腎血流量を増加させる薬剤4例、腎不全2例、Scr高値2例、心不全2例、CRP高値2例であった。また、推定値が高値となる7例の患者背景を調べた、輸液5例、蓄尿不全または蓄尿少量4例、腎不全4例、癌3例、コントロール不良の糖尿病1例、胸水貯留,腹水貯留1例、肥満1例であった. ## 考 察 服用薬物数が多いほど薬剤有害作用の発現率は増加す る傾向にある. また, 加齢によってもその傾向は増加す る。 その原因には加齢に伴う薬物動態学的・薬力学的 な変化,多剤併用による相互作用,日常生活活動度 (ADL) ・認知機能の低下などが考えられるが、特に重 大な原因として、腎機能の低下による相対的過量投与が 挙げられる. Scr による腎機能の推定にはいくつか方法 があるが高齢者、特に超高齢者になると筋肉量の低下に より Scr が腎機能の低下と不相応な低値を示すことがし ばしば見られる. Ccr 測定上の更なる問題点として正確 な蓄尿の可否がある. 加齢に伴う残尿, 失禁の増加や患 者自身による蓄尿もれなどにより、正確な24時間蓄尿 が困難なことがある. 1日尿量が少ないとき, Ccr 実測 値と推定値のばらつきが大きいとの報告もある. 今回は 尿道留置カテーテルを使用している患者や蓄尿が可能と 判断された患者の症例を対象とし、努めて正確な採尿を 試みた. しかしながら, 本来行うべきクリアランス法の 実施には正確な蓄尿と安静を要し、判定に時間がかかる ため実際の外来診療では実施困難なことが多い. 従って Scr より Ccr を推定する種々の方法が提案されてきた. 今回検討した安田の式, Cockcroft and Gault の式, 折 田の式, Walser の式は代表的な推定式であり Scr 値, 性別, 年齢, 体重より Ccr を推定できる. C&G 式は欧 米で最も広く用いられており欧米人によい相関を示して 図 1 安田の式 84歳以下と85歳以上の比較 ○ 85歳以上; Y = 4.57 + 0.860X (r = 0.718) ● 84歳以下; Y = 1.85 + 1.007X (r = 0.761) 図2 C&G式 84歳以下と85歳以上の比較 ○85歳以上; Y = 3.20 + 1.078X (r = 0.739) ●84歳以下; Y = 3.33 + 1.082X (r = 0.761) いる. 今回の検討でも超高齢者における相関が 0.739 と最もよい相関を示した. この原因として日本人の体格が欧米化してきたことや C&G 式作成時の対象年齢が 18~92 歳と超高齢者も含まれていること, 作成時の対象症例数が多いことが考えられる. C&G の式に対して他の3式はいずれもその後に発表されたもので,安田の式は1.4mg/d1以下の血清クレアチニン値を示す高齢者に限定して式を求めたもので,腎不全患者は含めずに高齢者の腎機能を推定しようとしたものである². 一方, Walserの式は血清クレアチニン値を 2.0mg/d1以上におき,腎不全患者のみを対象としている⁵. 堀尾らの式は腎疾患患者を対象として,推定式にBMIの項を加えて肥満の特徴加味して作成された⁶. したがって,今回の対象の 図3 安田の式 85歳以上の性差 ○男性;回帰式Y=4.09+0.796X(r=0.840) ●女性;回帰式Y=0.21+1.088X(r=0.678) 図4 C&G式 85歳以上の性差 ○男性;回帰式 Y = 4.07 + 0.988X (r = 0.841) ●女性;回帰式 Y = - 0.09 + 1.262X (r = 0.690) ように腎機能が広範囲に亘る場合, C-Gの式以外では, いずれもずれが出てしまう結果となったのは, 式の作成経緯による要素も大きいと考えられる. 今回, 臨床の現場では安定した時期より外来や急性期での腎機能評価を必要とするため,疾患による除外は設けず,脳血管障害,感染症,経口摂取不良,利尿剤,補液などの様々な基礎疾患,治療を有する高齢者を対象に行った.推定式と実測値の乖離に関して,実測値が大きい場合は,輸液や降圧剤など腎血流量を増加させる治療が関与していた場合が多かった.この場合は臨床的には大きな実害は考えられない.一方,実測値が推定式より小さい場合は,相対的な薬物の過量投与など安全管理上 図5 超高齢者男女別において各推定式による推定値と 実測値とのずれを箱ひげ図で%表示したもの 縦軸(実測値-推定値)×100/実測値 ●男性 ○女性 も問題となる. 今回の検討では、腎不全、癌、乏尿、コントロール不良の糖尿病、胸水、腹水など複数の病態が重なる重症例で、有効循環血液量も日々変動しうる症例であった. このような症例に救急外来で遭遇した場合、血清クレアチニンから推定される Ccr の精度が低い可能性があることを銘記すべきであろう. Scr については6.9 までの高値も含まれているが、高値を除いた検討を行っても相関に大きな変化は見られなかった. 全式において84歳までの前期及び後期高齢者群と85歳以上の超高齢者群に分け、相関を比較したところ、超高齢者群での相関が低い傾向にあり、超高齢者群での合併疾患の増加の影響が示唆される. これらを考慮しても、4種の推定式を比べると相関係数が最も高い C&G 式が本邦超高齢者における Ccr 推定式として最適と考えられた. 超高齢者群を男女にわけ C&G の相関係数を比較したところ, 男性 0.841 女性 0.690 と男性の相関が高い傾向にあった。また, 回帰係数を比較したところ男性では C&G 式, 女性では安田の式が1に近い値を示した。85歳以上の男性に安田の式を用いると過大評価する可能性があり、85歳以上の女性に C&G 式を用いると過小評価する可能性がある。 一方,前期及び後期高齢者群の回帰係数を比較したところ男女ともに安田の式が1に近い値を示した。超高齢者の筋肉量について本邦での正確なデータは少ないが、中島らによれば70歳以降男性では上腕筋周囲、上腕筋面積が急速に減少するが女性ではほとんど変わらないっことから女性の筋肉減少が時代とともに変化し、推定式の再構築が迫られている可能性があり、今後の検討課題 と思われた. 本研究の限界として、膀胱留置カテーテルの適応がない蓄尿不可能症例を除外していることがあげられる. 具体的には尿失禁症例や、認知症などが含まれるが、これらの症例に対してカテーテル留置を行ってクレアチニンクリアランスを測定し、高齢者全体に対するの推定式の良否を判断する研究は今後の課題であろう. ## 結 謡 超高齢者において、正常値から腎不全を含む範囲の腎機能の判定に、24 時間クレアチニンクリアランスの実測値と、すでに発表されている4つの式から求めた推定値とを比較して、超高齢者での推定式の有用性を検討した。4つの推定式のうち、C-G の式はこの研究の目的にもっとも合致していた。一方、安田の式(高齢者、Scr: 1.4mg/d l 以下)、W の式(Scr 2.0mg/d l 以上)はいずれもその適用の目的の範囲で、また堀尾の式は腎疾患群内で有用と思われた。 全体として、臨床的に使用するうえで C&G 式が最も優れているが、超高齢者への適用に当たっては、10%程度、推定値が低く求まるので、補正が望ましい。 今後超高齢者については、体格、サルコペニアの時代 的変遷を考慮して改訂していく必要がある. 謝辞:本研究の一部は、長寿科学総合研究「縦断研究を基礎にした介護予防ガイドライン策定研究(H16 痴呆骨折 013;班長鳥羽研二)、長寿医療研究事業「高齢者の安全な薬物療法ガイドライン策定研究(班長鳥羽研二)によった。 ## 文 献 - 1) 厚生労働省ホームページ 平成17年度厚生統計要覧 総人口・日本人人口. 性×年齢階級別. - 2) 安田兵衛:腎機能の年齢的変化に関する研究. 医学と生物学 1980; 101: 83-86. - 3) Cockcroft DW, Gault MH: Prediction of Creatinine Clearance from Serum Creatinine. Nephron 1976; 16: 31–41. - Masaru Horio, Yoshimasa Orita, Shiro Manabe, Mitsuhiko Sakata, Megumu Fukunaga: Formula and Nomogram for Prediction Creatinine Clearance from Serum Creatinine Concentration. Clinical and Experimental Nephrology (1324–1751) 1997; 110– 114 - 5) Walser M, Drew HH, Guldan JL: Prediction of glomerular filtration rate from serum creatinine concentration in advanced chronic renal failure. Kidney International 1993; 44: 1145–1148. - 6) 鳥羽研二,秋下雅弘,水野有三,江頭正人,金 承範, 阿古潤哉ほか:薬剤起因性疾患,日老医誌 1999;36: 181-185. - 7) 中島久美子, 秦 葭哉:身体組成としての筋肉量の アセスメント. 日老医誌 2004;42:881-886. ## Creatinine clearance estimation in the extremely elderly subjects Shunichi Hirayama¹⁾, Reiko Kikuchi²⁾, Shinichiro Inoue²⁾, Daisuke Tsukahara²⁾, Yumi Suemitsu²⁾, Yoshio Kobayashi²⁾, Yoichi Sugiyama²⁾, Hiroshi Hasegawa²⁾, Koichi Kouzaki²⁾, Gosuke Inoue³⁾ and Kenji Toba²⁾ #### Abstract Background: It has been reported that elderly outpatients take at least 6 different kinds of medication. Purpose: To know which formula will best predict creatinine clearance, because
24-hour urine collection is difficult for elderly outpatients. Patients and Methods: We compared four types of formulae (Cockcroft & Gault, Yasuda, Orita, Walser) to estimate creatinine clearance using serum creatinine of 143 elderly inpatients (73 men, 70 women, mean age 82.9 ± 8.6 years old) including 67 extremely elderly people with various underlying diseases. Result: The formula of Cockcroft and Gault showed the best correlation with creatinine clearance in the extremely elderly subjects (r = 0.74) as well as in people under 85 years (r = 0.76). However, the estimated values of the extremely elderly women were lower than actual creatinine clearance. Conclusion: The formula of Cockcroft and Gault is the best predictive equation of creatinine clearance, except in the extremely elderly women. Key words: Extremely elderly, Creatinine clearance, Predicting formula, Cockcroft & Gault's formula, Yasuda's formula (Nippon Ronen Igakkai Zasshi 2007; 44: 90–94) ¹⁾ Tokyo University of Pharmacy and Life Science ²⁾ Department of Geriatric Medicine, Kyorin University, School of Medicine ³⁾ Department of Internal Medicine, Higashimurayama Nursing Home ## ORIGINAL ARTICLE # Simple screening test for risk of falls in the elderly Jiro Okochi,¹ Kenji Toba,² Tai Takahashi,³ Kozo Matsubayashi,⁴ Masanori Nishinaga,⁵ Ryutaro Takahashi⁶ and Takashi Ohrui⁷ ¹Hara-Doi Hospital, Japan Department of Clinical Research, Fukuoka, ²Department of Geriatric Medicine, Kyorin University School of Medicine, Mitaka, ³Department of Medicine and Welfare, International University of Medicine and Welfare, Otawara, ⁴Center of South-east Asia, Kyoto University, Kyoto, ⁵Department of Medicine and Geriatrics, Kochi Medical School, Kochi, ⁶Tokyo Metropolitan Institute of Gerontology, Tokyo, and ⁷Department of Geriatric Medicine, Tohoku University, Sendai, Japan **Background:** The aim of this study is to construct a simple screening test for the risk of falls in community-dwelling elder persons. Methods: A total of 1378 community-dwelling people aged 65 years and older in five different communities in Japan were asked to answer a self rated questionnaire including 22 items covering physical, cognitive, emotional and social aspects of functioning and environmental factors. At a six-month follow-up, the outcome of fall occurrence and the number of falls was ascertained by social workers, health visitors or nurses. **Results:** Five out of 22 items were selected using a logistic regression model. Using this five-item version, a screening test was constructed, and at the best cut-off point, the sensitivity and specificity were 68% and 70%, respectively. The validity of this scale was tested on persons with cognitive dysfunction. **Conclusion:** The simplicity and the predictive validity of the screening test support the use of this test in health check ups or general outpatient facilities. Keywords: accidental fall, aged, mass screening, reliability and validity, risk factor. ## Introduction Falls are rated as the third leading cause of a bed-ridden state and are among the principal causes of morbidity in the elderly in Japan. Previous studies evaluating the risk factors for falls have used history of falls, results of physical performance tests, activity of daily living (ADL)^{2,3} and balance and gait as predictors. Accepted for publication 21 June 2006. Correspondence: Dr Jiro Okochi, Hara-Doi Hospital, 6-4-8 Aoba, Higashi-ku, Fukuoka 813-8588, Japan. Email: pxu14045@nifty.com Disclosure of commercial interest: This study was financially supported by a grant from the Ministry of Health, Labour and Welfare in Japan (Medical Frontier Strategy Research-H13-Chihou/Kossetu-019). The authors confirm that there is no commercial interest of the authors in the findings presented in this study. Early identification of falls risk is likely to result in earlier implementation of interventions and to minimize development of unwanted sequels such as reduced confidence and activity levels.⁵ In Japan, the Ministry of Health, Labour and Welfare has put roughly 6000 local home care support centers around Japan. The task of these centers, according to Long-Term Care Insurance for the elderly, includes screening of the elders at risk of developing disabilities, including risk for falls. In this context, it is critical to develop a simple screening test to adequately evaluate the risk of falls for each elderly person. The aim of this study is to evaluate predictive validity of a simple questionnaire composed of 22 items, with the intention of constructing a shortened version that would be simple, but effective to assess the future risk of falls during periodic health check-up or outpatient visits. All elderly persons who participated in this research gave written informed consent. ## Methods The initial 22-item questionnaire was constructed by the Working Group of Fall Prevention commissioned by the Japanese Ministry of Health, Labour and Welfare. Known risk factors are transformed into comprehensible text for the elderly, as shown in Table 1. These items were selected by studying both international and Japanese research articles on fall risk factors.⁶ The interclass coefficient (ICC) of the one month test-retest reproducibility study of the 22-item questionnaire score was satisfactory (ICC 0.74, 95% CI 0.46–0.89, n = 21). Individuals chosen for this study lived in five different urban and rural communities and they were over 65 years old. In cases where subjects had cognitive impairment or difficulty answering, a family member acted as a proxy to help answer the questionnaire. The outcome of fall occurrence and the number of falls were confirmed by social workers, health visitors or nurses six months after baseline measurement. A fall was defined as an unintentional change in position resulting in coming to rest on the ground or other lower positions.³ Statistical analysis was performed on subjects who completed the questionnaire both at baseline and at six month follow-up. One half of the subjects were randomly selected, and the relationship between falls and potential predictors was examined by χ^2 test for each predictor separately (developing samples). Items that achieved statistical significance of P < 0.05 were incorporated in the logistic regression analysis to identify predictors. Then, the questionnaire items considered to be associated with falls were selected using any falls as an outcome variable, by forward stepwise selection by the logistic regression model (P < 0.05). The predictive power of the set of selected items, adjusted by the odds ratio, was determined using the area under the Receiver-Operating Characteristic (ROC) curve (AUC) on the other half of the subjects as the validating sample. Finally, the sensitivity and specificity of the model were calculated to obtain the cut-off point. To test the validity of the scale on persons with cognitive dysfunction, different item functioning (DIF) analysis was performed on subgroups with and without cognitive dysfunction using the Rasch measurement **Table 1** The initial 22-item questionnaire constructed by the Working Group of Fall Prevention and commissioned by the Japanese Ministry of Health, Labour and Welfare | Questionnaire items | Answer (%) [†] | Incidence
of fall (%) [‡] | P | |--|-------------------------|---------------------------------------|------------| | Q1. History of fall within one year = yes | 107 (16%) | 54 (50%) | P < 0.0001 | | Q2. History of stumbling within one year = yes | 288 (42%) | 75 (42%) | P < 0.0001 | | Q3. Can you climb stairs without help? = no | 261 (38%) | 65 (25%) | P = 0.0001 | | Q4. Do you feel your walking speed declined recently? = yes | 353 (51%) | 76 (22%) | P = 0.0025 | | Q5. Can you cross the road within the green signal interval? = no | 74 (11%) | 25 (11%) | P = 0.0019 | | Q6. Can you walk 1 km continuously? = no | 172 (25%) | 46 (27%) | P = 0.0011 | | Q7. Can you stand on one foot for about five seconds? = no | 180 (26%) | 55 (31%) | P < 0.0001 | | Q8. Do you use cane when you walk? = yes | 123 (18%) | 43 (35%) | P < 0.0001 | | Q9. Can you squeeze the towel tightly? = no | 80 (12%) | 26 (33%) | P = 0.0026 | | Q10. Do you feel dizzy? = yes | 151 (22%) | 39 (26%) | P = 0.0076 | | Q11. Is your back bended? = yes | 213 (31%) | 62 (29%) | P < 0.0001 | | Q12. Do you have knee pain? = yes | 264 (38%) | 64 (24%) | P = 0.0005 | | Q13. Do you have a vision problem? = yes | 292 (42%) | 56 (19%) | P = 0.2794 | | Q14. Do you have a hearing problem? = yes | 227 (33%) | 48 (21%) | P = 0.0781 | | Q15. Do you think you are forgetful? = yes | 332 (48%) | 73 (22%) | P = 0.0020 | | Q16. Do you feel anxious to fall when you walk? = yes | 226 (33%) | 60 (27%) | P = 0.0001 | | Q17. Do you take more than five kinds of prescribed medicines? = yes | 161 (23%) | 39 (24%) | P = 0.0231 | | Q18. Do you feel dark walking within your home? = yes | 54 (8%) | 18 (33%) | P = 0.0124 | | Q19. Are there any obstacles within the house? = yes | 87 (13%) | 25 (29%) | P = 0.0181 | | Q20. Is there any level difference within your home? = yes | 426 (62%) | 79 (19%) | P = 0.1799 | | Q21. Do you have to use stairs in daily living? = yes | 129 (19%) | 23 (18%) | P = 0.7951 | | Q22. Do you walk steep slope around the house? = yes | 202 (29%) | 28 (14%) | P = 0.2517 | [†]The answers as indicated in the question raw. [‡]The incidence of fall among the relevant answer. technique.⁷⁻⁹ Three hundred persons were randomly selected to obtain adequate sample size for this analysis.¹⁰ In addition, results of the ROC curve were stratified by the presence and absence of memory problem using Q15 of the questionnaire to test the validity of the short version on those with cognitive function problems. ## Results Of 1734 elderly, 1378 (79%) completed the questionnaire both at the baseline study and its six month follow-up. The mean age of the
subjects was 75.8 (SD 6.8) years. The number of elders by five research centers was, 1050, 104, 82, 81 and 61, respectively. At least one fall had occurred in 208 elderly (15.1%) during the six month follow-up period. Of these, 103 (50%) suffered from multiple falls, ranging in number from 2 to 20. Of eligible samples, 1026 elders provided information regarding mobility, cognitive status and ADL regarding eating and toileting. In mobility, no disability was seen in 69.8% of them, while mild difficulty in climbing stairs was present in 18.1%, and moderate or severe difficulty required cane or wheel chair for moving around outside in 12.1%. In cognitive status, no memory disturbance was seen in 62.8%, while mild and severe memory dysfunctions were in 26.0% and 8.0%, respectively. Regarding eating ADL, 93.4% showed no problem, while 4.6% complained they had a mild problem, and 2.0% required assistance. Toileting related ADL was intact in 89.0% of the elders while mild difficulty and dependent status on toileting were seen in 6.0% and 5.0%, respectively. Although 8.3% of them were living alone, 23.0% were with their spouse, and the rest were with their children. The samples were then divided into the developing samples (n = 689) and validating samples (n = 689). There was no statistical significance between these two samples, in distribution of living areas, gender and response pattern to the questionnaire items examined by χ^2 test (data not shown). The average age of the validating samples (75.8) was not significantly different from developing samples (75.7) by t-test. Table 1 shows the predictors in relation to falls in developing samples. The incidence of at least a single fall and multiple falls were 108 (15.7%) and 55 (8.0%), respectively. Gender did not achieve the statistical significance to single fall (P = 0.05) and multiple falls (P = 0.15), respectively. Fallers were elder than nonfallers (P < 0.01) with average age of 79.1 versus 75.8, respectively. Questionnaire items, except for Q13, Q14, Q20, Q21 and Q22, achieved statistical significance and were entered into the regression model. Table 2 shows the item selected by the stepwise logistic regression model. Using the odds ratio at integer level as the weight of these five items, we constructed a screening test whose score ranged from 0 to 14, and the AUC was 74% (95% CI 69–79%) in the validating samples, as shown in Figure 1. This was at the same level as the AUC of initial 22 items score (72%:95% CI 67–79%) The maximum sum of sensitivity and specificity reached <6 (sensitivity 0.68, specificity 0.70) and <7 (sensitivity 0.67, specificity 0.71). If a cut-off score of <6 was applied, subjects identified as positive had a 27.9% rate of falls (positive predictive value) compared with a Figure 1 The Receiver-Operating Characteristic (ROC) of the five-item screening test to detect elderly persons at risk of falling. Table 2 Questionnaire items selected by the stepwise logistic regression model | Questionnaire item selected by step wise logistic regression model | Odds ratio | 95%CI | P | |--|------------|-----------|------| | Q1. History of fall within one year = yes | 4.5 | (2.8–7.2) | 0.00 | | Q4. Do you feel your walking speed declined recently? = yes | 1.9 | (1.0-3.6) | 0.04 | | Q8. Do you use cane when you walk? = yes | 1.8 | (1.1-2.8) | 0.02 | | Q11. Is your back bended? = yes | 1.8 | (1.1-2.8) | 0.02 | | Q17. Do you take more than five kinds of prescribed medicines? = yes | 1.7 | (1.0-2.7) | 0.03 |