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Selective loss of Purkinje cells in a patient with anti-glutamic
acid decarboxylase antibody-associated cerebellar ataxia
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Anti-glutamic acid decarboxylase antibody is associated with
the development of progressive cerebellar ataxia and slowly
progressive insulin-dependent diabetes mellitus. Previously, the
neurophysiological characteristics of IgG in the cerebrospinal
fluid of a patient with anti-glutamic acid decarboxylase
anfibody-associated progressive cerebellar ataxia and slowly
progressive insulin-dependent diabetes mellitus were reported.
Using o voltage-gated whole-cell recording technique, it was
observed that the IgG in the cerebrospinal fiuid of the patient
selectively suppressed the inhibitory postsynaptic currents in the
Purkinje cells. The patient died from aspiration pneumonia.
Postmortem examination showed almost complete depletion of
the Purkinje cells with Bergmann dliosis. Therefore, the main
cause of cerebellar ataxia observed in this case may be
attributed to the near-complete depletion of the Purkinje cells. In
this paper, the pathomechanisms underlying Purkinje cell
damage are discussed.

that converts glutamic acid to y-aminobutyric acid, a

major inhibitory neurotransmitter. A disease group that
is characterised by the presence of a circulating autoantibody
against GAD (anti-GAD antibody) includes the following:
slowly progressive insulin-dependent diabetes mellitus
(SPIDDM), stiff-person syndrome (SPS) and progressive
cerebellar ataxia (PCA).* Anti-GAD antibody is one of the
serological diagnostic markers of these diseases. Honnorat et al*
reported a significant link between the anti-GAD antibody and
cerebellar ataxia after screening 9000 serum samples. In
addition, autoimmune mechanisms against GAD are presumed
to be the causative agents of these diseases.> Here, we report the
autopsy findings of PCA with anti-GAD antibody and discuss
the pathomechanism of this rare disease.

Glutamic acid decarboxylase (GAD) is a catalytic enzyme

CASE REPORT
We previously reported part of the clinical course of a patient
with PCA and SPIDDM, and showed the neurophysiological
characteristics of IgG in the cerebrospinal fluid.® In September
1996, a 66-year-old woman developed cerebellar ataxia of the
limbs and trunk. In April 1997, she had sudden onset of
hyperglycaemia, and was subsequently diagnosed with anti-
GAD-associated SPIDDM. In May 1997, she was bedridden due
to severe cerebellar ataxia; other symptoms such as extrapyr-
amidal or pyramidal tracts were not observed. The patient was
diagnosed with anti-GAD antibody-associated PCA, and
received four rounds of plasma exchange and immunosuppres-
sive treatment. After treatment, the patient showed slight
improvement in cerebellar ataxia.

In December 2000, the patient experienced painful spasms
and rigidity in the trunk that mimicked symptoms of SPS.
Diazepam and baclofen were effective in ameliorating the
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severe pain associated with the spasms and rigidity. The painful
spasms subsided spontaneously within 2 months. The patient
died of aspiration pneumonia in October 2001.

During the 5-year clinical course, repeated neuroradiological
examinations showed no significant cerebellar atrophy. Using a
voltage-gated whole-cell recording technique, we observed that
the IgG in the cerebrospinal fluid of the patient, selectivcly
suppressed the inhibitory postsynaptic currents in the Purkinje
cells.*”?

Postmoriem examination

Postmortem examination was performed 22 h after death. The
brain weighed 1150 g. The brain and the entire spinal cord were
fixed in formalin and prepared for a morphological examina-
tion. Macroscopically, there was no atrophy of the cerebrum,
brain stem, cerebellum (fig 1A) and spinal cord. The
representative areas were examined by routine and immuno-
histochemical staining, as reported previously.® In short, 6-um
thick serial sections were stained with haematoxylin and eosin,
Kliiver-Barrera and Bodian silver staining. For the immuno-
histochemical study, 6-um dewaxed and microwave-irradiated
sections were stained using a Ventana 20NX automatic stainer
(Ventana, Tucson, Arizona, USA). Microscopical examination
showed almost complete depletion of the Purkinje cells and
diffuse proliferation of the Bergmann glia (fig 1B). The number
of remaining Purkinje cells was no more than one per cerebellar
folum. Bodian staining showed multiple empty baskets
(fig 1C). There was no specific inflammatory response, and
the other structures of the central nervous system, including
the cerebral cortex, white matter, basal ganglia, brain stem and
spinal cord, did not show marked pathological changes. The
pancreas showed a definite and marked decrease in the islets in
the tail (fig 1D), and lymphocytic infiltration in the islets
situated in the pancreatic body.

DISCUSSION

The selective loss of both Purkinje cells and pancreatic islets
was a characteristic finding in this case. The selective
degeneration of the Purkinje cells partially mimics the
pathological changes observed in paraneoplastic cerebellar
ataxia associated with anti-mGluRl or anti-Yo antibody;
however, the exclusive pathological changes related to the
Purkinje cells constitute a unique feature of this case.” '* On the
other hand, the lymphocytic infiltration in the pancreas and the
selective decrease in the pancreatic islets corresponded with the
pathological findings of autoimmune insulin-dependent dia-
betes mellitus." Therefore, the main causes of cerebellar ataxia
and diabetes mellitus seem to be related to the depletion of the
Purkinje cells and the decrease in the pancreatic islets,

Abbreviations: GAD, glutamic acid decarboxylase; PCA, progressive
cerebellar ataxia; SPIDDM, slowly progressive insulin-dependent diabetes
mellitus; SPS, stiff-person syndrome
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Loss of Purkinje cells and anti-GAD antibody

respectively. To our knowledge, this is the first autopsy report of
PCA associated with anti-GAD antibody.

Immunohistochemical staining using anti-GAD and anti-
calbindin antibodies failed to react with the patient’s specimen;
this indicated a complete loss of antigenicity in the patient’s
specimen, due to postmortem delay and excessive fixation.
Therefore, it became difficult to analyse the morphological
changes in the other GAD-containing neurones, such as the
cerebellar basket cells and the spinal Renshaw cells. However,
the existence of multiple empty baskets suggested that, in
contrast to the Purkinje cells that were lost, the basket cells
were relatively preserved.”

We inferred two possible pathomechanisms to explain the
Purkinje cell damage: indirect and direct immune-mediated
mechanisms. The indirect mechanism might be associated with
excitotoxicity of the Purkinje cells by the selective suppression
of inhibitory postsynaptic currents and the attenuation of
inhibition of excitatory postsynaptic currents by the anti-GAD
antibody.*” " The direct mechanism might be mediated by
cytotoxic reactions against the Purkinje cells caused by the
invading leucocytes, as observed in the pancreatic islets.
However, it is presently unclear whether the mechanisms that
are more likely to have caused the Purkinje cell damage are
indirectly or directly immune-mediated.

The patient experienced painful muscle spasms that mimic
symptoms of SPS. The muscle spasms observed in SPS are
considered to occur as a result of the dysfunction of the
Renshaw cells that are y-aminobutyric acid inhibitory inter-
neurones in the spinal cord.'"* Various pathological changes are
observed in the spinal cord of patients with SPS; however,
lymphocytic cuffing and a decrease in the number of anterior
horn neurones are considered to be representative of SPS.” In
contrast, the pathological changes observed in our patient were
unremarkable; this suggests that the Renshaw cells were not
severely damaged. This may explain the transient nature of the
muscular spasms in this case.

Based on the quantitative analysis of the brain autopsy of a
patient with SPS and without cerebellar ataxia, Warich-Kirches
et al'* reported diminished cell density of the inhibitory
neurones in the cerebellar cortex. Combining their case results
with ours might show the phenotypic overlap of the anti-GAD
autoimmunity-associated neurological diseases.
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Figure 1 (A} Macroscopic appearance of
the brain stem and cerebellum. There are no
atrophic changes in the cerebellum and
brain stem. (B} Haematoxylin and eosin
staining of the cerebellar cortex. There is
severe depletion of Purkinje cells and
proliferation of Bergmann glia. (C) Bodian
staining of the cerebellar corfex. Multiple
emply ?)oskets can be observed. (D)
Pancreatic tail (haematoxylin and eosin
staining). There is a selective decrease in the
pancreatic islets.
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Multiple candidate gene analysis identifies
a-synuclein as a susceptibility gene for
sporadic Parkinson’s disease
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Parkinson’s disease (PD), one of the most common human neurodegenerative diseases, is characterized by
the loss of dopaminergic neurons in the substantia nigra of the midbrain. PD is a complex disorder with mul-
tiple genetic and environmental factors influencing disease risk. To identify susceptible genes for sporadic
PD, we performed case-control association studies of 268 single nucleotide polymorphisms (SNPs) in 121
candidate genes. In two independent case-control populations, we found that a SNP in a-synuclein
(SNCA), rs7684318, showed the strongest association with PD (P = 5.0 x 107'%). Linkage disequilibrium
(LD) analysis using 29 SNPs in a region around rs7684318 revealed that the entire SNCA gene lies within a
single LD block (D > 0.9) spanning ~120 kb. A tight LD group (r* > 0.85) of six SNPs, including rs7684318,
associated most strongly with PD (P = 2.0 x 107°-1.7 x 10~ '"). Haplotype association analysis did not
show lower P-values than any single SNP within this group. SNCA is a major component of Lewy bodies,
the pathological halimark of PD. Aggregation of SNCA is thought to play a crucial role in PD. SNCA
expression levels tended to be positively correlated with the number of the associated allele in autopsied
frontal cortices. These findings establish SNCA as a definite susceptibility gene for sporadic PD.

INTRODUCTION

Sporadic Parkinson’s disease (PD) (OMIM no. 168600) is the
second most common neurodegenerative disease following
Alzheimer’s disease. PD is late onset and progressive, affecting
1-2% of persons older than 65 years. Clinical features of PD
include resting tremor, bradykinesia, rigidity and postural
instability. The disease is pathologically characterized by the

loss of dopaminergic neurons in the substantia nigra and the pre-
sence of intracellular inclusions known as Lewy bodies. Various
medical managements are available for PD, including drugs
(l-dopa, dopamine agonists, anti-cholinergic drugs, etc.) and
surgery (thalamotomy, pallidotomy, deep brain stimulation,
etc.) (1). These treatments improve PD symptoms, but do little
to deter disease progression. Identifying risk factors for PD can
be helpful in delaying disease onset and slowing its progression.

*To whom correspondence should be addressed. Tel: +81 668793380; Fax: +81 668793389; Email: toda@clgene.med.osaka-u.ac.jp
TPresent address: Department of Clinical Bioinformatics, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan.

© The Author 2006. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
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PD is a complex common disease, caused by multiple
genetic and environmental factors (2). The contribution of
genetic factors to sporadic PD is indicated by several findings.
First, ~10% of patients with PD have a positive family history
(3). Secondly, a recent large-scale survey in Iceland showed
that the risk ratio for PD was increased in related individuals
(6.7 for siblings, 3.2 for offspring and 2.7 for nephews and
nieces of patients with PD) (4). Thirdly, a twin study using
['8F]dopa PET showed that the concordance rate for PD,
including subclinical cases, is approximately three times
higher in monozygotic twins (55%) than in dizygotic twins
(18%) (5).

Causal genes for Mendelian-inherited PD have been
reported, including a-synuclein [4q21, autosomal dominant
(AD)] (6), parkin [6q25.2—-27, autosomal recessive (AR)]
(7), UCH-L1 (4pl4, AD) (8), PINKI (1p36, AR) (9), DJ-I
(1p36, AR) (10), LRRK2/dardarin (12q12, AD) (11,12) and
NR4A2/Nurrl (2q22-23, AD) (13).

Many case—control association studies using single nucleo-
tide polymorphisms (SNPs) in candidate genes have been
reported, but few consistent findings have been obtained (2).
This is due, in part, to limited numbers of available samples,
target genes and/or genetic markers. Since 2001, genome-
wide, non-parametric linkage analysis of PD families has
revealed significant linkage in multiple chromosomal regions
(14-17), leading to the identification of fau (18) and FGF20
(19) as susceptibility genes.

To date, polymorphisms that influence PD as strongly
as APOE-e4 influences Alzheimer’s disease have not been
identified. Through extensive candidate gene association
studies, we have established a-synuclein (SNCA) as a definite
susceptibility gene for sporadic PD.

RESULTS
Screening of SNPs in candidate genes for PD

We selected candidate genes from the literature describing
genetic, pathological and biochemical findings in PD, as
well as genes that participate in the proposed mechanisms
for PD. Finally, we picked up 121 genes relevant to familial
PD, Lewy bodies, dopaminergic neurons, cytokines and
trophic factors, mitochondrial functions, oxidative stress,
proteasome function, autophagy, endoplasmic reticulum-
associated degradation (ERAD) and toxins. One to seven
SNPs per gene (268 SNPs total) were selected from the
dbSNP, JSNP and Celera Discovery System databases.

In the initial screen, we genotyped 190 patients and 190
controls (Supplementary Material, Table S1). To avoid false
negatives, we set the a-value at 0.05 in the first screen.
From 268 SNPs, 22 SNPs in 16 genes showed association
with PD (P < 0.05) in genotype frequency, allele frequency,
dominant model or recessive model. We genotyped the 22
qualifying SNPs in a replication panel of 692 patients and
748 controls and tested again for association. This inde-
pendent test revealed that SNP0O070 (rs7684318 C/T) was
prominently associated with PD (P = 5.0 x 10710 for allele
frequency) (Table 1). We corrected the a-value to 0.00019
after Bonferroni’s correction (tests for 268 SNPs). The
remaining 21 SNPs did not show P-values lower than

0.00019 (data not shown). SNPOQ70 is located in intron 4
of the a-synuclein (SNCA) gene on chromosome 4q21.
SNCA is a primary component of intracellular inclusions
called Lewy bodies, which are considered to be the patho-
logical hallmark of PD (20). Aggregation of SNCA is
thought to play a crucial role in the pathogenesis of PD
(21). The allele C frequency of SNP00O70 was higher in PD
(0.67) than in controls (0.57) (Table 1). The association of
SNP0070 was significant in genotype frequency, allele
frequency, dominant model and recessive model. Of the two
disease models, allele C of SNP0070 was more significantly
associated in the recessive model than in the dominant
model (Table 1).

Linkage disequilibrium (L.D) mapping and search for
susceptibility SNPs

We performed LD mapping in a 430kb region around
SNP0070. This region contains two genes: SNCA and
MMRNI. Using SNP0070 and 28 additional SNPs in this
region, we genotyped 134 control subjects and constructed an
LD map based on pairwise I and r? (Fig. 1) (Supplementary
Material, Table S2). Three LD blocks were observed on
the basis of D' (I’ > 0.9). The entire SNCA gene was included
in a block containing SNP0070 (block 2). The MMRNI
gene was in another LD block, indicating that MMRNI does
not correlate with the SNPO070 association (Fig. 2).

To search for the most strongly associated SNP(s) in the
region, we next performed association studies with these 29
SNPs (Fig. 2; Table 2). We found significant associations
for SNPs in block 2, but not in blocks 1 and 3. Block 2,
thought to be a susceptibility block for PD, was further
analyzed on the basis of #*-values. Of the 19 SNPs in block
2, 16 belonged to three groups with high pairwise r?
(>0.85) and the remaining three did not belong to any
group (Fig. 1; Table 2) (Supplementary Material, Table S2).
Six SNPs in group 1, including originally screened SNP0070
and five additional SNPs (0203, 0204, 0205, 0207 and
0209), showed prominent association with PD (P=
2.0 x 1079-1.7 x 107" allele 1 versus allele 2) (Fig. 2;
Table 2). Population attributable risk (PAR) (22) of SNP0070
was 42.5% in the dominant model and 18.5% in the recessive
model.

We next performed haplotype analysis using six representa-
tive SNPs in block 2 (Table 3). Six common haplotypes (> 1%
of PD and controls) covered >90% of the population haplo-
types in both PD and controls. The major haplotypes 1 and
2 showed significant associations; however, their P-values
were not lower than that of any single SNP in group 1. There-
fore, the presence of hidden SNP(s) with a lower P-value than
group 1 seemed unlikely, as was the possibility that the haplo-
type(s) is implicated in PD susceptibility. These findings
establish the six SNPs in group 1 as the strongest susceptibility
SNPs. All showed stronger associations in the recessive model
than in the dominant model, similar to the originally screened
SNP0O070 (Table 4).

Taken together, our genetic analyses indicate that SNC4 is a
definite susceptibility gene for sporadic PD and that multiple
SNPs in group 1 are susceptibility SNPs, likely in a recessive
model.
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Table 1. Association of SNP0070 in SNCA between cases and controls
. Genotype Allele P-value (X -test)
CcC CT T Total C T Total Genotype Allele Dorminant® Recessive”
‘ model model
First screen
Case 87 (0.46) 87 (0.46) 14 (0.07) 188 261 (0.69) 115 (0.31) 376 34x107* 18x107* 18x 107" 11x1077
Control 62 (0.33) 85 (0.46) 39 (0.21) 186 209 (0.56) 163 (0.44) 372
Replication .
Case 298 (0.44) 307 (0.45) 75 (0.11) 680 903 (0.66) 457 (0.34) 1360 1.3 x 107% 42 %1077 15%x 1073 9.0x 1077
Control 233 (0.31) 387(0.52) 126 (0.17) 746 853 (0.57) 639(043) 1492
Total
Case 385 (0.44) 394 (0.45)  89(0.10) 868 1164 (0.67) 572(0.33) 1736 27 x 107" 5.0x 1071 57 x107¢ 28x107F
Control 295 (0.32) 472(0.51) 165 (0.18) 932 1062 (0.57) 802 (0.43) 1864
Frequencies of genotypes and alleles are in parentheses.
*Genotype CC+CT versus TT.
Genotype CC versus CT+TT.
Blo
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Figure 1. LD structure of the susceptibility region for sporadic PD. Pairwise LD between SNPs, as measured by [ in 134 controls, is graphically indicated. The
region spanning 430 kb around the originally screened SNPO070(*) was divided into three LD blocks (D’ > 0.9) (upper right). On the basis of »*, SNPs in
block 2, including SNP0070, were further divided into three groups (* > 0.85) and three solitary SNPs (lower left). The scale is nominal.

SNCA gene expression in relation to susceptibility
genotypes

To examine whether the strongest associated SNPs (group 1)
affect SNCA gene expression, we further quantified SNCA
mRNA in autopsied frontal cortices and compared the
values among the genotypes. SNP0070, in which allele C is
associated with PD, was used as a representative of group 1.

The relative values of SNCA mRNA for all cases (n = 21)
and all controls (n = 18) were 1.07 £ 0.10 and 0.95 £+ 0.13,
respectively, showing almost the same level (P =0.46,
Student’s t-test). When compared among the genotypes in
cases, the mean tended to decrease in the order of CC, CT
and TT (Fig. 3), although the differences did not reach the sig-
nificant levels (P = 0.71 for CC versus CT, P = 0.16 for CT
versus TT and P = 0.32 for CC versus TT). Similar tendency
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Figure 2. Genomic structure and SNPs of the susceptibility region for sporadic
PD and case—control association studies (882 cases and 938 controls). Log
P-values (allele 1 versus allele 2) are plotted against the physical location
of the SNPs. The region includes two genes: SNCA and MMRNI; transcription
orientation is indicated by horizontal arrows. Physical locations of SNPs are
shown as axial bars with our experimental ID number. The originally screened
SNP0O070 is indicated by an asterisk. The location of Repl, a well-known
repeat polymorphism in the SNCA promoter region, is indicated by a thick
bar. SNPs in block 2 are nominated in an expanded map with the exon—
intron structure of SNCA. SNPs in group 1 are shown in red. Note that
P-values are prominently low at the group 1 SNPs located in the 3’ region
of SNCA. P-values in the region around Rep! are far from significant when
compared with those in group 1.

was observed in controls. The mean tended to decrease in the
order of CC, CT and TT (Fig. 3) (P = 0.33 for CC versus CT,
P =10.59 for CT versus TT and P = 0.54 for CC versus TT).

These results indicate the possibility that expression of
SNCA mRNA in the brain tends to be positively correlated
with the number of PD-associated allele.

DISCUSSION

To identify susceptibility genes for PD, we performed an
extensive candidate gene approach by screening 268 SNPs
in 121 genes and identified a prominent association with
SNP0O070 (rs7684318) in the SNCA gene (Table 1). LD
mapping localized the entire SNCA gene within a single LD
block (Figs 1 and 2). Within this block, six SNPs including
SNP0070 were in a tight LD group and most strongly associ-
ated with PD (Fig. 2; Table 2). The major allele of each SNP
in group 1 was positively associated with PD, more strongly in
the recessive model than in the dominant model (Table 4). Our
genetic analyses establish SNCA as a definite susceptibility
gene for PD and identify multiple SNPs in group 1 as suscep-
tibility SNPs. Recently, Mueller et al. (23) reported that
multiple regions of SNCA are associated with PD in the
German population. Associated SNPs identified by Mueller

et al. included rs356165 (P = 1.5 x 10™%), which corresponds
to SNP0204 in our study, indicating that this SNP has a similar
association in Caucasians. Pals et al. (24) previously reported
no association of the haplotype containing rs356165 with PD
in Belgian samples. This contradictory finding may be, at
least in part, due to a small sample size (175 cases and 186
controls), as mentioned by the authors.

SNCA/a-synuclein was originally identified in the electric
organ of the Pacific electric ray (25). SNCA is a presynaptic
protein that is highly and broadly expressed in the brain, but
its normal function remains unknown (21). It is a major com-
ponent of Lewy bodies, the pathological hallmark of PD (20),
and the aggregation of SNCA protein is thought to play a
crucial role in the loss of dopaminergic neurons (21,26).

SNCA was also the first gene identified as a causative gene
in familial PD. Three missense mutations in SNCA were
reported in families with AD inheritance (6,27,28). These
mutations are thought to increase the aggregation of SNCA
protein. Point mutations in SNCA have not been identified in
sporadic PD (27,29), and no SNPs have been found in the
coding region, suggesting that disease-related amino acid
changes in SNCA are unlikely in sporadic PD.

Genes’ overdosage is a potential mechanism for the influ-
ence of SNCA in PD. Triplication of the SNCA locus has
been seen in an AD PD family (30), and doubling of SNCA
gene dosage by triplication has been shown to result in the
doubling of mRNA and protein expression in blood and
brain (31). Duplication of SNCA has also been identified as
a cause of familial PD. (32,33). Clinical features of patients
with SNCA duplication resemble those of sporadic cases and
are much milder than those with triplication. Taken together,
these observations indicate a correlation between increased
SNCA protein levels and disease risk. Identification of one
or more polymorphisms related to SNCA expression level
might reveal strong susceptibility indicators for sporadic PD.
Many studies have focussed on a mixed repeat microsatellite
polymorphism called Repl (34), because of its location in
the SNCA promoter region. However, their significance is
uncertain, possibly because of the small number of samples
(35-37). Our study demonstrates that the P-values of SNPs
around Repl (0218, 1023 and 0220) are less significant than
that of the SNPs in group 1 (Fig. 2). In addition, we genotyped
our samples for Repl. Pairwise ['-values showed that Repl
was not in block 2, but on the boundary (Supplementary
Material, Table S2). P-value of Repl was 7.5 x 1077 (Sup-
plementary Material, Table S3), which might be explained
by its intermediate correlation with the strongest susceptibility
SNPs (group 1, P=2.0 x 107°~1.7 x 10~'"). Our findings
suggest that P-value of Repl depends on its LD strength
with SNPs in group 1. LD strength may be modified by the
unstableness of microsatellite markers (38) and may vary
among races (39). Taken together, these findings may also
partly explain the contradictory findings of previous Repl
association studies.

To investigate the relationship between the SNPs in group 1
and the SNCA expression levels, we analyzed SNC4 mRNA
expression in autopsied frontal cortices (Fig. 3). SNCA
expression levels tended to be positively correlated with the
number of the PD-associated allele, supporting the popular
hypothesis that increased SNCA leads to the disease.
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Table 3. Haplotype association analysis using representative SNPs in block 2

Haplotypes Representative SNP (group) Haplotype frequency P-value
202 0070 (1) 0206 (2) 0214 (3) 0215 1023 Case Control
1 A C T G A T 0.39 0.33 44 %1073
2 T T T T A C 0.24 0.3 50 % 107°
3 A C C T C T 0.24 0.21 0.071
4 A T T T c T 0.03 0.06 33x 107"
5 T T T T C T 0.02 0.03 0.083
6 T T T G A T 0.01 0.02 0.62
Table 4. Association of the SNPs in group 1 of block 2
SNP Allele Genotype Dominant model Recessive model
Case Control (MM + Mm versus mm) (MM versus Mm + mmn)

M/m MM Mm mm MM Mm mm P-value QOdds ratio (95% CI) P-value Odds ratio (95%CI)
0203 T/C 380 406 87 293 476 164 3.0x 107° 1.95 (1.45-2.52) 1.0 x 1077 1.68 (1.41-2.07)
0204 G/A 379 399 89 289 482 159 2.7 x 107F 1.81 (1.36-2.38) 3.0x 1078 1.72 (1.43-2.13)
0070 C/IT 385 394 89 295 472 165 5.7 % 107° 1.90 (1.44-2.53) 28x 1078 1.71 (1.42-2.06)
0205 T/C 376 406 87 288 471 166 18x 1076 1.98 (1.45-2.61) 6.0x107% 1.69 (1.40-2.05)
0207 T/C 382 367 91 296 482 154 53 %107 1.66 (1.25-2.16) 3.0 x 1077 1.78 (1.47-2.16)
0209 CIT 402 377 84 297 480 156 14 x107° 1.89 (1.41-2.51) 1.5 % 107!° 1.86 (1.55-2.27)

M and m are major allele and minor allele, respectively. CI, confidence interval.

“Originally screened SNP.
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Figure 3. In vivo expression of SNCA mRNA in relation to susceptibility
genotypes. SNP00O70 (C/T) is used as a representative of group 1. SNCA
expression levels in autopsied frontal cortices of cases (solid bar; 8§ CC,
9 CT and 4 TT) and controls (open bar; 8 CC, 8 CT and 2 TT). Relative
SNCA mRNA levels (normalized to neurofilament L, NF) are indicated. In
cases, mean + SEM of CC, CT and TT were 1.17 4 0.23, 1.08 + 0.11 and
0.82 + 0.08, respectively. In controls, mean + SEM of CC, CT and TT
were 1.11 + 0.28, 0.83 + 0.07 and 0.75 + 0.07, respectively.

The PD-associated alleles may positively correlate with the
basal transcription level of SNCA and/or the induction of
SNCA expression by certain stimulators, for example, oxi-
dative stress.

Other possible functional effects of associated SNPs include
alternative splicing, which may result in a protein isoform that
aggregates more readily. The C-terminal region of SNCA is
rich in acidic amino acid residues, and its truncation promotes
aggregation in vitro (40,41). The known splice variant
SNCA112 lacks exon 5, which encodes 28 amino acids (10
of which are acidic) in frame. Thus, SNCA112 may also
promote aggregation. We investigated SNCA712 mRNA
expression in frontal cortices using splice variant-specific

primers, but observed little difference among the three
genotypes (data not shown).

In summary, our study establishes SNCA as a susceptibility
gene for sporadic PD. Focussed investigations of SNCA func-
tion will further enhance our understanding of how genetic
factors contribute to the complex etiology of PD.

MATERIALS AND METHODS

Subjects

We recruited 882 unrelated sporadic PD patients (age,
64.9 + 9.8; male/female ratio, 0.79) and 938 unrelated
controls (age, 45.3 + 16.3; male/female ratio, 1.10). The diag-
nosis of idiopathic PD was based on the presence of two or
more of the cardinal features of PD (tremor, rigidity, bradyki-
nesia and postural instability), according to the criteria for
sporadic PD (42). Patients were evaluated by the certified
neurologists specializing in PD. The average age of onset
was 57.4 + 10.9 years. Forty-two patients showed early
onset of PD (<40 years) and 51 patients had a positive
family history of PD. Patients who carried parkin mutations
were excluded. All patients and controls were of Japanese
ancestry. Informed consent was obtained from each individual,
and approval for the study was obtained from the University
Ethical Committees.

SNP genotyping

Genomic DNA was extracted from whole blood using
FlexGene (Qiagen). SNP information was obtained from the
dbSNP (http://www/ncbi.nlm.nih.gov/SNP/), JSNP (http://
snp.ims.u-tokyo.ac.jp/) (43) and Celera Discovery System
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(http://myscience.appliedbiosystems.com/) databases. We geno-
typed SNPs using the Invader assay (Third Wave Technol-
ogies), TagMan (Applied Biosystems) or direct sequencing
using an ABI3730 capillary sequencer (Applied Biosystems).
Repl genotyping and allele designations followed those
described previously (35). The Rep!l region was amplified
using FAMS'-CCTGGCATATTTGATTGCAA-3 and 5-
GACTGGCCCAAGATTAACCA-3 as primers and analyzed
using ABI3730 capillary sequencer.

Statistical analysis

SNPAlyze software (DYNACOM, Japan) was used for the
case—control study (y*-test), calculation of odds ratio and its
95% CI (Bootstrap method), haplotype analysis (Expectation—
Maximization algorithm) and pairwise LD analysis (Lewontin’s
coefficient D and standardized coeflicient #).

Real-time RT-PCR

Autopsied frontal cortices were obtained from the Brain Bank
for Aging Research (Tokyo Metropolitan Geriatric Hospital/
Tokyo Metropolitan Institute of Gerontology) and from the
Department of Neurology, Juntendo University School of
Medicine. The samples contained 21 cases [age, 82.6 £ 7.1
(SD) years; 11 males and 10 females] with Lewy body patho-
logy defined by the third Consensus Guideline for Dementia
with Lewy Bodies (44), comprising PD with and without
dementia and dementia with Lewy bodies, and 18 control
subjects (age, 81.2 + 5.2; 12 males and six females) without
parkinsonism or dementia and without neurodegenerative
pathological changes. Total RNA was extracted from tissues
using RNeasy (Qiagen), and cDNA was prepared using Super-
script reverse transcriptase (Invitrogen). Real-time RT-PCR
was carried out on ABI PRISM 7900 sequence detection
system (Applied Biosystems) using SYBR Premix Ex Taq
(TAKARA, Japan). First-strand ¢cDNA was amplified using
primers specific for SNCA (forward: 5-GCAGAAGCA
GCAGGAAAGAC-3/; reverse: 5-CTGGGCTACTGCTGTC
ACAC-3’; product size: 159 bp) and NF (neurofilament L,
forward: 5-AGAACGCTGAGGAATGGTTC-3; reverse:
5-CTGGTGAAACTGAGTCGGGT-3; product size: 391 bp).
A single band of the expected size was amplified from
c¢DNA samples, but not from RNA samples. For quantifi-
cation, we used a relative standard curve method. Standard
curves of SNCA and NF were generated from the amplification
of diluted series of cDNA from cortices. SNCA expression
levels were normalized to those of NF. One of the experimen-
tal samples was used as the calibrator. Each of the normalized
SNCA values was divided by the calibrator normalized SNC4
value to generate the relative expression levels. The values
were determined in triplicate. Reproducibility of the results
was confirmed by repeating cDNA synthesis and real-time
PCR twice for seven samples, and similar results were
obtained.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG Online.
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We propose a novel algorithm for voxel-by-voxel compartment model
analysis based on a maximum a posteriori (MAP) algorithm. Voxel-by-
voxel compartment model analysis can derive functional images of
living tissues, but it suffers from high noise statistics in voxel-based PET
data and extended calculation times. We initially set up a feature space
of the target radiopharmaceutical composed of a measured plasma time
activity curve and a set of compartment model parameters, and
measured the noise distribution of the PET data. The dynamic PET
data were projected onto the feature space, and then clustered using the
Mahalanebis distance. Our method was validated using simulation
studies, and compared with ROI-based ordinary kinetic analysis for
FDG. The parametric images exhibited an acceptable linear relation
with the simulations and the ROI-based results, and the calculation time
took about 10 min. We therefore concluded that our proposed MAP-
based algorithm is practical.

© 2005 Elsevier Inc. All rights reserved.
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Introduction

The aim of this study was to develop a novel approach for voxel-
by-voxel compartment model analysis to form parametric images
using positron emission tomography (PET) based on a maximum a
posteriori (MAP) approach.

PET can provide various functionalities of living tissues in the
form of a spatial distribution of an administered radiopharma-
ceutical. If the details of a physiological function are required,
then a history of the radiopharmaceutical concentrations in a tissue
(i.e., the tissue time activity curve, or tTAC) is measured using
multiple PET scans, and a compartment model analysis is applied

* Corresponding author. Fax: +81 3 3964 2188.
E-mail address: ukimura@jieee.org (Y. Kimura).
Available online on ScienceDirect (www.sciencedirect.com).
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to determine the parameters that describe the behavior of the
administered drugs in a target organ (Huang and Phelps, 1986).
This process is known as kinetic analysis. Furthermore, kinetic
analysis in a voxel-by-voxel fashion provides us with images that
can be used to determine the activity of specific enzymes or
concentrations of neuroreceptors. However, voxel-based kinetic
analysis has two major drawbacks. One is the noise level in a
voxel-based tTAC, and the second is the large number of voxels
involved. The noise level in a voxel-based tTAC leads to an
instability in the estimated parameters. The large number of
voxels, which can reach up to half a million, leads to extensive
calculation times for image formation.

We have proposed a clustering-based algorithm to overcome
this situation, in which voxel-based tTACs are categorized based
on their kinetics. The algorithm, Clustering Analysis for Kinetics
(CAKS), has been reported for a one-tissue-two-compartment
model (Kimura et al., 1999), and a two-tissue-three-compartment
model (Kimura et al., 2002). In the CAKS approach, the clustering
algorithm is a key term. An unsupervised clustering scheme has
also been applied (Kimura, 2004).

This paper introduces MAP approach for a kinetics scheme.
This is proposed to improve a robustness for noise interference.
In the proposed approach, feature surfaces are provided using an
a priori knowledge of the kinetics of the administered radio-
pharmaceutical, and then, the observed data are clustered. Some
simulation studies carried out are discussed to determine the
details of the proposed algorithm, and to evaluate its reliability.
Parametric images of the brain glucose metabolism are discussed
using ['®F]fluoro-2-deoxy-D-glucose (FDG).

Method

In the proposed method, the estimated kinetic parameters of
a voxel-based tTAC are determined based on similarities of
shape, when data are compared with noise-free tTACs that are
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formed from a set of parameters that lie within a physiolog-
1ca11y feasible range. The shape of a noise-free tTAC is
projected onto the feature space, and the noise is expressed as
a statistical distribution of a feature point in the space.

Measurement of glucose metabolism using PET

FDG s a glucose analog, and it has been used to measure cerebral
glucose metabolism using PET in glucose transport from plasma to
tissue, in glucose phosphorylation, and to determine the metabolic
rate of glucose.

The behavior of FDG is described by Eq. (1) (Huang et al.,
1980):

k
Coll) = a (s + ks —m)e™ + (o= ks —k)e} B G (0)
(1
where
bt ks k¥ U+ s+ k)Y — ks
o0 = > ) (2)

and Cq(t) and Cp(2) denote the concentration of administered FDG
in a target tissue and arterial plasma, respectively. ® denotes a
convolution. Glucose transportation from a capillary to a tissue
and the reverse process are described by the terms k, and k-,
respectively, and &5 and k4 denote the rate of phosphorylation and

dephosphorylation of FDG. The term C(f) is derived as a

dynamic image from the PET data, and Cy(f) is measured via
arterial blood sampling. The term %4 is ignored in our discussion,
because we used scan durations of 60 min (Lucignani et al,,
1993).

First, C,(f) was normalized using its integral to reduce the
dimensionality by ignoring k;, because k, appears in both the
denominator and numerator of Eq. (3) from Eq. (1), and so
cancels out.

Go(1)

/ OTE Co(r)dr

where Tg denotes the time of the last frame.

C(t) = ) (3)

Definition of the feature surface

The shape of C(¢) is represented mathematically as a surface
in a feature space, in which a shape is represented by a position
(Duda et al,, 2001). To define a feature space, dynamic PET
data are considered as a vector in n-dimensional space:

C =[C(tr),C(t)]" (4)

where n is the number of frames. In a feature space, Cs are
located at different points that have different shapes from each
other.

In reality, the location of the noise-free tTACs in a feature
space -is identified before parameter estimation using the
following steps. When the data from a measured plasma time
activity curve (pTAC) are inputted into Eqg. (1), a set of
tTACs is derived by varying %, and k; in a suitable range
based on physiological considerations: either 0.01 or values
between 0.02 and 040 with a 0.02 step size for k,, and
values between 0.01 and 0.30 with a step size of 0.01 for ks,

where k; is fixed to 0.1. Then, all the generated tTACs are
composed as a matrix Cj:

CAE[Cl...CM}, (5)

and the principal components are calculated to generate a
feature space.

If the noise-free tTACs are projected onto this space, shown as
the C;—C, in Fig. 1, a curved surface on the noise-free tTACs will
be drawn, IT in Fig. 1., Note that first only some principal
components are used. This approach decreases the dimensionality
and simplifies further data analysis. The optimal dimensionality is
discussed later in the text.

Parameter estimation

The noise distribution in a feature space, the likelihood for
parameter estimation, is evaluated using the following procedure. To
obtain the statistical properties of the noise in the measured tTACs,
noisy tTACs are mimicked to add the simulated noise to the noise-
free tTACs, assuming that a Gaussian distribution exists with a mean
equal to that of the measured tTAC and a variance proportional to
that of the tTAC (Kimura et al., 2002). This step means that a
multidimensional Gaussian was assumed for the noise distribution in
the projected tTAC onto the space. These values are used to
determine the noise amplitude such that the simulated tTACs have
the same noise level as those of the measured voxel-based tTACs.

The semantic diagram is available in Fig. 1. Noise-free
tTACs are projected onto a point in the space defined by Eq. (4)
(C1—-C4 in Fig. 1). The noise perturbs the shape of the noise-~
free tTAC, and causes a fluctuation in the projected point. This
fluctuation is assumed to be a multidimensional Gaussian,
centered at its noise-free position of C;~C4. The covariances
at each noise-free point are calculated using 500 realizations of
noisy tTACs. To determine the associated cluster of the
projected tTACs of A4, the Mahalanobis distance between the
point and each noise-free point is calculated, and then, the
nearest point is selected. In our example, this is C|. Finally, the

Fig. 1. A semantic diagram for parameter estimation using the proposed
MAP-based algorithm. I1is a feature surface, and C,—C, are the projected
noise-free tTACs. Noisy projections are denoted by the smaller plots, and
the estimated Gaussian is denoted by the superimposed ellipsoid. If a voxel-
based tTAC is projected on 4, then the Mahalanobis distance to each noise-
free point can be calculated (A_C] —A—E'4). Then, A can be classified as
belonging to the nearest point of C;.
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corresponding values of k, and k3 to the point are taken to be
the estimates of the voxel-based tTAC. The ratio of the integral
of the voxel-based tTAC to that of the corresponding noise-free
tTAC determines the value of k;.

Simulation

A simulation study was designed to determine the appropriate
dimensionality of a feature space based on an estimation perform-
ance, and to validate the estimates using the proposed method. A
clinically measured pTAC was applied to Eq. (1) with a set of ky, £,
and k3 values varying-from 0.01 to 0.19 with a step size 0of 0.02, from
0.01 to 0.28 with a step size of 0.03, and from 0.01 to 0.1 with a step
size of 0.01, respectively. For each set of the parameters, 27
realizations of noise-free tTACs were generated, and Gaussian noise
was added to simulate a real measurement situation. The proposed
approach was applied, and the performance was evaluated to
compare the data with the real values. Also, Patlak plot was
employed to derive the estimates of ky/k, (=DV) and the cerebral
metabolic rate of glucose (CMRGlc) computed as:

kiks
ko + k3

CMRGlc = (%)K,- where K; = (6)
Gl is glucose content in blood, and Lc is a lamped constant of 0.42.
In Patlak plot, the linear relation is established some minutes later
after the administration:

le wdu

where Bv denotes a blood volume. Therefore, the gradient and y-
intercept gives us the estimates of CMRGlc and DV (Patlak et al.,
1983).

Dimensionality

A dimensionality of feature space was decided using two
ways: a performance-based approach as described in Simulation
and a theoretical approach. Morgera (1985) proposed a cova-
riance complexity based on an information theory, and it was
calculated using the eigenvalues of an inputted data as defined in
(Watanabe et al., 2003):

yh
o) =, (®)

M
Z agjlog a;
ji=1
Iy =~ g )
where I'j, denotes the complexity at the dimension of M, and 4;
is the jth eigenvalue of the covariance matrix of C4 sorted in
descending order. I'y, ranges on [0 1], and it represents a
uniformity of information derived if M-dimensional feature space
is employed. If all axes defining a feature space have almost the
same amount of information, ¢; ~ 1 / M, and I'js approaches to
1. Conversely, if only the first few axes have most information,
the corresponding o;s become almost 1, and I'yr = 0.
To investigate the dimensionality, voxel-based tTACs were
generated the same as that described in Simulation with 500

realizations. k; was fixed at the typical value, and k, or k3
varied in the range of their typical values +50%. The values
were 0.102, 0.130, and 0.062, respectively (Huang et al,
1980). Also, K; varied in the range of 0.0334 % 50% with the
fixed k;.

Clinical image

The proposed method was applied to .clinical PET scans:
five normal volunteers (four males. and one female, average
age = 22 *+ 1.9), and two patients with congenital glucose
transporter-1 deficiency (Pascual et al., 2002) (an 11- and a 7-
year-old boy) to validate the algorithm in normal and higher
than normal cases. The FDG doses injected were 233 % 19
MBq for the normal subjects, and 155 or 121 MBq for the
deficiency patients. The Ethics Committee of the Tokyo
Metropolitan Institute of Gerontology approved the study
protocol, and informed consent was given by all subjects.
The scans were performed using a HEADTOME V apparatus
(Shimadzu Corporation, Kyoto, Japan) with arterial blood
sampling. The PET images were reconstructed at a resolution
of 7.5 mm FWHM, with 128 x 128 voxels and 30 slices
with 2 X 2 x 625 mm in a voxel size, using a standard
convolution back-projection algorithm. Corrections were
applied for dead time, detector nonuniformity, and for photon
attenuation, The frame-time sequence was 10 s x 6, 30 s X
3,60 s x 5, and 150 s x 5, and 300 s x 8. Besides, the
images obtained from a 57-years-old female Alzheimer patient
were formed using a HEADTOME-IV apparatus (Shimadzu
Corporation, Kyoto, Japan) with 128 x 128 and 7 slices with
2 x 2 x 13 mm in a voxel size. The frame arrangements
were 30 s x 2, 60 s x 4, 120 s x 4, 240 s x 8. The dose
was 210 MBq. Parametric images of DV, CMRGIlc were then
computed. The delay between the tTAC and pTAC data was
estimated using the tTAC averaged over all the regions of
interest (ROIs) in a round-robin fashion (Kimura et al., 2004),
and it was removed from voxel-based tTACs before applying
the proposed method. Eq. (1) was fitted to the tTAC using
the interior-reflective Newton method (Coleman and Branch,

x1073 .
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Fig. 2. Example of a feature surface generated in a three-dimensional space.
Each axis denotes the first three principal components calculated from a
given set of noise-free tTACs. Noise-free tTACs are projected onto this
space and form a surface, as shown in the figure. The increase in the values
of & and k- is denoted by the black and gray arrows, respectively.
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Fig. 3. An actual example of a feature surface and a projected tTACs. The
projections are denoted by the small points. The surface is viewed from a
low angle to emphasize its curled shape.

1999) with a nonnegative constraint. The initial estimates of
all the parameters were selected to be 0.10. The blood volume
was fixed at 0.03 (Martine et al., 1987). Before applying the
proposed method to clinical data, blood volume component
was also subtracted from voxel-based tTACs assuming the
fixed blood volume. Additionally, extracranial voxels were
manually excluded before the image formation.

To evaluate the consistency between the ordinary ROI-based
model estimation and the estimates derived from the proposed
algorithm, seven ROIs were selected: the frontal, occipital, parietal,
temporal, cerebral, striatum, and the thalamus, and then the

nonlinear estimation algorithm was applied to derive the estimates
for the ordinary ROI-based kinetic analysis as described above.

Results
Feature surface

A typical feature surface is shown in Fig. 2, in which the
generated tTACs are projected into three-dimensional space. It can
be seen that the surface is highly curved as denoted by the black
and gray arrows. The noise-free tTAC is represented by the lattice
points on this surface, and the (k,, k5) parameter pair corresponds
to one of these points.

Fig. 3 shows a real situation of feature points formed using
measured PET data. The measured voxel-based tTACs are
projected onto the feature surface denoted by the dots. The noise
of the voxel-based tTAC fluctuated widely around the projected
points. However, most of the points were located away from the
surface because of the noise-induced fluctuation.

Simulation-based validation

Simulation-based validations are summarized in Fig. 4. For ki,
the estimated median values were almost identical to the true
values. Moreover, there was an underestimation in this case,
because the lower bars of the boxplots are longer than the upper
bars. For k3, the median value was almost the same as the true
values, but the distribution of the estimates of k; was more
complicated than that of k. In the case of smaller values of k3, i.e.,
k3 <0.03, the estimate tends to be high. For values of k3 larger than
0.08, the estimate was lower than the true value. For k-, a linear

(A) kq (B)k (C)ks
0.2 |V=1.03x+0.00__ L/ ] vy =0.83 x+0.04~
ré=1.00 0.1
I |
(] 02 | i
0.1 - = = ! !
| I H ]
| | | y = 1.00 x+0.00
] | | F=1.00
o 0 0 0
% 0 0.1 0.2 0 0.2 0 0.1
£ proposed
£ (D) CMRGI (E) DV(Pobbes’)  (F) DV (patiak plot)
w sy
20 A 2ly=omexwar o] 2[y-oorxlodr .
T & rP=092 | i =002 1 |’
ot
E Al ] -
]
P |
0= : 0
0 20 0 1 2
e proposed y=1.01x - 0.05 (*=1.00)
o Patlak plot y=1.01x - 0.09 (12=0.99) True

Fig. 4. Performance of the proposed algorithm in a simulation study. The estimates of &, k», and k3 are plotted in panels A, B, and C, respectively. The
estimates are plotted with respect to the true values as a boxplot. The lower, middle, and upper edges denote the 25th, 50th, and 75th percentiles, and the range
shown between the lower and upper ticks is 1.5 times the quartile range, where most data exist. Regression lines between the true and the median are
superimposed. CMRGlc estimated by the proposed algorithm and Patlak plot is plotted in panel D with black and gray points, respectively. And estimated DV
using the proposed algorithm and Patlak plot is presented in panels E and E. For CMRGlc and DV, the estimates are plotted versus the true values. The

regression lines are also shown.
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Fig. 5. Courses of a performance and complexity according to dimensionality. The performance comparisons according to the dimensionality of the feature
space are shown in Frame (A), the change in consistency between the estimates and their true values, and in Frame (B), the change in linearity. For both
quantities, the ideal values are 1. The typical change of covariance complexity is displayed in Frame (C).

relation was maintained, but it was 20% underestimated especially
in large k, region. For CMRGlc shown in Fig. 4D, both estimates
by Patlak plot and the proposed approach were almost identical
with the true values, and the estimates from the proposed algorithm
presented slightly better estimates. DV estimates showed different
states between the proposed algorithm and Patlak plot in Figs. 4E
and F. The proposed algorithm gave lineally correlated estimates,
on the other hand in Patlak plot, no linear relation with the true DV
could be found. The estimates using the proposed algorithm have
22% underestimation in the range of DV between 0 and 2.

Dimensionality

Performance comparisons against the dimensionality are shown
in Figs. 5A and B. Frame (A) shows the change in slope of the
regression lines between the estimates from the proposed algorithm
derived for various dimensions and true values, where a slope
equal to unity is the ideal case. For the CMRGlc data, there was no
observed dependency on the dimensionality. For ki, a higher
dimensionality leads to an underestimation, and either two or three
dimensions seem to be the optimum choice. For ks, under-
estimation occurred with two dimensions or more than six
dimensions. Frame (B) shows the calculated regression coeffi-
cients. The CMRGIc estimates always correlated well with the true
values. The performance of the k; and k3 estimates became
gradually worse with increasing dimensionality. Three dimensions
was the optimum choice based on the estimation performance.

The typical trend of covariance complexity is available in
Frame (C) in cases of k) = 0.102, &, = 0.13, and k3 = 0.062. Most

(A) ke

(B) k;

information concentrated on the 1st dimension because the
complexity was near its minimum of 0, and a large increase was
observed only at the dimension of 2. And, further dimension in the
feature space has approximately a uniform amount of information
because the complexity gradually grew, but no peaks were
observed according to the increase of dimensionality. These results
implied that the information was not gained if higher dimensional
feature space than 4 was utilized. This disposition was common in
all k-parameters.

Clinical image

ROI-based validations are shown in Figs. 6 and 7, and typical
clinical images are available in Fig. 8. For &, if it was smaller than
0.16 (which is normal range), the regression line was y = 0.97x +
0.04 (r* = 0.90); this line is plotted in a solid line in Fig. 6A, and .
both estimates were almost identical. However, the linear regression
derived from all k; range was y = 0.73x + 0.03 (r* = 0.96), the
dashed line in Fig. 6A, and 27% of underestimation was observed.
For k5 shown in Fig. 6C, if k5 < 0.13 (the normal range of k1), y =
0.78x +0.01 (+* = 0.92), the solid line, and 22% of underestimation
existed. The linear regression in all k5 range was y = 1.00x — 0.01
(+*=0.91); an almost identical relation. k, is summarized in Fig. 6B.
The relation was y = 0.57x + 0.12 (+* = 0.88). For CMRGlc and DV,
the comparisons between an ROI-based nonlinear estimation and the
proposed algorithm or Patlak plot are illustrated in Fig. 7. Both
CMRGIc estimates had good linear relations with 10% of under-
estimation as shown in CMRGlc-1 and CMRGle-2; y = 0.90x +
0.21 (#* = 0.98) for the proposed algorithm and y = 0.91x — 0.012 -

(C) ks

o
15

proposed estimation

(=]

[1/min]

0.5 0 0.2
[1/min] {1/min}
nonlinear estimation

0.4

Fig. 6. Comparison between ordinary ROI-based nonlinear estimates and the proposed algorithm. Seven ROIs were placed on seven subjects, and subjects are
plotted with different symbols. Regression lines derived from ordinary parameter range and from all estimates are plotted in solid and dashed lines, respectively.
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Fig. 7. Comparison between ordinary ROI-based nonlinear estimates and
the proposed algorithm or Patlak plot on CMRGIc in (CMRGlc-1) and
(CMRGlc-2), and on DV in (DV-1) and (DV-2). (CMRGlc-1) and (DV-1)
were derived from the proposed algorithm, and (CMRGlc-2) and (DV-2)
represent the estimates using Patlak plot. Seven ROIs were placed on seven
subjects, and subjects are plotted with different symbols. Regression lines
are superimposed.

(+* = 0.97) for Patlak plot. The deviation of CMRGIc estimates with
the proposed algorithm was 8% smaller than that with Patlak plot in
the ROI-based validation. The relation of DV is not good; y =0.33x +
0.44 (#* = 0.96) for the proposed algorithm and y = 0.39x + 0.28

(¥ = 0.97) for Patlak plot in DV-1 and DV-2. The simulation
showed that &, and DV had relatively poor linear relation and 20%
of underestimation in Fig. 4, and the same results can be seen in
the clinical results (Figs. 6B and 7DV-1). Also, the bias in DV
estimates was not ignorable. Patlak plot can estimate DV, but it
was poor as the proposed algorithm. The deviation of DV
estimates by the proposed algorithm was around 35% smaller
than those by Patlak plot in the ROI-based validation. However,
in Fig. 8, the gray and white matter can be distinguished in the
Alzheimer case, and also in the normal case because there was a
monotonous relation between the DV estimates by the proposed
algorithm and the ROI-based estimates. The performance of the

proposed algorithm was rather sufficient for DV imaging. For
CMRGle, both estimates coincided well with each other.
Generally, there is a good linear relation between both estimates
in all parameters, and the CMRGlc and k& in its normal range
were almost identical with the true values.

In the normal case in Fig. 8, the slices shown include the
cerebellum and the thalamus. The brain structure is clearly
visualized in the CMRGIic image, and in the ky, k3, and DV
images. Some regional differences in glucose metabolism are
observable: the cerebellum has a higher k; value than the
cerebral cortex, and the ks value of the cerebellum is smaller
than that in the cerebral cortex. In Alzheimer case, CMRGlc is
clearly defected on the right temporal lobe. ki, k3, and DV are

also lower than those in the left side. For CMRGlc, both

methods give us a good brain structure, and the images with the
proposed algorithm are less noisy than those with Patlak plot.
For DV, the brain structure is unclear in the image with Patlak
plot; however, the gray and white matter can be recognized in
the proposed method.

It took about 10 min to generate a parametric image composed
of 128 x 128 voxels and 30 slices using an Ultra-80 Workstation

~ equipped with a 450 MHz Ultra SPARC-II processor and 4

gigabytes of memory (Sun Microsystems, Santa Clara, CA, USA),
in which around 5 min was taken to generate the feature space and
to calculate the covariances.

Discussion

We have discussed a novel scheme for voxel-based compart-
ment model analysis methodology. Four points are covered in the
discussion: the specificity of the algorithm to form a parametric
image, a comparison with other methods for parametric imaging,
the development of a MAP-based algorithm, and the performance
and usability of the proposed approach.

We now discuss the difficulties encountered in parametric
image formation using PET. PET can measure various function-
alities in living tissues using a compartment model analysis. If
the analysis is applied in a voxel-by-voxel fashion, then a
functional image can be derived. Unfortunately, there are two
serious drawbacks in voxel-based kinetic analysis. One is a high
noise factor in voxel-based tTACs, and the other is the large
calculation time required. The small volumes in voxels cause
the high noise seen in voxel-based tTACs, and this leads to
statistical uncertainties in the estimated kinetic parameters. If a
nonlinear estimation algorithm is applied, then voxel-based
parameter estimations tend to include large estimation variances
and/or erroneous results because of this nonconvergence. Fur-
thermore, a nonlinear estimation algorithm involves a consid-
erable calculation time. The algorithm is usually implemented
using an iterative approach, and typically, a compartment model
analysis requires several dozen iterations. Additionally, a con-
volution operation is necessary to calculate a predicted output
using a measured pTAC and interim parameters in these
iterations, which is time-consuming. To make matters worse,
the number of voxels can reach up to half a million. A PET
camera has 128 x 128 voxels per slice, and can capture over 30
slices, giving a total of 5 x 10° voxels. For parametric image
formation, the model estimation algorithm should be invoked at
each voxel, so a huge calculation time is required. If it requires
10 s to obtain one voxel-based parameter estimation, then a
couple of months will be required to form a parametric image.
The sbove considerations make functional imaging in PET
impractical. .

The proposed approach is designed to overcome these problems
using MAP algorithm. The model parameters are determined based
on their proximity in the shape of a tTAC between a measured
voxel-based tTAC and tTACs located in the bank of noise-free
tTACs. The proposed approach tries to find most matched noise-
free tTAC for a given feature space. Accordingly, the proposed
approach does not invoke any parameter estimation algorithm, and
the problems regarding parameter estimation and calculation time
are therefore resolved.

The dimensionality of a feature space must be given a priori,
because it defines the experimental space. In this study, an optimal
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dimensionality was decided by using the simulation for validation
method and a covariance complexity based on an information
theory, as shown in Fig. 5. In the result, three dimensions were
chosen as the optimum choice. The number of estimated
parameters used was two: k, and ks, because k; was ignored as
shown in Eq. (3). This implies that a dimensionality higher than
two is desirable to consider the noise in a tTAC. Moreover, the
dimensionality must also be decided to take into account the
signal-to-noise ratio. In Fig. 3, the projections were not located
around the feature surface, but were widely scattered. This
situation means that considerable noise was present. If the
dimensionality used were too high, then a defined feature space
would be composed of noise rather than the tTAC.

A covariance complexity denotes a uniformity of information in
a given dimensionality and each axis defining a feature space. If
the complexity is near 0, most information concentrates on first
some axes. The result conveyed that the feature space was
governed by the first some principal axes because the complexity
was low; its maximum was 1.0 because of the definition, and it was
smaller than 0.1 in all range of dimensionality. And, the complexity
was increased at the dimension of two as shown in Fig. 5C, which
represents that a new information can be expected if the 2nd axis is
incorporated. In our performance-based simulation, at higher

dimensions, the estimates were too low, and the linearity
diminished. On balancing the number of parameters and quality
of the input signal, three dimension remains the optimum choice.
In the proposed algorithm, projected feature points are classified to
multiple categories corresponding to pairs of &, and k3 laid in a
physiologically possible range. It is a complicated situation, and
both information theory and performance-based indices are
reasonable choices to decide the dimensionality for feature space
definition.

We also compared the proposed method with other algorithms
for voxel-based estimation. Some approaches linearize the com-
partment model to simplify the estimation process. Logan plot
(Logan et al., 1996) and Patlak plot (Patlak et al., 1983) are popular
algorithm choices for this operation, which uses a line estimation
algorithm. RPM (Gunn et al, 1997) is another widely used
algorithm used to visualize the binding potential using a spectrum
approach. These algorithms are computationally simple and are
therefore fast, because they are implemented with a linear
estimation algorithm or a search for a minimal residual point
from a table, and an iteration and convolution are not required.
However, these algorithms can estimate only limited parameters: a
distribution volume, an influx parameter, or a binding potential.
Furthermore, the applicability of these algorithms depends on the

Fig. 8. Clinical images of glucose metabolism in a normal young female in panels A and B, and Alzheimer patient in panels C and D. Panels A and C were
derived from the proposed algorithm, and panels B and D were formed by Patlak plot. All images were processed with a median filter.
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kinetics of an administered radiopharmaceutical. Because FDG is
trapped in a cell, then Logan plot and RPM are not applicable, but
using Patlak plot is feasible. In contrast, the proposed algorithm
can estimate all kinetic parameters, and is applicable to any
compartment model, because the proposed approach is based on a
general compartment model, and there is no assumption involved
in the model kinetics. Likewise, for determination of optimal
estimates, the method searches the nearest feature point instead of
invoking nonlinear optimization algorithm which is usually utilized
for a compartment model estimation. Accordingly, the proposed
algorithm is computationally simple and fast.

We now consider the method based on statistical approach for
medical image processing. An interesting study is the mixture
analysis approach (O’Sullivan, 1993). O’Sullivan assumed tTACs
as a weighted sum of sub-tTACs extracted from a dynamic data
using a clustering algorithm. Clustering for PET data analysis was
summarized in O’Sullivan (1994). Averaging dynamic data in
voxels that belong to the same cluster improves the signal-to-noise
ratio in voxel-based dynamic data, and it is helpful for parametric
image formation (Kimura et al., 1999; Kimura et al., 2002; Kimura,
2004; Bentourkia, 2001; Wong et al., 2002; Bal et al., 2004; Guo et
al., 2003). Additionally, it can reduce the number of data to be
analyzed, and makes parametric image formation practical (Kimura
et al., 1999; Kimura et al., 2002).

In Kimura (2004), an unsupervised clustering approach was
implemented using a Gaussian mixture model. However, because
of the large volume of data, the clustering algorithm used was
rather unstable for convergence. In the proposed algorithm, MAP
approach was introduced. The concept of MAP is that a priori
knowledge is incorporated in order to develop the performance for
parameter estimation. In MAP, an object function to be maximized
for parameter estimation is composed as a sum of a likelihood and
a priori probability (Sparacino et al., 2000). Various ways were
proposed to define a priori knowledge: using maximum-likelihood
estimates for the analysis of glucose contents in the blood
(Sparacino et al.,, 2000), or using population-based values
(Callegari et al., 2002), applying population-based averaged values
to estimate FDG PET data (Bertoldo et al,, 2004), including
physiological constraints as a penalty term in an object function for
model estimation (O’Sullivan and Saha, 1999) which can reduce
estimation variance significantly for FDG imaging, and the
approach was extended to spectral analysis (Trukheimer et al.,
2003). In the method, a flat prior was defined in a parameter space
which means that all parameters have even possibilities, and the
Mahalanobis distance was introduced to realize MAP estimation
using measured likelihoods derived from random sampling
scheme.

The performance and usability of the proposed approach
technique is now discussed. Both simulation and clinical studies
showed that the estimates using the proposed algorithm approach
were very close to, or had a linear relation to either the true
parameters (Fig. 4) or to the ROI-based ordinary kinetic results
(Figs. 6 and 7). The estimated CMRGlc data always coincided with
both the true values and the ROI-based kinetic data, which are
shown in Figs. 4D and Fig. 7 CMRGle-1. In the CMRGlc image
shown in Fig. 8, some cortical structures between the gray and
white matter were well visualized, and the thalamus could be
identified. For the k, data, the performance depended on the value
used. In the range &, < 0.16 (the expected normal range of k,), the
estimate was almost identical, shown by the solid line in Fig. 6A.
In addition, there was a 27% underestimation for larger &, values,

shown by the dashed line in Fig. 6A. However, it can be said that
the estimates are linearly correlated with the ROI-based kinetic
results for all ranges of k. The performance of ks was worse than
that of k). In the expected normal range of ks, i.e., k3 < 0.13, the
estimate was 27% underestimated from the results of the ROI-
based kinetic analysis. For higher values of ks, the estimates had
almost identical values with the ROI-kinetics. Moreover, for all
ranges of k3, a linear relation existed.

CMRGlc and DV were compared with Patlak plot in Figs. 4 and
7. Patlak plot is a well-established graphical approach which enables
voxel-based calculation of both quantities. For CMRGIc, these two
methods can offer good estimates and they were almost identical
with an ordinal ROI-based kinetic analysis. While for DV, a situation
was worse. The DV by the proposed algorithm was largely
underestimated and only weak linear relation could be found. In
clinical images of CMRGIc and DV in Fig. 8, the images derived
from the proposed algorithm were less noisy than those made by
Patlak plot especially in DV images; the estimation deviations
derived from the proposed algorithm were 8% and 35% smaller than
those of Patlak plot for CMRGlc and DV, respectively. Patlak plot
calculates DV as a y-intercept, and it is sensitive for an estimation
variance in a gradient of the plot. In the proposed approach, noise
propagation in a voxel-based tTAC is considered as a likelihood
function on the feature surface, and it might contribute an image
quality developed.

Usually in FDG PET study, only CMRGIc is utilized for
clinical purposes because a CMRGIc image contains some
information for brain pathophysiology and it is easy to measure.
Some previous works concluded that glucose transporters
(Kalaria and Harik, 1989) and a clearance rate of glucose
(Feinendegen et al., 2001) were affected by Alzheimer disease or
cerebral infarction. Kalaria (Kalaria and Harik, 1989) reported
that the hexose transporter located in the brain capillary was
significantly decreased in Alzheimer patients. Also, &, images in
Alzheimer patients have lower parts in the temporal lobe as
shown in Fig. 8. They suggested that there is potential usefulness
for the study of cerebral metabolism, and the method for voxel-
by-voxel compartment model analysis should be developed. In
the images in Fig. 8, the brain structure was well visvalized, and
a defect part in Alzheimer case is available. Fig. 8 showed that
the glucose transportation was not homogeneous, and that it was
higher in the cerebellum than in the cerebral images. Moreover,
the images on cerebral glucose metabolism have different
appearance between normal and Alzheimer case. This supports
potential for more clinical application.

The overestimation and underestimation values speculated to
originate from the distorted shape of the feature surface are shown
in Fig. 2. The surface has a topologically quadrangular shape, but it
is mostly curved. In the case of large k; values, the surface
becomes narrow, and the projections of the measured voxel-based
tTACs fluctuate in a wider range of parameter values than those of
smaller k3 values. This local difference in shape probably
influences the different performances in the estimates. Further-
more, k; was a constant during generating noisy tTACs to calculate
covariances on the feature surface, see Fig. 1, and a variance of
tTAC was assumed to be proportional to the true tTAC value. The
current algorithm ignores the dependency of noise distribution on
an amplitude of tTAC. It would be needed to develop the algorithm
in which tTAC amplitudes is considered. Using the proposed
method, the noise propagation from the measured tTAC to the
kinetic parameters was modeled in a statistical fashion, and it was
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successful in realizing reliable estimates. More complicated
statistical modeling is possible, but the proposed multivariate
Gaussian scheme is a reasonable choice.

In summary, the proposed algorithm provides good CMRGle
images, which are identical to those from ordinary ROI-based
kinetic analysis. The k, images are almost identical for values in
the normal range. Images show underestimated k3 and DV;
however, the contrast is well maintained. The proposed scheme
is theoretically expandable to the compartment model analysis for
receptor kinetics because of no assumption for compartment model
estimation. However, it causes an increase of the number of
parameters, and the shape of feature surface becomes presumably
more complex. More robust algorithm will be required.
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