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number in the selected area to estimate percent area containing
intravascular and extravasated EB as an approximate index of BBB
breakdown, Image analysis was focused on the paramedian portion
of the corpus callosum facing the dorsal part of the lateral ventricle,
because WM lesions were most intense in this region.?

Statistical Analysis

All data are presented as means:*=SE. A one-factor ANOVA fol-
lowed by Fisher protected least significant difference procedure was
used to compare the differences between groups. P values <0.05
were considered to be statistically significant.

Results

The amount of total MMP-2 in the forebrain extracts was
comparable between the vehicle-treated and AG3340-injected
rats after BCAO as assessed using the Biotrak Activity Assay
System. The percentage of activated MMP-2 was only 7% on
day 3 after the sham operation but was elevated to approximately
80% on day 3 after the BCAO (supplemental Figure I, available
online at http://stroke.ahajournals.org). We also confirmed al-
most complete suppression of MMP-2 activation with AG3340
administration.

The operation was successful in rats (n=40) except 3,
which developed convulsions and was killed within 7 days,
and in mice (n=62) except 4, which developed cerebral
infarction. These animals with unsuccessful operations were
excluded from the statistical analysis. In the vehicle-treated
animals, severe WM lesions, as shown by an increased
number of disarranged nerve fibers and vacuolation, were
found on day 14 after the BCAO in the optic nerve, medial
part of the corpus callosum (Figure 1B and 1E), the internal
capsule, and the fiber bundles of the caudoputamen. In such
WM regions, the number of Ricinus communis agglutinin-1-
positive microglia and GFAP-positive astroglia increased (2-
to 3-fold) on day 3 after the BCAO (Figure 1H and 1K). Both
WM lesions and gliosis were less severe in the AG3340-
treated animals (Figure 1C, 1F, 11, 1L, 1P through 1R, and
Table 1).

The BBB integrity in rats subjected to BCAO was also
assessed by the immunostaining for IgM. IgM-immunoreactive
glial cells represent those cells that have taken up the serum
proteins, which leaked into the brain parenchyma, and their
number serves as an indicator of BBB dysfunction.® Some
IgM-immunoreactive glial cells were found in the vicinity of the
microvessels in the corpus callosum in the vehicle-treated
animals on day 3 after the BCAO (Figure 1R), suggesting BBB
dysfunction in this region. In contrast, much fewer IgM-
immunoreactive glia were found in the same area of the
AG3340-treated animals (Figure 10 and 1R).

These results strengthen the notion that MMPs play a role
in BBB impairment and WM lesions. To further elucidate the
roles of MMPs in the WM damage after chronic cerebral
hypoperfusion, we applied BCAS (the established technique
for mice hypoperfusion)? for mice lacking functional MMP-2
gene (MMP-2-null mice), which showed no obvious devel-
opmental abnormalities’® or brain anomalies'! and examined
its effects using histochemical methods. The reduction of
CBF after BCAS was comparable between wild-type and
MMP-2-null mice. The CBF reductions (wild-type versus
MMP-2-null; mean*+SE %, n=3 each) were 42.5+4.3% versus

39.1%3.2% (2 hours after BCAS), 38.1+4.3 versus 39.4x4.0 (3
days), 35.2*4.6 versus 33.6=6.2 (7 days), 20.8+14 versus
26.9+3.1 (14 days), and 11.2+3.0 versus 24.0+4.0 (30 days). In
wild-type mice, MMP-2-immunoreactive glial cells increased after
BCAS compared with sham-operated mice (Figure 2A and 2B).
MMP-9-immunoreactive cells were not induced after BCAS
in both wild-type (Figure 2C and 2D) and MMP-2-null mice
(Figure 2E). Consistently, zymography using forebrain homog-
enates revealed only a faint band of MMP-9 in the samples after
BCAS for 3 days in both wild-type and MMP-2-null mice
(n=4), whereas a robust band was found in the sample from a
mouse with an incidental cerebral infarction after BCAS (Figure
2G). A band of MMP-2 was detected in the samples in wild-type
mice but not in MMP-2-null mice after BCAS (n=4). However,
zymography using such homogenates failed to show the upregu-
lation of MMP-2 after 3 days of BCAS; regional upregulation of
MMP-2 in the WM seemed obscured.

Kliiver-Barrera staining revealed that WM lesions were
predominant in the corpus callosum, caudoputamen, and
internal capsule but not in optic tract on day 30 after BCAS
in the wild-type mice. The medial part of the corpus callosum
adjacent to the lateral ventricles was most severely affected
(Figure 3E). In MMP-2-null mice, such WM lesions were far
less severe (Figure 3I; Table 2). The mouse model showed
little damage to the visual pathway and no difference was
found between the wild-type mice and MMP-2-null mice
after the operation. This may be attributable to the fact that
BCAS in mice induces a milder decrease in the CBF than in
the rat model and maintains a residual blood flow within the
common carotid arteries and its branch, the ophthalmic
artery.

In the wild-type mice on day 14 after BCAS, numerous
activated microglia, as visualized by immunostaining with
anti-MHC class II antibodies, were found in some WM
regions (Figure 3F). In addition, the number of GFAP-
immunoreactive astroglia increased in these mice (Figure
3G). In the MMP-2-null mice, the number of microglia and
astroglia was much fewer in the WM as compared with the
wild-type animals (Figure 3J, 3K, 3P, 3Q). Thus, both WM
lesions and glial activation after chronic hypoperfusion were
dramatically reduced in the MMP-2-null mice. There was no
difference of the number of microglia, astroglia, and IgM-
positive cells in optic tract (Figure 3P).

The BBB integrity in mice subjected to BCAS was
assessed by the immunostaining for IgM and EB extravasa-
tion assay. After BCAS, the number of IgM-positive cells
increased in the WM of the wild-type mice (Figure 3H) as
compared with the sham-operated wild-type animals (Figure
3D). Intriguingly, the IgM-immunoreactive cells significantly
decreased in the WM of MMP-2-null mice after BCAS
(Figure 3L and 3R). IgM-immunoreactive cells were identi-
fied as astroglia based on their colabeling with GFAP in the
perivascular areas (Figure 3L through 30). Three days after
BCAS, EB apparently leaked into the perivascular area in the
corpus callosum (Figure 4B) and the cerebral cortex (data not
shown). This extravasation was most notable in the parame-
dian portion of the corpus callosum. At all time points after
BCAS, no extravasation of EB could be detected in the
MMP-2-null mice (Figure 4C). The estimated percent area
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Figure 1. Histologic evaluation of the WM lesions in rats after chronic cerebral hypoperfusion with or without AG3340-treatment. A
through O, Kliver-Barrera staining on day 14 (A through F; myelin sheath} or immunostaining on day 3 for Ricinus communis
agglutinin-1 (G through I; microglia), GFAP (J through L; astroglia), or igM (M through O) of the corpus callosum (A through C, G
through O) and optic tract (D through F) of rats that had undergone sham operation (A, D, G, J, M) or BCAO operation, which had been
treated either with vehicle (B, E, H, K, N) or AG3340 (C, F, |, L, O). Scale bar, 50 um. (P through R) A histogram representing the den-
sity of cells immunoreactive for Ricinus communis agglutinin-1 (P), GFAP (Q), or IgM (R) in sections from the corpus callosum (CC),
caudoputamen (CP), and optic tract (OT) in rats 3 days after a BCAO (n=4 each; *P<0.05, ~P<0.01).

stained with EB was approximately 8% in wild-type mice
after BCAS, which significantly reduced to 2% in MMP-2-
null mice after BCAS (Figure 4D). Taken together, these
results indicated that loss of MMP-2 alleviated BBB damage
after BCAS and suggested a causative role for MMP-2 in the
WM lesions after hypoperfusion.

TABLE 1. Histologic Grading of the WM Lesions in Untreated
and AG3340-Treated Rats on Day 14 After BCAO

Corpus Callosum Caudoputamen Optic Tract

Vehicle, N=5 1.3+045 1.4£0.54 2.6x0.55

AG3340, N=4 0.5x0.4" 0.63+0.25 1.13%0.63"
*P<0.05.

Discussion
The synthetic MMP inhibitor AG3340 is known to inhibit
several MMP family members, including MMP-2 (Ki=0.05
nmol/L), MMP-9 (0.26 nmol/L), MMP-13 (0.03 nmoVl/L), and
MT1-MMP (0.33 nmol/L).1? As a lipophilic, low-molecular-
weight (Mr 423.5) compound, AG3340 can readily cross the
BBB.!2 Using this compound, we have demonstrated that
AG3340 shows protective effects against the WM lesions
after chronic cerebral hypoperfusion in rats. This is consistent
with our previous data using the same model, which showed
a correlation of WM lesions with MMP-2 upregulation.®
Then, AG3340 may have reduced the severity of WM lesions
by inhibiting MMP-2 activation. In support of this notion,
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genetic deletion of MMP-2 attenuated the WM lesions after
chronic cerebral hypoperfusion in mice. These data jointly
suggest that MMP-2 upregulation plays a major role in the
WM lesions.

Previous studies have established the importance of the
upregulation and activation of MMPs in acute brain ische-
mia.’3-15 Among the members of the MMP family (n=20),
MMP-9 is of particular interest in the context of acute brain
ischemia, because the selective upregulation of MMP-9 has
been observed in the brains of patients with stroke.!s More
importantly, the neuronal damage after cerebral ischemia was
attenuated in the MMP-9-null mice compared with the
wild-type mice.!¢ Furthermore, Heo et al demonstrated asso-
ciation of MMP-9 upregulation with hemorrhagic transfor-
mation in the nonhuman primates.!” Thus, MMP-9 upregula-
tion may contribute to the BBB damage and infarct size,
especially in the acute setting. Although previous study
demonstrated the upregulation of MMP-9 in MMP-2-null
mice,'® no upregulation of MMP-9 was observed in our
model, which suggested a negligible role of MMP-9 in
chronic cerebral hypoperfusion.

— 81

Figure 2. A through F, Immunohisto-
chemical analysis for MMP-2 (A through
C) and MMP-9 (D through F)} in the cor-
pus caliosum of wild-type mice (A, B, D,
E) or MMP-2-null mice (C, F) on day 3
after sham operation or BCAS (B, D). G,
Zymography assay of the samples from
a mouse with incidental cerebral infarc-
tion (Cl), a wild-type mouse and an
MMP-2-null mouse 3 days after BCAS.
Note the absence of compensatory
upregulation of MMP-9 in MMP-2-null
mice.

& 72-kDa

What then would be the role of MMPs in cerebral ische-
mia? Hamann et al reported disappearance of the basal lamina
around the microvessels during cerebral ischemia and reper-
fusion.” Fukuda et al demonstrated that the ischemic primate
brain contained elevated levels of activity enough to digest
basal lamina components such as type IV collagen.!® In fact,
Heo et al indicated that MMP-2 upregulated significantly by
1 hour after MCAQ!8 and was persistently elevated thereafter
in primates, and Chan et al demonstrated the upregulation of
activation system for latent MMP-2 after focal cerebral
ischemia.?? These findings support the hypothesis that exces-
sive degradation of the vascular basal lamina is a mechanism
by which MMP triggers BBB dysfunction, edema, hemor-
rhage. The most marked extravasation of Evans blue in the
paramedian portion of the corpus callosum facing the lateral
ventricle was consistent with a previous report on a rat model
of chronic cerebral hypoperfusion?! and further indicated a
vulnerability of the BBB in this area. In the case of chronic
hypoperfusion, a previous study suggested the association of
MMP-2 but not MMP-9 upregulation with BBB disruption.
Consistently, Rosenberg et al showed that the activated
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Figure 3. Histologic evaluation of the WM lesions in wild-type and MMP-2-null mice after BCAS. A through L., Kliver-Barrera staining
28 days after BCAS (A, E, I) and immunostaining 14 days after BCAS for MHC class Il (B, F, J), GFAP (C, G, K), or igM (D, H, L) of cor-
pus callosum sections from wild-type (Wt) mice (A through H) or MMP-2-null (M27) mice (I through L) that had undergone either a sham
operation (A through D) or BCAS (E through L). Note that MMP-2 gene knockout recover the decrease of Kliiver-Barrera staining in the
WM after BCAS (compare E with I} and glial activation (compare F with J for microglia and G with K for astroglia). Scale bar, 50 um. M
through O, Double staining with GFAP and IgM of the WM lesions in wild-type mice after BCAS. IgM was observed on endfest of
GFAP-positive glia (0). Scale bar, 10 um. P through R, A histogram representing the density of cells immunoreactive for MHC-class Il
or Iba-l (P}, GFAP (Q), or IgM (R) in sections from the corpus callosum (CC), caudoputamen (CP), and optic tract (OT) of mice that had
undergone BCAS (n=6 each; *P<0.05, “*P<0.01). For the microglial count, anti-MHC-class |l antibodies were used for mice with BCAS
operation, whereas anti-lba-| antibodies were used for mice with sham operation (P). Note that glial activation was not observed in the
optic tract, being consistent with the absence of rarefaction of this structure.
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TABLE 2. Histologic Grading of the WM Lesions in Wild-Type
and MMP-2-Null Mice on Day 30 After BCAS

Corpus Anterior
Caltosum Caudoputamen Commissure
Wild-type, N=6 1.5+08 1.3+0.58 0.5+0.5
MMP-2-null, N=6 0.5+0.8* 0.58+0.37* 00
*P<0.05.

astroglia and microglia/macrophages around the arterioles
expressed MMP-2 and MMP-3, but not MMP-9, in the brains
of patients with vascular dementia.®

Caplan®* proposed that the major pathologic features of
WM lesions such as demyelination and gliosis may result
from a BBB dysfunction, which allows the leakage of
proteins and fluid through the compromised barrier of the
penetrating arteries. This hypothetical pathway is consistent
with our present findings. Given the overlapping substrate
specificity between MMP-2 and MMP-9, in the case of
chronic cerebral hypoperfusion, MMP-2 may contribute to
the BBB disruption through the excessive digestion of the
vascular basal lamina and activation of glia. In addition,
MMP-2 may be directly involved in demyelination associated
with WM lesions, because MMP-2 can digest myelin more
efficiently than MMP-9.2¢
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Figure 4. Evaluation of BBB dysfunction in the corpus callosum
of mice. The Evans blue extravasation assay was performed on
day 3 after a sham operation in wild-type mice (A) or on day 3
after BCAS in wild-type (B) and MMP-2-null mice (C). A magni-
fied view of the area indicated by an arrow in the upper panel is
shown in the lower panel (A through C). The experiments were
repeated in triplicate with similar findings (n=4 each). Scale bar,
100 um. A histogram representing the degree of Evans biue
extravasation as an approximate index of BBB breakdown (see
“Methods”) (D).

In conclusion, the present study has provided direct
evidence that MMP-2 is involved in the pathogenesis of
WM lesions in the mouse model. Although the species
difference between rodents and humans should be taken
into consideration, our data also suggest the potential value
of MMP inhibitors in preventing subcortical ischemic
vascular dementia resulting from BBB dysfunction and
chronic cerebral ischemia in humans. Activation of
MMP-2 is reported to participate in matrix injury during
focal cerebral ischemia. An elucidation of the exact roles
of MMP-2 in BBB disruption may also provide informa-
tion useful in developing strategies for controlling neuroin-
flammation in general.
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5100 protein is expressed primarily by astroglia in the brain, and accumulates in and around
the ischemic lesions. Arundic acid, a novel astroglia-modulating agent, is neuroprotective in
acute cerebral infarction, whereas the protective effects remain unknown during chronic
cerebral hypoperfusion. Rats undergoing chronic cerebral hypoperfusion were subjected to
a bilateral ligation of the common carotid arteries, and were allowed to survive for 3,7 and
14 days. The animals received a daily intraperitoneal injection of 5.0, 10.0 or 20.0 mg/kg of
arundic acid, or vehicle, for 14 days, Alternatively, other groups of rats received a delayed
intraperitoneal injection of 20.0 mg/kg of arundic acid or vehicle, which started from 1,30r7
days after ligation and continued to 14 days. The degree of white matter (WM) lesions and
the numerical density of $100 protein-immunoreactive astroglia were estimated. In the WM
of rats with vehicle injections, the number of 100 protein-immunoreactive astroglia
increased significantly after chronic cerebral hypoperfusion as compared to the sham-
operation. A dosage of 10.0 and 20.0 mg/kg of arundic acid suppressed the numerical
increase in $100 protein-immunoreactive astroglia and the WM lesions. These pathological
changes were suppressed with delayed treatment up to 7 days in terms of astroglial
activation, and up to 3 days in terms of the WM lesions. The protective effects of arundic acid
against WM lesions were demonstrated in a dose-dependent manner, and even after
postischemic treatments. These results suggest the potential usefulness of arundic acid in
the treatment of cerebrovascular WM lesions.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

lacunar cerebral infarction, and non-occlusive arteriopathy
causes chronic cerebral hypoperfusion and WM lesions

Ischemic white matter (WM) lesions are frequently observed {Pantoni and Garcia, 1997). Indeed, WM lesions can be induced
in human cerebrovascular diseases (CVD), and are believed to by a ligation of the bilateral common carotid arteries (CCAs) in
be responsible for cognitive impairments in the elderly. It is rats, which leads to a 50-70% decrease in normal cerebral
believed that the occlusion of the small vessels results in blood flow (CBF) over an extended period of time (Tsuchiya

* Corresponding author. Fax: +81 75 751 3766.

E-mail address: tomimoto@kuhp kyoto-u.ac.jp (H. Tomimoto).
Abbreviations: WM, white matter; GVD, cerebrovascular disease; CCAs, common carotid arteries; CBF, cerebral blood flow; iNOS,
inducible nitric oxide synthase; PBS, phosphate-buffered saline; KB, Kliiver-Barrera; BBB, blood-brain barrier; TNFa, tumor necrosis factor

alpha; COX2, cyclooxygenase 2

0006-8993/$ - see front matter ® 2006 Elsevier B.V. All rights reserved.
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et al, 1992; Wakita et al., 1994). The myelins become rarefied
with a proliferation of the astroglia and an activation of
microglia, plus oligodendroglial cell death with DNA frag-
mentation in the WM (Tomimoto et al., 2003).

$100 is a 20-kDa Ca-binding protein composed of « and p
subunits, and is primarily expressed by astroglia in the brain.
This protein may play a dual role in the regulation of cell
function, being beneficial to cells at low doses but detrimental
at high doses (Hu et al, 1996). In human CVD, a significant
correlation has been reported between the plasma concentra-
tion of S100 protein and the volume of the cerebral infarct
(Aurell et al,, 1991). Although low concentrations of $100 protein
protect cultured neurons from glutamate-induced excitotoxic
damage, a high concentration of this protein upregulates the
expression of inducible nitric oxide synthase (iNOS) in cultured
astroglia with the subsequent production of NO and death of
astroglia and neurons (Hu et al., 1996, 1997; Murphy, 2000).

Indeed, arundic acid, an agent that inhibits the astrocytic
synthesis of $100 (Asano et al., 2005), has been shown to be
neuroprotective in a rat model of acute cerebral infarction
(Tateishi et al., 2002). Arundic acid may interfere with the
intricate pathways of astrocytic activation upstream to the
mRNA expression of various proteins, and is considered to be
a modulator of the gene expression and functions of astroglia
{Asano et al., 2005; Shinagawa et al., 1999).

In the present study, we examined the protective effects of
arundic acid on WM lesions during chronic cerebral hypoper-
fusion, and also investigated its therapeutic window for
delayed treatment. Our results support the potential use of
arundic acid as a therapeutic intervention in human cerebro-
vascular WM lesions with cognitive impairment.

2. Results
2.1.  Mortality rates and laboratory data

In the first series of experiments, 1 out of 7 arundic acid-
treated rats died at a dosage of 5.0 mg/kg (14.3%), and none
died at dosages of 10.0 and 20.0 mg/kg (0.0%). The laboratory
data {erythrocyte count, leukocyte count, GOT, GPT, BUN and
creatinine levels) and rectal temperature were not significant-
ly different between the vehicle-treated and arundic acid-
treated rats (Table 1).

2.2.  Dose-dependent effect of arundic acid on S100 protein
expression

In the WM of the sham-operated animals, only a few astroglia
showed positive immunostaining for the 100 protein. From 3 to
14 days after the operation, the brains of the vehicle-treated
animals showed a numerical increase in astroglia, which were
immunoreactive for $100 protein in various WM regions such as
the optic nerve, optic tract, corpus callosum, and internal
capsule (Figs. 1A-D). These S100 protein-immunoreactive astro-
glia increased in number after BCAO as compared to the sham-
operated control group in these WM regions (Fig, 1E, Table 2).
In the 10.0 and 20.0 mg/kg arundic acid-treated rats, $100
protein-immunoreactive astroglia appeared to be less numer-
ous in the WM regions as compared to the vehicle-treated
animals for 14 days. In the semi-quantitative analysis, the
number of 8100 protein-immunoreactive astroglia was re-
duced in both 10.0 and 20.0 mg/kg arundic acid-treated groups
as compared to the vehicle-treated group (p<0.001; Figs. 2A~
D). The number of astroglia decreased in the 5.0, 10.0 and
20.0 mg/kg arundic acid-treated groups compared to the
vehicle-treated group. The number was also reduced in the
20.0 mg/kg arundic acid-treated animals as compared to the
10.0 mg/kg arundic acid-treated animals (p<0.05), indicating
a dose-dependent effect for arundic acid (Fig, 2E, Table 2).

2.3.  Dose-dependent effect of arundic acid on WM lesions

This dose-related protective effect was similarly observed with
respect to the WM lesions. In the 10.0 and 20.0 mg/kg arundic
acid-treated groups, the scores were lower as compared to the
vehicle-treated group (two-factor factorial ANOVA; p<0.001).
There were no significant differences in grading scores between
the 5.0 mg/kg arundic acid-treated group and vehicle-treated
group. However, the 20.0 mg/kg arundic acid-treated animals
showed a significant reduction (p<0.05) as compared to the
10.0 mg/kg arundic acid-treated animals (Fig. 2F, Table 2).

2.4.  Effects of delayed treatment

In the delayed-treatment group, which started from 1, 3, or 7
days after the operation, the number of 5100 protein-
immunoreactive astroglia showed a significant decrease in
the WM regions as compared to the vehicle-treated animals

Table 1 - Summary of the laboratory data in rats receiving vehicle or arundic acid
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Fig. 1 - Photomicrographs of the immunohistochemical staining for $100 protein in the corpus callosum. The rats were
subjected to a sham operation (A), orbilateral ligation of the carotid arteries for 3 days (B), 7 days (C) or 14 days (D). An inset in (D)
indicates that 5100 protein is intensely expressed in astroglial foot processes around the blood vessel. Bars indicate 100 pm.
E: Histograms of the numerical densities of $100 protein-immunoreactive astroglia in the WM of the rats after a bilateral
common carotid artery occlusion. Six animals were used in each group. The asterisks indicate statistical significance at p<0.01
by Mann-Whitney U test when compared with the sham-operated controls. cc, corpus callosum; ic, internal capsule,

for 14 days (Figs. 3A-E, Table 2). The WM lesions were less
severe (two-factor factorial ANOVA,; p<0.001) as compared to
the vehicle-treated group in the groups starting at 1 day and
3 days after the operation (Fig. 3F, Table 2), but there were no
significant changes in the group starting at 7 days.

3. Discussion

In the present study, we demonstrated a protective effect for
arundic acid against astroglial activation and WM lesions
during chronic cerebral hypoperfusion. Arundic acid sup-
pressed both the activation of the astroglia and the WM
lesions in a dose-dependent manner. Both the astroglial
activation and WM lesions were suppressed at dosages over
10 mg/kg, whereas the dosage of 5.0 mg/kg suppressed the
astroglial activation exclusively. Therefore, it is unlikely that
the activation of the astroglia was secondary to the WM

damage, but rather seems to be related to the causative
mechanism.

Microglia and astroglia are activated in the WM aberrantly
after chronic cerebral hypoperfusion (Wakita et al., 1994). This
activation occurs in a manner that predicts the extent and
severity of the subsequent WM damage, suggesting an
important role of glial activation in the pathogenesis of WM
lesions. In the susceptible WM, apoptosis of the oligodendrog-
lia is induced with an upregulation of inflammatory cytokines
including tumor necrosis factor alpha (TNFe), and free radicals
released from activated microglia and astroglia (Tomimoto et
al., 2003). In addition, the compromised BBB (Ueno et al., 2002)
may allow the entry of macromolecules and other blood
constituents such as proteases, immunoglobulins, comple-
ments, and cytokines into the perivascular WM tissues.

In studies using a neuronal and astroglia co-culture
system, a high concentration of S100 protein upregulated NO
release from the astroglia, which was shown to be neurotoxic

Table 2 — The number of S100 protein-immunoreactive astroglia in the white matter




198 BRAIN RESEARCH 1135 (2007) 195-200

[X)

astroglia (per 0.3mm?)

Grading Score

vehicle 10.0 mg/kg
5.0mg/ke B 20.0 mg/kg

Fig. 2 ~ Photomicrographs of the immunchistochemical staining for $100 protein in the corpus callosum. The animals received
an intraperitoneal injection of vehicle (A} or 5.0 mg/kg (B), 10.0 mg/kg (C) and 20.0 mg/kg (D) of arundic acid for 14 days.

In the arundic acid-treated animals, astroglia immunoreactive for 100 protein were less numerous as compared with the
vehicle-treated animals. Bars indicate 100 pm. The histograms show the numerical densities of $100 protein-immunoreactive
astroglia (E), and the grading scores for the WM lesions (F) in rats receiving either vehicle or arundic acid for 14 days.
*p<0.05; **p<0.01 by Fisher’s protected least significant difference procedure, as compared to the vehicle-treated animals.
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Fig. 3 - Photomicrographs of the immunohistochemical staining for $100 protein in the corpus callosum. The animals received
an intraperitoneal injection of 20.0 mg/kg of arundic acid from 1 day (B), 3 days (C) or 7 days (D) after the operation, until

14 days. The control animals (&) received a daily injection of vehicle 1 day before the operation until 14 days. In the delayed
treatment with arundic acid, the number of $100 protein-immunoreactive astroglia was significantly reduced as compared with
the control animals. Bars indicate 100 pm. The histograms show the numerical density of $100 protein-immunoreactive
astroglia (E) and the grading scores for the WM lesions (F) in rats receiving either vehicle or arundic acid from 1 day, 3 days or
7 days after the operation until 14 days. *p<0.05; **p<0.01 by Fisher’s protected least significant difference procedure, as
compared to the vehicle-treated animals.
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(Hu et al, 1997, Nawashiro et al., 2000). Although the
mechanism of responsible for this astroglial activation by a
low concentration of $100 protein remains unclear, this
protein is believed to be further activated by a positive
feedback loop (Guo et al,, 2001; Murphy, 2000). It is postulated
that these excessively activated astroglia may cause second-
ary tissue damage by the production of cytotoxic cytokines
such as TNFq, and cyclooxygenase 2 (COX2) and iNOS (Lam et
al., 2001; Sharp et al., 2000). Indeed, the delayed expansion of
the cerebral infarction was accompanied by astroglial activa-
tion as well as by an increased tissue level of $100 protein in
the peri-infarct area. Thus, the astroglial overexpression of
S100 protein is considered to play a pivotal role in infarct
expansion by causing alterations in the activities of multiple
intracellular signaling pathways and the expression of various
downstream proteins (Asano et al., 2005; Matsui et al., 2002).

Several in vitro and in vivo studies have determined the
pharmacological actions of arundic acid on astroglia. Arundic
acid acts selectively on astroglia and modulates their
activation, or prevents excessive activation that may be
harmful to neighboring neurons. It does not act on neuronal
cultures directly, but suppresses the changes induced in the
co-cultured astroglia, such as an increase in S100p content,
the secretion of nerve growth factor, a reduction in glutamate
transporter (GLT-1 and GLAST) expression and the disap-
pearance of GABAA receptors, in a dose-dependent manner,
without affecting GFAP expression (Asano et al., 2005;
Himeda et al, 2006; Katsumata et al, 1999; Matsui et al.,
2002). In addition, arundic acid inhibits the expression of
cyclooxygenase-2 or inducible nitric oxide synthase mRNA
induced by lipopolysaccharide in cultured astroglia (Shimoda
et al., 1998).

The dosage ranging from 5 to 20 mg/kg in the present
study was comparable to that used in clinical application
{8 mg/kg/h in acute stroke patients) (Pettigrew et al., in press).
Furthermore, arundic acid was effective in delayed treatment
starting from 7 days in terms of astroglial activation, and
3 days in terms of the WM lesions. This broad therapeutic
time window is of clinical relevance, because the patients
with subcortical vascular dementia, a form of vascular
dementia characterized by diffuse WM lesions, frequently
undergo a latent deterioration and hospitalization delay
(Roman, 2005).

4, Experimental procedures
4.1.  Animals

Chronic cerebral hypoperfusion was induced in male Wistar
rats (150 to 200 g; Shimizu Laboratory Supplies Co. Ltd., Kyoto,
Japan) as previously described (Wakita et al., 1994). The ani-
mals were anesthetized with sodium pentobarbital (25 mg/kg,
i. p.) and were allowed spontaneous respiration throughout
the surgical procedure. Through a midline cervical incision,
both CCAs were exposed and double-ligated with silk sutures.
Their rectal temperature was monitored and maintained
between 36.0 and 37.0 °C during the surgical procedure, and
the rats were kept in animal quarters with standard rodent
chow and tap water ad libitum after the operation.

4.2, Treatment with arundic acid

The rats with vehicle (saline) treatment were sacrificed at 3,7
and 14 days (body weight, 300 g; n=6, for each group) to study
the temporal profile of the S100 protein-immunoractive
astroglia and the WM lesions. In the first series of experiments
with arundic acid, the animals received a daily intraperitoneal
injection of 5.0, 10.0 or 20.0 mg/kg of arundic acid, or vehicle,
from 1 day before the operation to 14 days afterwards (n=6 for
each group). At 14 days after ligation, the animals were
sacrificed and subjected to the experiments detailed below.
The sham-operated animals were treated similarly to the
operated ones, except the CCAs were not occluded. In the
second series with a delayed-treatment, the animals received
a daily intraperitoneal injection of 20.0 mg/kg of arundic acid
or vehicle from 1 day, 3 days or 7 days after the operation until
14 days (n=6 for each group). At 14 days after ligation, the
animals were sacrificed and subjected to the experiments
detailed below. The control animals received a daily injection
of vehicle 1 day after the operation until 14 days.

4.3.  Standard histological and immunohistochemical
study

After the operation, the animals were deeply anesthetized
with sodium pentobarbital and were perfused transcardially
with 0.01 mol/L phosphate-buffered saline (PBS), and then
with a fixative containing 4% paraformaldehyde and 0.2%
picric acid in 0.1 mol/L PB (pH 7.4). The brains were then stored
in 20% sucrose in 0.1 mol/L PBS (pH 7.4). These specimens were
embedded in paraffin and sliced into 2 pm-thick coronal
sections. Klilver-Barrera (KB) staining was used to observe any
histological changes. The severity of the WM lesions was
graded as normal (grade 0), disarrangement of the nerve fibers
(grade 1), formation of vacuoles (grade 2) and loss of
myelinated fibers (grade 3) by two independent investigators
blinded to the type of treatment, as described elsewhere
(Wakita et al.,, 1994). For the immunohistochemistry, poly-
clonal antibodies directed against the S100 protein (diluted
1:1000; Dakopatts, 4.5 mg/L) were used in the present study.
After incubation with the primary antibodies, the sections
were treated with a biotinylated anti-rabbit antibody (IgG)
(diluted 1:200; Vector Laboratories), and an avidin biotin
complex (diluted 1:200; Vector Laboratories) in 20 mmol/L
PBS containing 0.3% Triton-X. The sections were finally
incubated in 0.01% diaminobenzidine tetrahydrochloride and
0.005% H,0, in 50 mmol/L Tris HCl (pH 7.6). To test the
specificity of the immunohistochemical reaction, coronal
sections were treated with normal mouse IgG instead of the
primary antibodies. The number of nuclei with S100 protein-
immunoreactive cytoplasm was counted against a square test
grid in 20 representative fields (per 0.3 mm?) of the corpus
callosum and internal capsule (n=6) by two independent
investigators blinded to the type of treatments as described
previously (Tomimoto et al., 1996).

4.4.  Statistical analysis

The data were expressed as means=SD. Differences in rectal
temperature between the groups were determined by a
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repeated-measure ANOVA. Differences in terms of laboratory
blood data were determined by a one-factor ANOVA between
each group. Differences in the grading scores were determined
by a two-factor factorial ANOVA followed by Fischer’s
protected least significant difference procedure between
each group. The Kruskal-Wallis test followed by post-hoc
test was used to compare the ischemic group with the sham-
operated control group in the semiquantification for $100
protein-immunoreactive astroglia. A p value of<0.05 was
considered to be statistically significant.
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Abstract

Morphological abnormalities of the cortical microvessels have been réported in Alzheimer’s disease (AD), but not in Binswanger’s disease

(BD), a form of vascular dementia. Therefore. we compared the capillary

method and immunohistochemistry for 8 amyloid. Eight autopsied brai

cortical microvessels in AD were frequently narrowed, and torn off, especi
AD were significantly decreased as compared with the control brains. In cc
id revealed numerous deposits in the vascular wall and perivascular neuropil

their morphologies in BD brains. Immunobistochemistry for B amy
exclusively in AD brains. Cortical microvascular changes in AD ‘and
pathology in AD. :
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s imAD and BD brains. using a modified Gallyas silver impregnation

with AD and seven with BD were compared with six control brains. The

ly in close proximity to the senile plaques. The capillary densities in
st, there were no significant changes in the capillary densities and

absence in BD may indicate a role of § amyloid for the microvessel

disease; Silver impregnation; Amyloid protein

ditions have been believed to have an independent
However, in recent studies, co-morbid factors b

type, cholinergic deficits, and white matte
patients with vascular lesions reportedly d

lop dementia more
samong those sub-
jects with senile changes [18]. Take
has shed Iight on the interre]atiomhi ween AD and vas-
:that vascular factors
D. In concordan.ce

may have a role in the pathogenes;
with this hypothem prevu)us el’"‘
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Binswanger’s disease (BD) is a form of vascular dementia,
featured by diffuse white matter lesions, lacunar infarcts and
fibrohyaline thickening of the microvessel {13]. Fibrohyaline
thickening of the microvessels is marked in BD, and significant
but less severe in AD in the cerebral white matter [19]. However,
with respect to the cortical microvessels, there are no studies
in BD. Therefore, we aimed to compare the alterations of the
cortical microvessels in AD and BD using a modified Gallyas
silver impregnation method and immunohistochemistry for
amyloid, which enable us to examine the network of the brain
capillaries, and senile plaques.

We examined 21 brains, including 8 from patients with AD (3
males), 7 from patients with BD (4 males), and 6 from patients
who did not have any neuropsychiatric symptoms or brain
lesions (3 males). The age was 79+ 12 years (mean=xS.D.)
in the AD, 74+ 13 years in the BD and 73 =4 in the control
groups, respectively, among which no significant differences
were observed (p <0.05). The brain weight was 1020+111g
inthe AD, 1093 4 112 g in the BD, and 1244 4+ 57 g in the con-
tro} groups, respectively. The brain weight in the AD group was
significantly lower than in the controf and BD groups (p <0.05).
The patients with AD and BD, but not the control patients, met
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