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Fig. 4. Optical images of a cross section at
the level of the RVLM during low-Ca
high-Mg superfusion. A depolarizing re-
sponse to IML stimulation was detected at
the RVLM (n = 6). The latency between
stimulation of the IML and the start and the
peak of the depolarizing response at the
RVLM was 27 = 9 and 35 = 10 (SD) ms,
respectively.

Oms

40 ms

(GABA) to the superfusion solution. IML stimulation during
superfusion with low-Ca high-Mg solution containing GABA
(200 pwmol/l, n = 7) did not induce any depolarizing responses
in the cross sections at the level of the CeVLM (Fig. 6) or of
the RVLM.

Electrophysiological experiments. Other brain stem-spinal
cord preparations were fashioned for the electrophysiological
experiments, and during low-Ca high-Mg superfusion anti-
dromic action potentials in response to IML stimulation were
clearly detected in 9 CeVLM neurons by intracellular record-
ings (whole cell patch-clamp technique; Fig. 7) and in 16
CeVLM neurons by extracellular recordings. The latency be-
tween IML stimulation and detection of the antidromic action
potential was 21.6 * 7.1 ms by extracellular recording and
27.2 = 4.6 ms by the whole cell patch-clamp technique. These
latencies are almost the same as the latency between IML
stimulation and the depolarizing response in the CeVLM mea-
sured by optical imaging of cross sections (see Fig. 5). The
spontaneous action potentials of the CeVLM neurons (extra-

-0.1%:

Fig. 5. Optical images of a cross section at :
the level of the CeVLM dwing low-Ca :
high-Mg superfusion. A depolarizing re-

sponse to IML stimulation was detected at

the CeVLM (n = §). The latency (means =

SD) between stimulation of the IML and the

start and the peak of depolarizing response at

the CeVLM was 24 = 5 and 36 = 8§ ms,
respectively.

40 ms
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cellular recording) collided with subsequent antidromically
evoked action potentials.

Glutamate application to the CeVLM. During whole cell
patch-clamp recordings of neurons in the IML with standard
solution (Fig. 8A4), glutamate was applied to the CeVLM
locally after removing more rostral regions, including the
CVLM and RVLM (type 3 preparation, as in Figs. 5 and 6).
Local application of glutamate to the CeVLM increased the
frequency of the excitatory postsynaptic potentials (EPSPs)
and induced significant depolarization (5.6 = 2.5 mV) of the
IML neurons (n = §; Fig. 84). Each EPSP was clearly revealed
by increasing the speed of the sweep (Fig. 8C).

Histological examination. The locations of the neurons in
the CeVLM in which depolarizing responses were detected by
optical imaging and that exhibited an antidromic action poten-
tial in response to IML stimulation were investigated histolog-
ically (Fig. 9A4). The neurons stained with lucifer yellow or
pontamine sky blue were located in the lateral side of the
lateral reticular nucleus (LLRt) or in the LRt, the caudal part of

10 ms 20ms 30ms

50ms

60 ms

AJP-Regul Integr Comp Physiol - VOL 292 « FEBRUARY 2007 - www.ajpregu.org

59 —

2002 ‘Sl Yotew uo Bio ABojoisAyd nBaudie woy pepeojumog




AXONAL PROJECTION FROM CAUDAL END OF VLM TO IML
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Fig. 6. Optical images of a cross section at the level of the Ce VLM before {10p) and during vy-aminobutyric acid (GABA) superfusion {borrom). IML stimulation

during superfusion with low-Ca high-Mg solution containing GABA (200 wmol/l. n = 7) did not induce any depolarizing responses at the CeVLM.

the nucleus ambiguus, and the medial side of trigeminal spinal The location of neurons that exhibited depolarization and an
tract nucleus at the level of pyramidal decussation (Fig. 9, B increase in EPSP in response to local glutamate application to
and C). Thus the anatomic location of the neurons in the the CeVLM and stained with lucifer yellow in the spinal cord

CeVLM satisfied the criteria for the location of the CPA  also corresponded to the IML (Fig. 10, C and D).
described by Sun and Panneton (27, 28).

We tried to confirm that the location of the electrical stim-  pscuSSION
ulation in the spinal cord actually corresponded to the IML,

and the results showed that location of the electrical stimula- Characteristics of neurons in the CeVLM identified by op-
tion and coagulation did correspond to the location of IML  rical imaging. We used optical imaging and electrophysiolog-
neurons (Fig. 10, A and B). ical methods in brain stem-spinal cord preparations of neonatal
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Fig. 7. Antidromic action potential of a neuron in the CeVLM recorded by the
whole cell patch-clamp technique in response to electrical stimulation of the
IML at the Thy level. The latency between stimulation and the start of the
antidromic action potential was 27.2 = 4.6 ms according to the whole cell
patch-clamp recordings (n = 9).

SHRs to determine whether neurons in the CeVLM axonally
project to the IML.. The optical imaging revealed strong depo-
larizing responses in the CeVLM to IML stimulation, and
CeVLM neurons fired antidromic action potentials in response
to the IML stimulation. Glutamate applied in the CeVLM
induced depolarization in the IML neurons. These findings
demonstrated a monosynaptic axonal and excitatory projection
from the CeVLM to neurons in the IML.

A number of studies, including a retrograde tracer study
(10), have reported a monosynaptic projection from the
RVLM, the RVMM, and the raphe nucleus to the IML (1, 4,
23, 26). Several studies have also demonstrated a direct pro-
jection from the CVLM to the IML in adult rats (7, 13), and the
result of a recent tracer study using cholera toxin B subunit
suggested a projection from the CPA to the IML of adult rats
(11). A new region that differs from the CPA, the medullocer-
vical pressor area, has recently been reported 1o project to the
IML in adult rats based on an in vivo retrograde tracer study
(25). Consistent with these findings, the optical imaging in our
study suggested that a continuous longitudinal rostrocaudal
column in the VLM, including the RVLM, the CVLM, and the
CeVLM, gives rise to a monosynaptic projection to the IML.
Because we detected the strongest depolarizing response in the
CeVLM, we focused specifically on the Ce VLM in the present
study. To our knowledge, few studies have succeeded in
optical visualization of the axonal projection from the Ce VLM
neurons that are involved in sympathetic nerve regulation to
the IML.. Because the existence of the projection from the CPA
to the IML had been suggested only by a tracer study (11), the
projection we have found must be discussed critically.

Earlier studies have shown that EPSPs or postsynaptic re-
sponses completely disappeared during superfusion with
low-Ca high-Mg solution, suggesting a complete blockade of
synaptic transmission (6, 17, 22). In our unpublished observa-
tions, many EPSPs were detected in the CeVLM neuron in
response to IML stimulation during superfusion with standard
solution, whereas, during superfusion with low-Ca, high-Mg
solution, the EPSPs observed in the CeVLM neuron to IML
stimulation completely disappeared. Thus unse of a low-Ca
high-Mg superfusion has the advantage of blocking all syn-
apses and enabling detection of only descending monosynaptic
projections alone, whereas, during superfusion with standard
solution, depolarizing responses of descending polysynaptic
projections and ascending projections are detected as well as

AXONAL PROJECTION FROM CAUDAL END OF VLM TO IML

descending monosynaptic projections. In the present study, the
regions that exhibited depolarizing responses during low-Ca
high-Mg superfusion were the same as those that displayed
them during superfusion with the standard solution. In contrast,
the depolarizing responses were less intense during low-Ca
high-Mg supetfusion, and the peak time of the depolarizing
responses during low-Ca high-Mg superfusion occurred earlier
than with the standard solution. These results strongly suggest
that neurons in the CeVLM monosynaptically project to the
IML neurons.

Previous studies found that low-Ca high-Mg solution did not
affect neuronal excitability (6, 18). If neuronal excitability
decreases during superfusion with low-Ca high-Mg solution,
the intensity of the depolarizing responses detected in the
present study should be weaker than the actual depolarizing
responses. Therefore, we did not overestimate the depolarizing
response by optical imaging.

Optical imaging findings on the ventral surface revealed that
the depolarizing response in the Ce VLM was more intense than
in the RVLM. This finding suggests that, in neonatal rats, more
neurons project from the CeVLM to the IML than from the
RVLM and CVLM to the IML but does not imply that neuronal
activity in the CeVLM is stronger than in the RVLM. It may
merely reflect the characteristics of neonatal rats. However, we
were unable to compare the depolarizing responses during the
different developmental stages of the rats in this study.

Because the depolarizing response is the sum of the signals
in the somas (cell bodies) and axon bundles, we investigated
whether the depolarizing response originated in the somas or in
the axons. GABA should bind to receptors on the surface of the
soma, and, as shown in Fig. 6, the depolarizing response of the
CeVLM was completely abolished during superfusion with
GABA. This finding suggests that the depolarizing responses
detected by optical imaging reflected depolarization of the
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Fig. 8. Intracellular recordings of a neuron in the IML at the Th» level (n =
8) during superfusion with standard solution, in the fype 3 preparation, like in
Figs. 5 and 6. A: local application of glutamate (1 mmol/l) to the CeVLM
increased the number of excitatory postsynaptic potentials (EPSPs), induced
depolarization (5.63 = 2.50 mV), and increased the action potential spikes of
the IML neurons. B: few EPSPs were seen before glutamate application. €
each EPSP and depolarization was clearly detected after local application of
glutamate to the CeVLM.
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O intracellular recording
@ extraceliular recording

somas of CeVLM neurons, not depolarization of the axons.
Because we have reported the existence of the CeVLM neurons
for the first time, it is unknown whether GABA receptors are
present on Ce VLM neurons. However, the result that the IML
stimulation during superfusion with low-Ca high-Mg solution
containing GABA did not induce any depolarizing responses in
the cross sections of the CeVLM suggests to us that the
CeVLM neurons possess GABA receptors. An earlier study
reported that CPA neurons possess GABA receptors (24), and,
if the CeVLM newrons correspond to CPA neurons, then
CeVLM neurons probably possess GABA receptors.

We also obtained some optical imaging data in WKY rats as
a control for the SHRs. The data showed similar depolarizing
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Fig. 9. A: location of neurous in the CeVLM
that exhibited an antidromic action potential
in response to electrical stimulation of the
IML. This experiment was carried out during
low-Ca high-Mg superfusion. @, Extracellu-
lar recordings; ©, intracellular recordings.
AP, area postrema; 12, hypoglossal nucleus;
Sp5C, spinal trigeminal nucleus, caudal part;
pyx, pyramidal decussation; LRt, lateral re-
ticular nucleus; RAmb, retroambiguus nu-
cleus; IO, inferior olivary nucleus; IOM, in-
ferior olive, medial nucleus. B: fluorescence
image showing a neuron in the CeVLM that
exhibited an antidromic action potential and
stained with lucifer-yellow. C: drawing of
the location of a neuron that exhibited an
antidromic action potential and that was
stained with Jucifer yellow.

responses to IML stimulation in the CeVLM on the ventral
surface (7 = 5) and cross sections (n = 4) of WKY rats.
Although careful experiments are required to make quantitative
comparisons between the intensity of depolarizing responses in
the CeVLM of WKY rats and SHRs, the results indicate to us
that the projection from the CeVLM to the IML exists in both
normotensive and hypertensive neonatal rats. It would be
interesting to compare responses in the IML neurons of WKY
rats and SHRs when glutamate is locally applied to the Ce VLM
on the preparation in the absence of the CVLM and the RVLM
regions.

Methodological limitations. We cannot completely rule out
the possibility that we may have stimulated regions other than
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Fig. 10. A: histological examination of the
location of IML neurons at the Ths level that
were coagulated at the conclusion of electri-
cal stimulation of the IML. Shown is a cross
section stained with neatral red. Top: dorsal;
bortom, ventral. B: high-magnification image
of A showing the location of electrical stim-
ulation of the IML. The location that was
electrically stimulated and then coagulated
(indicated by the arrow) actually corre-
sponded to the IML neurons. C: a neuron in
the IML that exhibited depolarization and an
increase in EPSPs in response to glutamate
application to the CeVLM. This neuwron
stained with lucifer yellow is the same neu-
ron shown in Fig. 8. Dt cross section at the
Th; level stained with neutral red. The veu-
ron that exhibited the increase in EPSPs,
stained with lucifer yellow, and shown in C
was actually located in the IML region ().
Top: dorsal; bottom, ventral.

the axons and neural terminals of bulbospinal neurons in the
IML region (e.g., ascending neurons). However, for the fol-
lowing reasons, we think that the extent of the electrical
stimulation in this study was relatively restricted to IML. We
used very thin electrodes and carefully identified and stimu-
lated the position of the IML neurons through the CCD camera
$0 as to limit the stimulation point. Indeed, as shown in Fig. 10,
we demonstrated that the stimulation point was accurately
restricted to within the IML region. The location of the depo-
larizing response in Fig. 4 therefore includes RVLM neurons.
The depolarizing response that was detected in the region of
the RVLM in response to IML stimulation served as a good
positive control.

These results also suggested that the stimulation point accu-
rately covered axons and neural terminals of bulbospinal neu-
rons in the IML. We were therefore able to conclude that the
depolarizing responses detected in the CeVLM on both the
ventral surface and cross section were depolarizations of bul-
bospinal neurons. As shown in Fig. 8, we also demonstrated
EPSPs on the IML neurons detected during chemical stimula-
tion of the CeVLM. The results confirmed the occurrence of
orthodromic responses, demonstrating the presence of a func-
tional projection from the CeVLM to the IML.

Developmental issues. Although a tracer study (10) found
that neurons in the RVMM and in the raphe nucleus project to
the IML, we did not detect any depolarizing responses in the
RVMM or the raphe nucleus after IML stimulation. Because
the intensity of the depolarizing response depends on the

AXONAL PROJECTION FROM CAUDAL END OF VLM TO IML
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number of neurons that respond, the number of neurons pro-
jecting from these areas to the IML may be relatively small.
For example, in the raphe nucleus of rabbits between day 26 of
gestation and 6 days of age, the dendrites showed expansion,
increased the number and length of neurons, and developed
abundant spines (5). During this period, the soma grew in size.
After postnatal day 6 to adulthood, a mature pattern of den-
dritic branching was achieved. Therefore, the reason that we
were unable to detect depolarizing responses in the midline
raphe may be because of the immaturity of the neonatal rats.
Second, a previous study showed that gap junctions between
neurons may be more abundant in newborn rats than in adult
rats (3), and the depolarizing responses may have been exag-
gerated by the gap junctions because we used newborn rats that
were only 2—4 days old. The decrease in gap junctions during
development may weaken the depolarizing response.
Physiological implications. In this in vitro study, we inves-
tigated whether the CeVLM corresponds to the CPA, an area
that has been identified in in vivo studies (2, 8, 16, 27, 28).
However, few in vitro studies have identified the anatomic
location of the CPA. Our histological examination demon-
strated that the location of the CeVLM neurons that exhibited
an antidromic action potential and stained with lucifer yellow
or pontamine sky blue corresponded to the location where
depolarizing responses were observed by optical imaging. The
histological examination also showed that the location of the
depolarizing responses in the CeVLM neurons was almost
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identical to that of the CPA reported in earlier in vivo studies
(11, 27, 28).

To further confirm that the CeVLM corresponds to the
CPA, we investigated whether neurons in the CeVLM are
involved in peripheral sympathetic nerve regulation. The
IML neurons exhibited increased EPSPs and membrane
depolarization in response to local application of glutamate
to the CeVLM despite the absence of the RVLM and the
CVLM. These results imply that neurons in the CeVLM
send excitatory input to the IML neurons and that CeVLM
neurons are involved in sympathetic nerve regulation and
blood pressure control. If these implications are true, we can
conclude that at least some of the neurons in the CeVLM
correspond to neurons in the CPA. Further study by spike-
triggered averaging is needed to determine whether the
spontaneously occurring action potentials of the CeVLM
neurons induce EPSPs in the IML neurons.

Because earlier studies have demonstrated that the func-
tions of the CPA are mediated via sympathoinhibitory (2)
and sympathoexcitatory (16) neurons in the CVLM, the
CPA neurons would be expected to project to the CVLM.
However, if the CeVLM corresponds to the CPA, our
optical imaging findings suggest that the CPA also projects
to the IML.

Even if the CeVLM does not correspond to the CPA, the
CeVLM may play a role in sympathetic nerve modulation. It is
hard to imagine that the CeVLM affects sympathetic nerve
activity in the same manner as the neurons in the RVLM do,
and instead we postulate that the CeVLM neurons modulate
sympathetic nerve activity determined by the RVLM. Horiuchi
et al. (8) found that microinjection of prolactin-releasing pep-
tide in the CPA increased blood pressure but that microinjec-
tion of ANG II did not. Thus some functions of the CeVLM,
such as responses to stress, differ from those of the RVLM
neurons.

In summary, the optical imaging findings in the brain stem-
spinal cord preparations of neonatal SHRs suggest the exis-
tence of a continuous longitudinal column in the VLM, includ-
ing the RVLM, the CVLM, and the CeVLM, that gives rise to
a monosynaptic projection to the IML. The neurons in the
CeVLM have a role in sympathetic nerve and blood pressure
control. The projection pathway and function of the CeVLM
neurons need to be investigated more precisely in a future
study.
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The notion, pathologies, and pathoetiologies of Binswanger's type infarction
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Are Cerebrovascular White Matter Lesions an Early Sign of Vascular
Cognitive Impairment and Vascular Dementia?

Hidekazu Tomimoto*

Department of Neurology, Kyoto University Graduate School of Medicine, Kawahara-cho 54, Shogoin, Sakyo-ku, Kyoto

606-8504, Japan

Abstract: Vascular dementia is a heterogeneous syndrome resulting from large vessel disease or small vessel disease.
Multi-infarct dementia (MID) is due to large vessel disease, and is characterized by multiple cortical infarctions and motor
disabilities. Prompt treatment during the acute stage for stroke and appropriate strategies for stroke recurrence are pivotal
for the prevention of MID.

In contrast, subcortical ischemic vascular dementia (SIVD) is caused by small artery disease. Patients with SIVD may
show abulia, apathy, and a loss of verbal fluency and executive function, but the amnesia is less severe as compared to
those with Alzheimer’s disease. These patients do not necessarily exhibit a stroke episode, and may eventually evolve
from a latent condition with vascular mild cognitive impairment (MCI-V) and radiological abnormalities such as exten-
sive cerebrovascular white matter lesions (WMLs). These lesions consist pathologically of a dilatation of the perivascular
space, gliosis, demyelination and incomplete infarction of the cerebral white matter. Their clinical significance has re-
mained unclear for a long time, since WMLs are frequently observed in elderly asymptomatic subjects. However, recent
studies indicate_that these lesions are predictors of a future risk of stroke and dementia.

This review discusses the diagnosis, treatment and prevention of vascular dementia. The recent advances in neuroimaging
techniques which may enable the identification of patients susceptible to developing vascular dementia and motor dis-

abilities among the population with extensive WMLs are also described.

Keywords: White matter lesion, subcortical ischemic vascular dementia, multi-infarct dementia, magnetic resonance imaging.

INTRODUCTION

Vascular dementia is caused by heterogeneous patho-
physiology, including small vessel disease and large vessel
disease. Occlusion or stenosis of the major vessels, which are
attributable to atherosclerosis or cerebral embolism, results
in cortical cerebral infarction. This type of vascular dementia
has been designated as multi-infarct dementia (MID), and
was previously thought to be a synonym of vascular demen-
tia. Tomlinson ef al. reported that cognitive deterioration was
correlated with the volume of the cerebral infarction, and
dementia occurs if the volume exceeds 50 ml [1]. Patients
with MID show a step-wise deterioration with each stroke
episode, characterized by severe motor disabilities. The
strategies to prevent MID are aimed at stroke prevention.

In contrast, small vessel disease is the other mechanism
of vascular dementia, and is responsible for lacunar infarc-
tions and white matter lesions (WMLs), the latter of which
consist of demyelination, axonal loss, dilatation of perivas-
cular space and incomplete infarctions [2]. Patients may be-
come amnesic suddenly if the lacunar infarction damages the
brain sites specifically related to memory acquisition and
retention. This condition is termed acute onset amnesia, and
represents a type of vascular dementia, i.e. strategic single
infarct dementia.
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However, more than half of the patients with vascular
dementia exhibit a slowly progressive deterioration of their
neurological symptoms, including cognitive impairment and
gait disturbances [3]. Most of these patients suffer from
WDMLs and lacunar infarctions, and this can be designated as
subcortical ischemic vascular dementia (SIVD), which
ranges from multiple lacunar infarctions to Binswanger’s
disease, a form of SIVD characterized by extensive WMLs,
depending on the severity of the WMLs.

1. VASCULAR DEMENTIA AND VASCULAR
COGNITIVE IMPAIRMENT (VCI)

Several diagnostic criteria have been proposed for vas-
cular dementia: Hachinski’s ischemic score (HIS), the Diag-
nostic and Statistical Manual for Mental Disorders, Fourth
Edition (DSM-1V), the National Institute of Neurological
Disorders and Stroke-Association Internationale pour Re-
cherche et I’Enseignement en Neurosciences (NINDS-
AIREN), the State of California Alzheimer Disease Diag-
nostic and Treatment Centers (ADDTC), and International
Classification of Diseases, and the Tenth Edition (ICD-10)
criteria. Unfortunately, none of these criteria have enough
sensitivity and specificity for the diagnosis of vascular de-
mentia, and the degree of inconsistency is not trivial among
these criteria; the difference in the rate of diagnosis for vas-
cular dementia ranges several folds within the same subjects
[4, 5]. The common features of the DSM-IV, NINDS-
AIREN, and ADDT-C criteria are the keynote definition,

© 2006 Bentham Science Publishers Ltd.
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which depends on a temporal profile of cognitive impairment
emerging within 3 months after the stroke.

Esiri et al. reported that one third of patients develop
dementia within 1 year after a stroke [6]. Henon et al
showed a cumulative incidence of post-stroke dementia for 3
years was 28.5%, among which two thirds of patients met
the criteria for vascular dementia [7]. Indeed, all of these
patients with post-stroke dementia are not necessarily af-
fected by pure vascular dementia. Instead, the evidence sug-
gests a spectrum of underlying pathologies, which include
neurodegenerative diseases. In the autopsied brains from the
Nun study, vascular lesions and senile changes including
senile plaques and neurofibrillary tangles contributed in an
additive fashion to cognitive impairment [8]. In addition,
recent studies have shown that common risk factors may
coexist between vascular dementia and Alzheimer’s disease.
These factors include hypertension, diabetes mellitus, hyper-
cholesterolemia, atherosclerosis, hyperhomocysteinemia and
the apolipoprotein E4e allele, and suggest a complex rela-
tionship between vascular factors and the pathogenesis of
Alzheimer’s disease [9]. Thus, vascular dementia consists of
several interrelated conditions; post-stroke dementia, mixed
Alzheimer’s disease and vascular dementia, and vascular
mild cognitive impairment (MCI). As an umbrella term, vas-
cular cognitive impairment has been proposed, and com-
prises vascular MCI, vascular dementia, mixed dementia
(mixed Alzheimer’s disease and vascular dementia), and
post-stroke dementia [10].

2. DOES CHRONIC CEREBRAL HYPOPERFUSION
INDUCE VASCULAR COGNITIVE IMPAIRMENT?

Roman hypothesized that chronic cerebral hypoperfusion
is a trigger of vascular cognitive impairment [11]. Long
standing hypertension leads to arteriolosclerosis of the small
arteries, which induces lacunar infarction after complete oc-
clusion and WMLs after stenosis of the small vessels. An-
gionecrosis and fibrohyalinosis are responsible predomi-
nantly for lacunar infarctions and WMLs, respectively. An-
gionecrosis is caused by the subendothelial accumulation of
hyaline material, often occluding the lumen, and is distrib-
uted in both the gray and white matter. In contrast, fibrohya-
linosis is characterized by the proliferation of fibroblasts and
collagen fibrils in the tunica media and adventitia [12]. It
rarely occludes the luminal spaces, and is found mostly in
the white matter. In brains with SIVD, fibrohyalinosis is the
cardinal pathology of the medullary arteries [13], with
smooth muscle cells degrading in the proximal arteries but
proliferating in the terminal arterioles [14]. Fibrohyalinosis
after longstanding hypertension may impair the vasomotor
reactivity of the medullary arteries [15, 16], and causes cere-
bral hypoperfusion in the absence of vessel occlusion. Sev-
eral lines of experimental data support this hypothesis. First,
the stroke-prone spontaneously hypertensive rat (SHR-SP), a
genetic model for hypertension and stroke, exhibits WMLs
after sustained hypertension [17]. Second, chronic cerebral
hypoperfusion models can be induced experimentally in ger-
bils, rats and mice [18-20]. These animals exhibit WMLs and
cognitive impairment after a latent period.
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3. THE IMPACT OF LACUNES AND WMLS ON
COGNITIVE IMPAIRMENT

The neuropathological substrates of cognitive impairment
in small vessel disease are still under discussion. Grey matter
lacunes are common in elderly brains, however, most of
them are asymptomatic from a cognitive point of view. At
baseline, there are no correlations between the presence of
lacunes and cognitive functions, but yet their presence is
associated with a cognitive decline when a new lacunar in-
farction occurs during the follow-up [21]. In the Nun study,
lacunar infarction has been shown to accelerate the cognitive
dysfunction in Alzheimer’s disease [8]. More recently, Gold
et al. showed that lacunes are an independent predictor of
cognitive impairment in the absence of senile changes [22].

The contribution of WMLs to cognitive impairment is
documented in more detail as compared to lacunes. This
causal relationship has been under investigation previously,
since WMLs are frequently observed even when the subjects
are free of any neurological symptoms [23]. In cross-
sectional MRI studies, no or a subtle association has been
shown between the severity of the WMLs and cognitive im-
pairment [24, 25]. In a follow-up for 4 years of 19 patients
with WMLs, none showed any neurological deterioration
[26]. These points are in good agreement with the daily
clinical experience that patients with marked WMLs often do
not show any neurological abnormalities. However, in more
recent longitudinal studies, a weak but significant correlation
between WMLs and cognitive impairment has been de-
scribed [27, 28]. Thus, further investigations are warranted
on whether WMLs are responsible for cognitive impairment,
and apparently a more stratified analysis is needed in terms
of the baseline severity of WMLs and specific cognitive do-
mains.

In the Cardiovascular Health Study, patients with worse
WML grades show more cognitive decline during the fol-
low-up period [29]. This worsening of the WMLs depends
on the baseline severity of the WMLs, being initially latent
but progressive at later confluent stages [30]. Therefore, it is
reasonable that earlier WMLs are not associated with cogni-
tive impairment, with a threshold before developing symp-
toms [31]. The most affected cognitive domains are execu-
tive functions and the speed of mental processing, which
may secondarily result in impaired memory and visuospatial
functions [32], thereby making it difficult to assess the cog-
nitive dysfunction in terms of amnesia.

4. PREDICTION OF COGNITIVE IMPAIRMENT IN
PATIENTS WITH EXTENSIVE WMLs

Among the subjects with extensive WMLs, those with
and without cognitive impairment can be differentiated based
on hemorheology [33-36], cerebral blood flow and metabo-
lism [37-42] and functional neuroimaging [43-45]. Patients
with SIVD have an activation of their platelet aggregation
and coagulation-fibrinolysis system [35, 36]. In contrast,
these systems remain within normal ranges in subjects with
extensive WMLs but without dementia [33]. The SIVD pa-
tients also have increased levels of fibrinogen and plasma
viscosity [34].
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The relationship between WMLs and cerebral blood flow
and metabolism has been studied extensively. Patients with
extensive WMLs show a decreased cerebral blood flow
(CBF), even when cognitive function is not impaired [37,
38]. Similarly, the vasomotor reactivity to CO; and postural
changes are also decreased with extensive WMLs [14, 15].
However, global [39, 40] and frontal [41] cortical metabo-
lism is decreased in patients with SIVD, but not in asymp-
tomatic patients. In a previous positron emission tomography
(PET) study, asymptomatic patients with extensive WMLs
showed a decreased CBF but normal cerebral metabolic rate
for oxygen (CMRO2), with an increased oxygen extraction
fraction (OEF), whereas demented patients showed de-
creased CBF and CMRO, values [42]. We also demonstrated
impaired neuronal viability in the frontal and temporal cere-
bral cortices in SIVD using a flumazenil PET scans as mark-
ers [43].

Using MR spectroscopy, N-acetylaspartate (NAA), a
marker of neuroaxonal components, and choline-containing
compounds (Cho), a marker of cellular membrane turnover,
were found to be well-preserved in those subjects with nor-
mal cognitive function. In contrast, these markers were de-
creased in patients with SIVD, implying that both demyeli-
nation and axonal damage occur in SIVD [44]. Diffusion
tensor MR imaging is a method in which the fractional ani-
sotropy (FA) of water molecules can be an index of the deg-
radation of white matter pathways. An FA map is inversely
correlated with executive functions better than conventional
MRI, and may provide a better index of WMLs [45]. Thus,
cognitive impairment is associated with hypometabolism and
decreased neuronal viability in the cerebral cortices and both
demyelination and axonal damage in extensive WMLs.

5. THE MECHANISM OF COGNITIVE IMPAIRMENT
IN PATIENTS WITH WMLS

The dysfunction of the cerebral cortex in SIVD has also
been implicated in a neuropathological study which demon-
strated that the synaptic density was decreased in proportion
to synaptophysin immunohistochemistry in autopsied brains
[46]. Hippocampal and cortical gray matter volumes are also
reduced in patients with SIVD without AD pathology [47].

The mechanism of cortical dysfunction may be due to a
direct and/or indirect effect of ischemic insults. Microinfarc-

tions, noncystic lesions with a diameter less than 4 mm, di-

rectly involve the cerebral cortex, and these lesions may im-
pair cognitive function directly in vascular dementia [48].
These lesions have been shown to be the best predictors of
cognitive impairment (19.9%), followed by periventricular
and diffuse WMLs (9.7% and.5.4%, respectively) in 45 eld-
erly persons with various degrees of cognitive impairment,
but without significant neurofibrillary tangle pathology or
macrovascular lesions [49]. Microinfarctions may be related
to small vessel diseases, but this idea needs to be studied
further, since concurrent MR techniques have failed to detect
these lesions.

An alternative and more likely mechanism responsible
for cortical dysfunction is subcortico-cortical disconnection,
which is mediated by a variety of pathophysiologies. In-
volvement of neural networks closely related to memory and
other cognitive functions may cause a cognitive decline [50,
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51]. Indeed, loss of NAA in the cerebral cortex in SIVD is
correlated regionally with the subcortical lesion load, and
suggests that subcortical lacunes and WMLs cause functional
deafferentation of the cerebral cortex, which is sometimes
termed subcortical-cortical diaschisis [52]. Disconnection of
the cholinergic pathway may also be caused by cortical and
subcortical lesions. The diagonal band of Broca and the sep-
tal nucleus provide a cholinergic input to the hippocampus,

- and the nucleus basalis of Meynert to the cerebral cortices

passing through the subinsular regon [53]. The latter path-
way may be involved by WMLs strategically in the subinsu-
lar region [54, 55, 56], or ischemic foci in the nucleus basalis
of Meynert [57]. Large vessel cortical infarction may also
impair cholinergic neurotransmission by retrograde degen-
eration of the neurons in the nucleus basalis of Meynert [58].
Moreover, cholinergic neural disconnection may impair a
positive regulation of cortical CBF by the nucleus basalis of
Meynert [59, 60], and result in an impairment of CBF regu-
lation in the cerebral cortex.

6. DOES VASCULAR MCI EVOLVE INTO SIVD?

Patients with SIVD may show abulia, apathy, loss of ver-
bal fluency, impaired attention and executive functions, with
a slowing of motor performance and information processing
[61]. Episodic memory is also relatively spared in SIVD as
compared with Alzheimer’s disease [62].

The symptoms in subjects with extensive WMLs are non-
specific, with dizziness, a tendency to fall down, depression,
and emotional incontinence. Neurological examinations in
these patients may reveal abnormalities including dysarthria,
a laterality of the deep tendon reflexes, a small steppage gait,
apathy, and incontinence in the absence of dementia. Thus,
vascular MCI has distinctive features separate from amnesic
MCI, which is prodromal for Alzheimer’s disease; 15-20%
of these patients also exhibit dementia annually [63]. Radi-
ologically, vascular MCI is characterized by extensive
WMLs and the absence of cortical infarctions on MRI [64].
SIVD patients do not necessarily exhibit a stroke episode,
but 54% of SIVD patients eventually evolve from a latent
condition without stroke [3]. In contrast, most patients with
MID or strategic single infarct dementia, which is related to
lacunar infarcts strategically important for memory, develop
dementia without any preceding symptoms (Fig. 1). Meyer et
al. reported that during the course of vascular dementia, 55%
of these patients evolved from vascular MCI and most of
their subtype was SIVD [64]. Patients with vascular MCI
exhibit lower scores in word fluency and the Wisconsin card
sorting test, but milder amnesia as compared to patients with
amnesic MCI. The clinical profiles of vascular MCI show
more severe motor disabilities and a shorter life expectancy
than amnesic MCI [65]. Therefore, therapeutic intervention
for vascular MCI at an earlier stage is pivotal for controlling
vascular dementia.

7. PREVENTION OF SIVD

With respect to primary preventive strategies for SIVD,
the control of hypertension is crucial because hypertension
and aging are the major risk factors for WMLs. An increased
diastolic blood pressure is often associated with a worsening
of WMLs [29, 66]. In a clinical trial, the Systolic Hyperten-
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Cognitively impaired condition

Fig. (1). Temporal profiles of each subtype of vascular dementia. The patients with MCI-V are gradually transformed into those with SIVD,
whereas strategic single infarct dementia and MID show a sudden onset. MCI-V: vascular mild cognitive impairment, SIVD: subcortical

ischemic vascular dementia, MID: multi infarct dementia.

sion in Europe (Syst-Eur), an alleviation of the dementia by
anti hypertensive treatment has been reported, but remains
inconclusive [67, 68]. Hyperlipidemia is a marginal risk
factor for SIVD, but lipid-lowering agents, statins such as
atorvastatin, cerivastatin, fluvastatin, pravastain, or simvas-
tatin, substantially lowered the risk of dementia due to un-
determined etiologies [69]. Other putative vascular risk fac-
tors includes diabetes mellitus, coronary heart disease, athe-
rosclerosis, smoking, atrial fibrillation and hyperhomocysti-
nemia [70].

Secondary prevention is targeted to management of car-
diovascular risks and prevention of stroke recurrence. A lim-
ited number of tools are available for the secondary preven-
tion of SIVD. Several drugs to date have shown positive
results, however, various drugs for vascular dementia, in-
cluding antithrombotics, vasodilators, Giskgo biloba ex-
tracts, nootropics, ‘ergot alkaloids and antioxidants, were
mostly disappointing [71]. Perindopril, an angiotensin-
converting enzyme inhibitor showed a prominent benefit in
the management of hypertension and reduction of the risk for
dementia among patients with recurrent episodes of stroke
[72]. Ischemic neuronal damage is mediated by excitotoxic-
ity, and therefore the non-competitive N-methyl-D-aspartate
(NMDA) antagonist memantine has been tested for the
treatment of vascular dementia with some beneficial effects
in cognitive stabilization [73]. The calcium antagonist ni-
modipine was effective in improving some of the neuropsy-
chological scores in SIVD as compared to MID [74]. Pro-
pentofyllline, a phosphodiesterase inhibitor, showed a long
term efficacy in patients with mild to moderate vascular de-
mentia [75].

Cholinergic pathways represent another target for phar-
macological modulation. Choline esterase inhibition has a
potency to restore CBF in the cerebral cortex after lesioning
of the nucleus basalis of Meynert [77], and cerebral ischemia
[78], and also upregulate cholinergic neurotransmission in
the cerebral cortex. Concurrent evidence supports the effi-
cacy of cholinesterase inhibitors in vascular dementia, which

include donepezil [79, 80] and ribastigmine [81, 82]. Galan-
tamine is an acetylcholine esterase inhibitor that also modu-
lates central nicotinic receptors and enhance cholinergic neu-
rotransmission. This agent showed benefits on cognition,
activities of daily living, behavioral symptoms and global
function in patients with Alzheimer’s disease plus cere-
brovascular disease, or with probable vascular dementia [83].
Results from further trials are pending, but the evidence thus
far suggests that cholinesterase inhibitors may be a useful
tool in the treatment of vascular dementia.
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Matrix Metalloproteinase-2 Plays a Critical Role in the
Pathogenesis of White Matter Lesions After Chronic
Cerebral Hypoperfusion in Rodents

Kayoko Nakaji, MD; Masafumi Thara, MD; Chiaki Takahashi, MD; Shigeyoshi Itohara, PhD;
Makoto Noda, PhD; Ryosuke Takahashi, MD; Hidekazu Tomimoto, MD

Background and Purpose—Cerebrovascular white matter (WM) lesions contribute to cognitive impairment and motor
dysfunction in the elderly. A disruption of the blood—brain barrier (BBB) is believed to be a critical early event leading
to these WM lesions. Previous studies have suggested the involvement of matrix metalloproteinase-2 (MMP-2) in BBB
disruptions and the upregulation of MMP-2 after chronic cerebral hypoperfusion in a rat model. In the present study,
we asked whether MMP-2 is involved in the BBB disruption and the subsequent WM lesions after chronic cerebral

hypoperfusion.

Methods—We compared the severity of white matter lesions in rats after chronic cerebral hypoperfusion with or without
an MMP inhibitor. Then, we also induced the chronic cerebral hypoperfusion in wild-type and MMP-2-null mice.
Results—In the rats treated with a relatively selective MMP-2 inhibitor, AG3340, the WM lesions after chronic cerebral
hypoperfusion were significantly less severe, and the number of activated astroglia and microglia were also significantly
lower as compared with the vehicle-treated rats. Gene knockout of MMP-2 also reduced the severity of the WM lesions
and the number of activated astroglia and microglia in a mice system. In both rodents, the disruption of BBB function,
as assessed by IgM staining and the Evans blue extravasation test, was less severe when MMP-2 activity was attenuated.

Conclusions—These findings indicate that MMP-2 plays a critical role in the BBB disruption, glial cell activation, and
WM lesions after chronic cerebral hypoperfusion and suggest the potential value of MMP-2 inhibitors as a therapeutic
tool in cerebrovascular WM lesions. (Stroke. 2006;37:2816-2823.)

Key Words: blood—brain barrier ® chronic cerebral hypoperfusion @ MMP inhibitor
& MMP-2 ® white matter lesion

Cerebrovascular white matter (WM) lesions, a neurode-
generative condition characterized by hyperintense sig-
nals on magnetic resonance images, are frequently associated
with aging and cerebrovascular disease and are responsible
for the cognitive decline of the elderly. Chronic cerebral
ischemia is likely to cause these WM lesions, because
cerebral blood flow is decreased in these patients.! Indeed,
similar WM lesions can be induced in rats and mice after
chronic cerebral hypoperfusion, the experimental conditions
mimicking chronic cerebral ischemia in humans.23

Matrix metalloproteinases (MMPs) are a family of endo-
peptidases that can degrade most of the major constituents of
the extracellular matrix.* MMP-2 and MMP-9 represent a
subgroup of the MMP family and degrade several extracel-
lular matrix components, including type IV collagen, fi-
bronectin, and gelatin. Deregulated MMPs have been impli-
cated in the tissue destruction associated with cancer,

arthritis, and multiple sclerosis.* MMPs may also play a role
in neurologic disorders. For instance, MMP-9 is increased in
human brains after stroke,> and MMP-2 and MMP-3 are
increased in cerebrovascular WM lesions from patients with
vascular dementia.® A reduction in the basement membrane
components, including type IV collagen, is associated with
the blood-brain barrier (BBB) disruption during cerebral
ischemia.” In our previous study on chronic cerebral hypo-
perfusion, the BBB disruption was accompanied by an
upregulation of MMP-2 but not MMP-9,2 suggesting the
specific involvement of MMP-2 in the WM lesions. We
hypothesize that the MMP-2 upregulation after chronic cere-
bral hypoperfusion correlates with BBB damage, which leads
to glial activation and subsequent WM lesions. To clarify the
cause~effect relationship among MMP-2 upregulation, BBB
disruption, and WM lesions, we used 2 strategies to attenuate
MMP-2 activity: an MMP inhibitor, AG3340, and MMP-2
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knockout. The results from both experiments strongly sup-
ported the idea that MMP-2 plays a critical role in BBB
disruption and WM lesions.

Materials and Methods

Chronic Cerebral Hypoperfusion in Rats

and Treatment With an Matrix

Metalloproteinase Inhibitor

Chronic cerebral hypoperfusion with bilateral common carotid artery
occlusion (BCAO) was induced in male Wistar rats (weight 150 to
200 g; Shimizu Experimental Supply; Kyoto, Japan) by double
ligation of the common carotid arteries as previously described.?
After the operation, the rats were kept in animal quarters with food
and water ad libitum.

AG3340 (Agouron Pharmaceuticals) was dissolved at 75 mg/mL
in 50% DMSO in propylenglycol. The rats were treated twice a day
with an intraperitoneal injection of AG3340 (100 mg/kg) or vehicle
(DMSO/propylenglycol) from just before the operation until 14 days
after the operation. Similar doses and treatment paradigms have been
shown to be effective in inhibiting MMP activity in gliomas in model
animals.® Because our previous study demonstrated that the number
of microglia peaked on 3 days and WM lesion started to become
evident on 14 days after BCAO,? the animals were subjected to the
analyses described subsequently.

Mice

The generation of C57BL/6J mice carrying the MMP-2-null allele
has been described elsewhere.!® In this mutant allele, a region
containing the promoter and the first exon of the MMP-2 gene is
replaced by the pgk-neo cassette. MMP-2* parents were mated to
obtain both wild-type and MMP-27"~ (MMP-2-null) littermates.
Genotyping was performed by polymerase chain reaction using the
following primers: wild-type forward, CAACGATGGAGGCAC-
GAGTG; wild-type reverse, GCCGGGGAACTTGATGATGG; mu-
tant forward, CTTGGGTGGAGAGGCTATTC; and mutant reverse,
AGGTGAGATGACAGGAGATC.

Chronic Cerebral Hypoperfusion in Mice and
Cerebral Blood Flow Measurement

Adult male mice (weight 20 to 25 g) were subjected to bilateral
common carotid arteries stenosis (BCAS) by applying the microcoils
with an inner diameter of 0.18 mm to both common carotid arteries
as previously described® The cerebral blood flow (CBF) was
recorded by laser Doppler flowmetry by placing a straight probe
(OmegaFLO-N1; Neuroscience Inc) on 1 mm posterior and 2 mm
lateral from bregma perpendicular to the skull bone through the
guide cannula. The baseline CBF recordings were obtained just
before and at 2 hours and 3, 7, 14, and 30 days after the surgery. The
CBF values were expressed as a percentage of the baseline value.

Histochemical Evaluation of White Matter Lesions
and Glial Activation

Under deep anesthesia, the animals were perfused with 10 mmol/L
phosphate-buffered saline (300 mL for rats, 100 mL for mice) and
then with a fixative consisting of 4% paraformaldehyde, 0.2% picric
acid, and 0.1 mol/L phosphate buffer at pH 7.4 (300 mL for rats, 100
mL for mice). The brains were removed and postfixed for 24 hours
in 4% paraformaldehyde in 0.1 mol/l. phosphate buffer and then
stored in 15% sucrose in 0.1 mol/L phosphate buffer. The fixed
brains were embedded in paraffin and sliced into 2-pm-thick coronal
sections. Kliiver-Barrera staining and Bielschowsky staining were
used to visualize the myelin sheaths and axons, respectively. As
previously described,? the severity of the WM lesions was semiquan-
titatively graded as normal (grade 0), disarrangement of the nerve
fibers (grade 1), formation of marked vacuoles (grade 2), and
disappearance of myelinated fibers (grade 3) by an investigator blind
to the experimental condition. For immunohistochemistry, serial
sections (20-um-thick) were cut in a cryostat and incubated over-
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night with a primary antibody at 4°C followed by incubation with the
appropriate biotinylated secondary antibody (1 bour, room temper-
ature), treatment with an avidin-biotin complex (diluted 1:200;
Vector Laboratories), and visualization with 0.01% diaminobenzi-
dine tetrahydrochloride and 0.005% H,0, in 50 mmol/L Tris-HC1
(pH 7.6). The primary antibodies used were as follows: monoclonal
anti-rat glial fibrillary acidic protein (GFAP) (diluted 1:5000; Sigma-
Aldrich; Mo, USA), polyclonal rabbit anti-mouse GFAP (diluted to
1:5000; Dako Cytomation, Denmark), polyclonal rabbit anti-MMP-2
(diluted to 1: 1,000, Chemicon International, Inc), monoclonal rat
anti-mouse MHC class II antigen antibodies (diluted to 1:5000; Dako
Cytomation), and rabbit anti Iba-1 antibody (1 pg/mL; Wako Pure
Chemical Industries, Ltd; Osaka, Japan). Some sections were incu-
bated with a biotinylated goat anti-rat IgM (u), biotinylated goat
anti-mouse IgM (p) (diluted 1:1000; Kirkegaad & Perry Laborato-
ries; Md, USA), or biotinylated Ricinus communis agglutinin-1
(diluted 1:1000; Vector Laboratories; Calif, USA) and were incu-
bated directly with the avidin-biotin complex. To confirm the
cellular source of I1gM, sections were labeled by biotinylated anti-
mouse IgM and rabbit anti-mouse GFAP followed by fluorescein
isothiocyanate-labeled avidin (diluted 1:100; Dako Cytomation) and
rhodamine-labeled goat anti- rabbit IgG (2.5 puL/mL; Dako). In the
sections immunostained for Ricinus communis agglutinin-1, MHC
class II antigen, Iba-1, GFAP, and IgM, we counted the number of
immunopositive cells in at least 6 representative fields (per
0.25 mm?®) in the corpus callosum, the caudoputamen, and the optic
tract for the quantitative analysis.

Zymography and Matrix Metalloproteinases-2
Activity Assay

Minced forebrain tissues were incubated with gentle rotation at 4°C
for 20 hour in an extraction buffer consisting of 0.5% Triton-X 100,
0.5 U/mL aprotinin, and 0.01% sodium azide in 0.01 molL
phosphate-buffered saline. The samples were then centrifuged at
14 000 rpm for 15 minutes at 4°C and the supernatants were
collected. The protein content was adjusted to 10 mg/mL. The
gelatinolytic activity of these samples was detected by SDS-PAGE
zymography as described elsewhere,® although MMP-2 activity in
the gray matter may interfere a sensitive detection of the activity in
the WM. Equal amounts of tissue extract (50 ug) were then
subjected to electrophoresis. To restore the activity of the protein,
sample gels were agitated in 0.01 mol/L Tris-HCI (pH 8.0) contain-
ing 2.5% Triton X-100 (30 minutesX2). After washed in 0.05 mol/L
Tris-HC] (pH 8.0) for 30 minutes, the gels were incubated over-
night twice at 37°C in 0.05 mol/L Tnis-HCI (pH 8.0) containing
0.5 mmol/L. CaCl, and 1.0 mol/L. ZnCl,. After incubation, the gels
were stained with Coomassie blue R-250. The amount of activated
and latent forms of MMP-2 in the whole forebrain extracts were also
assessed using the Mairix Metalloproteinase-2 Biotrak Activity
Assay System (Amersham Biosciences), which is based on a 2-site
enzyme-linked immunosorbent assay “sandwich” format and recog-
nizes both the proform and active form of MMP-2.

Evans Blue Extravasation

The mice were killed at 3 hours and 1, 3, 5, 7, and 14 days after
BCAS. One hour before each time point, 1 mL of 4% Evans blue
(EB; Nakalai Chemicals Ltd) in normal saline was injected intra-
peritoneally. The animals were anesthetized and then perfused
transcardially with 200 mL of 10 mmol/L. phosphate-buffered saline.
The brains were snap-frozen, sectioned into 20- wm-thick slices, and
examined by fluorescence microscopy. For quantitative measures,
the images were analyzed within 4 structurally similar areas (2
paramedian portions of the corpus callosum on each hemisphere) in
each mouse and digitally level-adjusted by Adobe Photoshop (Adobe
Systems) so that intravascular EB would be reported as white (pixel
value 255) on a black background (pixel value 0). Using the public
domain NIH Image 1.61 program (National Institutes of Health), the
images were then binarized with intensity threshold set at pixel value
50 so that the white pixels represent intravascular and extravasated
EB. The number of white pixels was divided by the total pixel





