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ABSTRACT

Periodontal ligament (PDL) cells play an essential
role in orthodontic tooth movement. We recently
reported that clodronate, a non-N-containing
bisphosphonate, strongly inhibited tooth
movement in rats, and thus could be a useful
adjunct for orthodontic treatment. However, it is
not clear how clodronate affects the responses of
PDL cells to orthodontic force. In this study, we
hypothesized that clodronate prevents the
mechanical stress-induced production of
prostaglandin E, (PGE,), interleukin-18 (IL-18),
and nitric oxide (NO) in human PDL cells. A
compressive stimulus caused a striking increase in
PGE, production, while the responses of IL-1B
and NO were less marked. Clodronate
concentration dependently inhibited the stress-
induced production of PGE,. Clodronate also
strongly inhibited stress-induced gene expression
for COX-2 and RANKL. These results suggest
that the inhibitory effects of clodronate on tooth
movement and osteoclasts may be due, at least in
part, to the inhibition of COX-2-dependent PGE,
production and RANKIL expression in PDL cells.
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cell, mechanical stress, prostaglandin E,.
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Clodronate Inhibits

PGE, Production

in Compressed
Periodontal Ligament Cells

INTRODUCTION

eriodontal ligament cells play an essential role in orthodontic tooth

movement, and mechanically induced bone resorption is known to be a
rate-limiting step (Rygh, 1987; Igarashi et a/., 1994). Recently, we
demonstrated that clodronate, a non-N-containing bisphosphonate that has
been used to treat various metabolic bone diseases associated with excessive
bone resorption (Plosker and Goa, 1994; Fleisch, 2000), strongly inhibited
bone resorption induced by orthodontic mechanical stress and tooth
movement in rats, suggesting that it could be a useful adjunct for orthodontic
treatment (Liu et al., 2004). A previous study has demonstrated the direct
inhibitory action of clodronate on osteoclastic bone resorption, i.e., clodronate
induces apoptosis of osteoclasts through incorporation into the cells (Frith ez
al., 2001). Although the number of osteoclasts on the pressure side of the
periodontal ligament decreased in clodronate-treated animals, the mechanism
of action in this process has not yet been determined. The purpose of the
present study was to clarify how clodronate affects the responses of
periodontal ligament cells to orthodontic force, especially those leading to
bone resorption. In this study, we hypothesized that clodronate prevents the
mechanical stress-induced production of prostaglandin E, (PGE,), interleukin
18 (IL-1B), and nitric oxide (NO) in cultured human periodontal ligament
cells, which are known to play important roles in the bone-resorptive
responses to orthodontic mechanical stimulation (Yamasaki es al., 1980;
Chumbley and Tuncay, 1986; Saito ef al., 1991; Zhou et al., 1997; Alhashimi
et al., 2001; Twasaki et al., 2001; Hayashi et al., 2002; Shirazi ef al., 2002).

MATERIALS & METHODS

The protocol for the experiment was approved by the Research Ethics
Committee of Tohoku University Graduate School of Dentistry, and informed
consent was obtained from all patients.

Drug

Clodronate (dichloromethylene bisphosphonate disodium salts) was obtained
from Procter & Gamble Pharmaceuticals' Woods Corners Laboratories
(Norwich, NY, USA).

Compression of Primary Human Periodontal Ligament Cells

Primary periodontal ligament cells were derived from human tooth roots
extracted for orthodontic treatment. Donors were healthy young adults of both
sexes (from 20 to 34 yrs old), free of periodontal disease. The cells were
cultured in «-MEM supplemented with 10% FBS, antibiotics, and 1 x 10 M
lo,25-dihydroxyvitamin D, (Duphar, Amsterdam, Netherlands) at 37°C in an
atmosphere of 5% CO, in humidified air. The medium was changed every 5
days, and the cells underwent from 4 to 8 passages until use.

For the experiment, periodontal ligament cells were seeded on 35-mm wells
in a six-well plate at a density of 3 x 10° cells/dish and cultured until they were
confluent. They were then transferred to 2 mL of fresh medium that contained a
specific concentration of clodronate and cultured for an additional 24 hrs. After
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Figure 1. Effects of clodronate on prostaglandin E, (PGE,) (A},
interlevkin 1B {IL-18) (B}, and nitric oxide (NO) (o] roduchon in
perlodonta[ ligament cells induced by compressive mecﬁ nical stress.
Each column and bar represent the mean + SEM (n = 3). *Significont
increase vs. control (P < 0.05). **Significant increase vs. control (P <
0.01). tP<0.05 compored wnh loc:ci3 1P < 0.01 compared with Joad.
CLO: clodronate {5, 25, 125 pM}.

the pre-culture, the cells were continuously compressed according
to the method described previously (Kanzaki et /., 2002). Briefly,
compressive force was applied directly to periodontal ligament
cells by the placement of a custom-made glass cylinder (diameter,
30.3 mm; height, 14.8 mm; thickness, 2.0 mm) that contained lead
granules over a confluent cell layer in the well. We adjusted the

J Dent Res 85{8} 2006

force magnitude by adding or reducing the granules. In the present
study, the cells were subjected to 2.0 g/em? of compressive force
for 48 hrs. After the experiment, total RNA was extracted from
each culture with the use of the QuickPrep Total RNA Extraction
Kit (Pharmacia Biotech, Uppsala, Sweden). The culture medium
was also withdrawn and stored at -20°C for determination of PGE,,
IL-183, and NO. The concentrations of PGE, and IL-13 were
measured with respective specific enzyme immunoassay kits (for
PGE,, RPN222, Amersham Pharmacia Biotech, Little Chalfont,
Buckinghamshire, UK; for [L-1B, QLB00, R&D Systems, Inc.,
Minneapolis, MN, USA).(AQ) We evaluated NO production by
measuring nitrite and nitrate concentrations in the medium using
the HPL.C-Griess method (Ohta et al., 1994).

Since responsiveness of cultured human periodontal ligament
cells varies depending on their sources, the experiment was
repeated, and each single experiment was performed with cells
from a different subject.

Semi- quqnhtahve Reverse-transcription Polymerase
Chain-reaction (RT-PCR) Assays for Cyclo-oxygenase-2
{COX-2) and Receptor Activator Nuclear Factor kB
Ligand (RANKL) Gene Expression

We reverse-transcribed extracted RNA to synthesize cDNA usmg
You-Prime First Strand Beads (Pharmacia Biotech) and Oligo
(dT),; primer (Promega, Madison, WI, USA). First-strand ¢cDNA
was then subjected to PCR amplification with gene-specific PCR
primers. The primers used in this study were: 5'-AGC AGA GAA
AGC GAT GGT-3' (forward) and 5'-GGG TAT GAG AAC TTG
GGA TT-3' (reverse) for RANKL, 5'-AAC CCA CTC CAA ACA
CAG-3' (forward) and 5'-CTG GCC CTC GCT TAT GAT CT-3’
(reverse) for COX-2, and 5'-ATG AGG ATC CTC ACC GAG
CGC GGC TAC AGC-3’ (forward) and 5'-ACA CCA CTG TGT
TGG CGT ACA GGT CTT TGC-3' (reverse) for B-actin. PCR
was performed with a KOD Dash DNA Polymerase Kit (Toyobo
Co., Ltd.; LDP-101, Tokyo, Japan). Annealing temperatures were
58°C for RANKL, 51°C for COX-2, and 38°C for B-actin.
Numbers of PCR cycles were 42-44 for RANKL, 32-33 for COX-
2, and 27 for B-actin. The PCR products were subjected to
electrophoresis and stained with ethidium bromide. The relative
intensities of the gel bands were measured with the use of Scion
Image Analysis software (Scion Co., MD).{(AQ) The method has
been described in detail previously (Kanzaki et al., 2002).

Statistical Analysis

The data were subjected to one-way analysis of variance
(ANOVA), followed by Fisher's PLSD test. P < 0.05 was
considered a significant difference.

RESULTS

Clodronate showed different effects on PGE,, 1L-18, and NO
production in periodontal ligament cells induced by
compressive mechanical stress (Fig. 1). The compression of
cells at 2.0 g/em? for 48 hrs caused nearly a 30-fold increase in
PGE, release (Fig. 1A), while the increase was not significant
for IL-1p (Fig. 1B) and only minimal for NO (Fig. 1C).
Clodronate (5, 25, 125 wM) concentration-dependently
inhibited the mechanical stress-induced increase in PGE,
production in periodontal ligament cells (Fig. 1A). The
inhibitory effect of clodronate on NO production was significant
only at the highest concentration (1235 M) (Fig. 1C).

The application of compressive force to periodontal
ligament cells also caused a more than two-fold increase in
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mRNA expression for both COX-2 and RANKIL (Figs. 24,
2B). Clodronate (5, 25, 125 uM) significantly inhibited these
responses (Fig. 2B).

Although the responsiveness of periodontal ligament cells to
compression varied between and among experiments
(individuals), the inhibitory effects of clodronate on stress-
induced PGE,, COX-2, and RANKL were reproducible (Table).

DISCUSSION

Clodronate is a non-N-containing bisphosphonate that
possesses potential anti-inflammatory activity as well as anti-
bone-resorptive activity (Osterman er al., 1995; Richards et al.,
2001). It has been shown that clodronate inhibits the production
of pro-inflammatory molecules, including IL-1P (Pennanen et
al., 1995; Makkénen ef al., 1999), NO (Makkonen ef al., 1996;
1999), and PGE, (Felix et al., 1981; lgarashi et al., 1997) in
macrophages and/or osteoblastic cells.

The present results clearly demonstrated that clodronate could
also prevent the mechanical stress-induced production of PGE, by
periodontal ligament cells, which is one of the most important
signaling molecules in the responses of periodontal ligament to
orthodontic force (Yamasaki et al., 1980; Saito ef al., 1991;
Kanzaki et al., 2002). The compressive stimulus caused a striking
increase in PGE, production, while responses were less marked
for IL-1B and NO. Clodronate significantly inhibited the
mechanical stress-induced production of PGE, in a concentration-
dependent manner. Furthermore, clodronate strongly inhibited
stress-induced gene expression for COX-2 and RANKL.

Prostaglandins have been shown to play a crucial role in
osteoclast formation induced by orthodontic mechanical stress
(Yamasaki ef al., 1980; Sandy and Harris, 1984; Zhou et al,
1997). Recently, Kanzaki et a/. (2002) demonstrated that
compressive force stimulates osteoclastogenesis in the co-culture
of peripheral blood mononuclear cells with periodontal ligament
cells, by increasing the expression of RANKL in periodontal
ligament cells. RANKL is known to be an essential factor in the
differentiation and activation of osteoclasts (Suda ef al., 1999). It
has also been demonstrated that this increase in RANKL
expression paralleled that in COX-2 expression and was
dependent on PGE, production (Kanzaki et al., 2002).
Clodronate inhibited all of these responses in compressed
periodontal ligament cells, suggesting that it may have decreased
RANKL expression in these cells by inhibiting the COX-2-
dependent production of PGE,. At
present, the mechanism by which
clodronate inhibits COX-2 expression in
periodontal ligament cells is not known.

Effects of Clodronate on Compressed PDL Cells
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Figure 2. Effect of clodronate on gene expression for cyclo-oxygenase-2
(COX-2) and receptor activator nuclear factor kB ligand (RANKL) in
compressed periodontal ligament cells. {A) RT-PCR for COX-2, RANKL,
and B-actin. CLO: 125 M. {B) Relative expression of RANKL mRNA
and COX-2 mRNA defermined by densitometric andlysis. Values were
corrected for B-actin mRNA expression. Representative results of 1 of 3
independent experiments are shown. CLO; clodronate (5, 25, 125 LM).

recruitment of osteoclasts, promoted osteoclast apoptosis, or both
(Rogers et al., 2000). The present in vitro results suggest that
clodronate may have impaired the ability of periodontal ligament
cells to support osteoclast formation by decreasing RANKL
expression. It is also possible that the decreased expression of
RANKL promoted osteoclast apoptosis, and hence decreased the
number of osteoclasts, since RANKL has been shown to act as a
survival factor and to prevent apoptosis of osteoclasts (Lacey et
al., 2000). Osteoclast apoptosis has been considered to be a major

Table. Comparison of the Effects of Clodronate on Stress-induced Prostaglandin E, (PGE,), Cyclo-
oxygenase-2 (COX-2), and Receptor Activator Nuclear Factor kB Ligand (RANKL} in Human
Periodontal Ligament Cells among Experiments (individuals)

Although NO and IL-1 have been

shown to induce COX-2 in osteoblastic Treatments
cells (Buttery et al., 2002; Pilbeam et Variables Experiment® Control Lload Lload £ Clodronate (25 M)
al., 2002), their involvement is not
likely. since the effects of mechanical  pGE, (ng/mL) 1 0.09+002 270x0.18 0.29 £0.07
stress with or without clodronate on the 2 0.12+0.01 0.45 +0.04 0.20 £0.05
production of these molecules were only  COX-2 mRNA
minimal or insignificant. {Relative expression) ] 1.00 2.78 1.64

In our previous in vivo study, the 2 1.00 3.32 2.07
number of osteoclasts on the pressure RANKL mRNA
side of the periodontal ligament  (Relative expression) 1 1.00 2.42 1.34
decreased in clodronate-injected animals 2 1.00 3.21 2.19

(Liu et al., 2004), indicating that
clodronate may have either inhibited the

@ Each experiment was performed with cells from a different individual.
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mechanism of action for the inhibition of bone resorption by this
bisphosphonate (Halasy-Nagy ef al., 2001). Frith et al. (2001)
demonstrated that clodronate is incorporated into osteoclasts and
metabolized to adenosine 53'-(B, vy-dichloromethylene)
triphosphate, which may induce apoptosis in these cells. In
addition to the formation of this ATP analogue, the inhibition of
RANKL expression in supporting cells like periodontal ligament
cells might also be involved in the induction of apoptosis in
osteoclasts.

In conclusion, the present results suggest that the inhibitory
effects of clodronate on orthodontic tooth movement and
osteoclasts may be due in part to the inhibition of COX-2-
dependent PGE, production, which leads to decreased RANKL
expression in periodontal ligament cells subjected to
orthodontic mechanical stress.
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We have proposed a magnetic motion capture system using an LC resonant magnetic marker. The
proposed system is composed of an exciting coil, an LC marker, and a 5 X 5-matrix search coil array
(25 search coils). The LC marker is small and has a minimal circuit with no battery and can be
driven wirelessly by the action of electromagnetic induction. It consists of a Ni—Zn ferrite core
(3 mme¢ X 10 mm) with a wound coil and a chip capacitor, forming an LC series circuit with a
resonant frequency of 186 kHz. The relative position accuracy of the system is less than 1 mm
within the area of 100 mm? up to 150 mm from the search coil array. Compared with dc magnetic
systems, the proposed system is applicable for precision motion capture in optically isolated spaces
without magnctic shielding because the system is not greatly influenced by carth field noise. © 2006
American Institute of Physics. [DOI: 10.1063/1.2171927]

1. INTRODUCTION

Effective methods for accurately detecting the motion of
unseen objects, such as in an optically shielded space, are
strongly required by the medical field for applications such
as radiotherapy or endoscopic examinations. In such cases,
particularly for measurements within a human body, the ap-
plied marker must be small and free from electric wiring. In
addition, the location and orientation of the marker must be
known exactly during the measurement. Magnetic motion
capture systems are believed to satisfy these requirements.
There have been several investigations into determining the
position of a magnetic object by measuring the magnetic
field of the object.l"(’ However, conventional systems require
a comparatively large-sized magnetic object as a marker or
the marker must contain electric wiring in order to obtain a
high signal-to-noise (SN) ratio for the magnetic signal from
the marker. To address this, we have proposed and developed
a magnetic motion capture system using a magnetically
coupled LC resonant marker.” The small-sized marker uses
a soft ferrite core with a coil, representing a minimal LC
circuit with no battery, driven wirelessly by electromagnetic
induction. The magnetic signal of the marker is detected by a
matrix-designed search coil array. Our proposed system al-
lows the approximate orientation of the marker and the po-
sition of the marker to be determined accurate to within
1 mm under limited conditions.” In this paper, we examine
the accuracy of the proposed system in detecting the position
and orientation of the marker over a wide area in order to
expand the detectable space.

li. SYSTEM COMPONENTS AND THECRY

Figure | shows a schematic diagram of the motion cap-
ture system. The system is composed of the measurement
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equipment and a coil assembly, consisting of a driving coil,
an LC marker, and a pickup coil array. As shown in the
figure, we use the right-handed coordinate system. Figure 2
shows a photograph of the coil system and the LC marker.
The marker consists of a Ni—Zn ferrite core (3 mm in diam-
eter and 10 mm long) with 335 turns of wound coil and a
chip capacitor (680 pF), representing an LC series circuit
designed for a resonant frequency of 186 kHz. The search
coil array consists of 25 coils placed at intervals of 45 mm
on an acry! board, configuring a matrix layout. Each coil is
made of 100 turns of polyester enameled copper wire (PEW)
around an acryl bobbin of 25 mm in diameter. A sinusoidal
excitation of 22 V was applied to the driving coil (ten turns
of PEW around an acryl coil 210-mm square) and the marker
was strongly excited at its resonant frequency by electromag-
netic induction. In this paper, the square-shaped driving coil
is adopted to improve the SN ratio for pickup coils placed
around the four corners. As a result, the SN ratio increased
up to 15% for these coils.

The induction field of the marker is used to determine
the position and orientation of the marker. However, the in-
duced voltage detected at the pickup coils includes both the
induction of the exciting field and the marker field, as they

Couxial line

Power Amp.
NF HSA4014
I
Wave Generator
HP 33220A

NI PXT system

Qulp {RIXEO)

)
- -5-- y b St Switch | Multi meter
g Pickup U4 | 2593 4070

~y1] 2 - 13 1\\ ! o
200mm  collarray - PXI1 controtler 8186

FIG. 1. Schematic diagram for the proposed motion capture system.

© 2006 Ametrican Institute of Physics
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3D-axial aut.
scanner

FIG. 2. Pictures of (a) developed motion capture system, (b) detecting part
of the motion system, and {¢) LC resonant magnetic marker with high per-
meability Ni—Zn ferrite core.

have the same frequency. To extract the marker contribution,
the induced voltage is first measured without the marker and
then measured with the marker. The marker voltage is then
obtained by subtracting as vectors the induced voltage with-
out the marker from the induced voltage with the marker.””’
The position and orientation of the marker is calculated using
the following equations [Egs. (1), (2), and (3)], which effect
an optimization using the Gauss-Newton method:

"
Sp) =2 BY  ~BY())* — Minimum, 1)
i=]
. 1 M 3M-r)-r
BYp)= -, )
4 ry r
p=06.2,0,6,M). (3)

Here S(p) is an objective function (the least squares value), i
is the coil number, 7 is the total number of coils, Bgeas is the
measured fux density, ngl is the theoretical flux density that
takes into account the magnetic dipole field, p is the param-
eters of the marker, M is the magnetic moment, (x,y,z) is the
position of the marker, r is the equation of an ideal dipole
field expressed as a function of position and orientation, @ is
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FIG. 3. Evaluation results for the developed motion capture system
(xy-plane and xz-plane plot).

the angle between the x axis and the direction vector when
the moment is projected on an xy plane, and ¢ is the angle
between the direction of the moment and the z axis.

lil. RESULTS AND DISCUSSION

Figures 3(a) and 3(b) show the measured position of the
marker orientated parallel to the y axis as it was swept in
10-mm steps along a grid pattern in the xz plane at y=50,
100, and 150 mm, measured by a precision three-
dimensional-axial auto scanner [the marker was put on the
end of a rod made of nonmagnetic resin, as shown in Fig.
2(b)]. Each point represents ten measurements at every
marker position, with triangles for y=50 mm, circles for y
=100 mm, and squares for y=150 mm. Good accuracy is
seen in the position of the marker at y=50 mm and y
=100 mm.

To capture the exact motion of the marker, the angle of
the orientation of the marker must be measured. Figures 4(a)
and 4(b) show the measured angles 6 and ¢, respectively.
The figures show that approximately correct angles, 6=¢
=90°, were acquired at y=50 mm and y=100 mm. However,
at y=150 mm, a wide dispersion of ¢ and ¢ was measured,
particularly when the marker was located far from the center
of the system. This was due to the fact that the marker was
not excited efficiently at these positions, degrading the SN
ratio, because the deviation angle between the exciting field
vector and the normal vector of the marker approached a
right angle.

The relative ervor of the measured position of all the
points at each y value was evaluated and expressed as an
averaged value with a standard deviation. The results are as
follows: 0.14+0.60 mm at y=50 mm, 0.14+0.19 mm at y
=100 mm, and —0.60+0.37 mm at y=150 mm. According to
the results, the relative position accuracy was less than
1 mm.

FIG. 4. Evaluation results for attitude angles (a) # and
(b) &
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FIG. 5. The averaged SN ratio dependence of the repeatable position
accuracy.

Figure 5 shows the relation between the averaged SN
ratio of the total search coils and the repeatable position ac-
curacy. The noise level of the system was estimated to be
3 wV. It can be seen that the repeatable accuracy improved
as the averaged SN ratio increased. However, several points
of poor repeatable accuracy at a high SN ratio are seen at
y=50 and 100 mm. It is thought that these points indicate the
presence of coordinates with a local minimum due to the
regular arrangement of the search coil array. It is believed
that an asymmetrical arrangement of the search coils would
eliminate such coordinates with local minima.

Overall, the results show that the system is capable of
capturing the motion of the marker wirelessly with a high
accuracy in the millimeter scale.

IV. CONCLUSION

The performance of a proposed magnetic motion capture
system using an LC resonant magnetic marker was evalu-

J. Appl. Phys. 99, 08B312 (2006)

ated. The relative position accuracy was found to be less than
1 mm and improved as the average SN ratio increased. The
approximate orientation of the marker could be determined
when the marker was located within the area of 100 mm? up
to 150 mm from the pickup coil array, except in the region
where the deviation angle between the direction of the excit-
ing field at the marker and the normal vector of the marker
was nearly equal to 90°.
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Development of Wireless Magnetic Multi-position Detectmg System
Using FFT Analysis

M. Toyoda, S. Hashi, S. Yabukami®, M. Ohya, K. Ishiyama®, Y. Okazaki, K. I. Arai*
Faculty of Engineering Gifu University, 1-7 Yanaido, Gifu 601-1193, Japan
"Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

A wireless multi-position detecting system using three LC resonant magnetic markers was developed and
demonstrated. The markers were given individual resonant frequencies of 183 kHz, 487 kHz, and 730 kHz,
respectively. The new measuring technique described in this paper was applied to the system in order to reduce the
acquisition time: the markers were excited by a superposed wave corresponding to the resonant frequencies, while the
voltage signals induced through the pickup coils are separated into each frequency spectrum by FFT analysis.
Regardless of the number of markers, the necessary voltage amplitude of each frequency spectrum can be obtained
easily at the same time. Thus, our proposed system can detect multiple markers at a time. All the positional
accuracies of the three markers are less than 5 mm within 100 mm of the pickup coil array.

Key words® multi-position detecting, LCresonant magnetic marker, wireless sensing, FFT analysis.

BN LC HERBIAY-hZRVESRUBRIE AT A
BEES, PE—E, HEE, KRS UL, RS, R

BB KT 2288, BT 1-1 (F501-1193)
THALKZESGEEERN, WEHEERAF -1-1 (T980-8577)

1. RU®IC  EALND. FBOBRBIHERITIRVNE DI, T—HiN
B BRTHEBORDOEFENEN ENEFLNES A S.
Table 1 13FBCTRIEL 2V AT L EMD L AT L EDHEEE
HErTER LD FEDDBDTH D, FIATFALILERTHODT
AFLTRUTFOXSHFESIST NS, HUSHREAT
RSB TH B E, KRG ERERRIE
Tiav—H8 2 HE TG, FSHRROXERZITEN
Z &, EFERTDW TR AT OFRAIZASTB SN
BT LT DI b I A M55 720 SRR
FAERTRB L, ZEFHIOBICETOR—ADHEEEET
EBMBIETFANAS ERET DLEN S D HRBIBOH
RN EABET oS, LhL, LOR—hERWET A
FATRCNS OMERRRTIE TS 5 EFX 505, R
NETIZ, ZOFEEEAWEIATLAEREL, 100 mm FHD
ZEANICESB L. 1 D LO ~—h OB B I UsRE, §HbE
B2 1 Hz f2, HIRADEASE 2 mm DI T CRHIATRECH S Z %R
LT&ERD -9,

ZNETTE—aFy FFrIicfREEND 3 oz
B BYEOMNERHAEFTHT HFEICOWTI, BRL7FR
FERINEREEINTNSDY ~9, UL USRI
| SRS T2 AHEL, BB e — A DB T
FEE U <IanWE D70 F TR EfT 5 A
EAERBIEBIN, TITEESIES, ZOLIRRHITHIRE]
Bolr, LOHREIT 1 v L ARG w—h CLF, LOIT—hHEER
ERWALR - AR ERRUBNZITo TS, ok
R TR Y—HEERAB LI TN T OB AEE 27 /N
{EASFIRETH Y, Tz LC I—hW R AIREEEE EHNER
FYB & TEEE RN A, FIRIE Bk SdEk
DX ZIPREICIEZ D FIRICEL Tna. BEAy s
& UTIRIBZERIPIC B 2 AT NA 20T 615, Zhid,
BRIERFT Lo ORI L EREOCHEE L —RT
BT ET, (e —R— RMERTREICT 5D0THS. T
OFITIE, BOBZIC X > T—hie O ADESN

Table 1 Specification comparison of proposed system with other system.

This paper AC magnetic DC magnetic!? Optical

System LC resonant magnetic |AC magnetic field source| Permanent magnet | Luminescent, Color contrast
marker / Pickup coil 3 axml magnetlc sensor Hole sensor Vldeo camera

W]red/Wueless I ereless W1red o ereless Wnreless \
Detectable mnge I . 50 100 o SRR DR < 760 - . < 50 - STV B 30 -
Posmon acuracy | 5 mm cublc B 0 76 mm cublc . 0.3 mm cublc - N range / 1000 R
Detection speed o 1 Hz (3 Hz)"1 | 120 Hz e 100 Hz o 60 Hz
Number ofmarkers e N 3*2 16 R < 5 e B 64

*1 Under a sufficient number of instruments and CPUs, *2 Under consideration.
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Fig. 1 Schematic diagram of the system.

Fig. 2 Shape of the LC resonant magnetic marker.
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Table 2 Specifications of LC markers.

Marker1 | Marker2 | Marker 3
Resonant frequency (kHz) 183 487 730
fi (kHz) 1821 81| 720
£ GHz) 185 | 492|740
Dlameterofcore (mm) R B 1
ol b SR § T e
Contcon B 1 s o
Guligticior R e

Resonant frequency
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wemmm With LC marker
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Induced voltage
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(a) Influence on the induced voltage of the LC
marker, and amplitude spectrum after FFT
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Fig. 3 Background and marker’s contribution.

Induced voltage

Vuks

VMK

Fig. 4 Marker’s contribution voltage when three
markers are detected.
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Fig. 5 Arrangement of the markers and pick-up coil
array.
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Fig. 9 S/N ratio of each pickup coil (S/N ratio of
light grey coils = 5, dark grey coils < 3).
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Fig. 10 An acquisition time chart for the motion of
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Wireless Magnetic Motion Capture System
for Multi-Marker Detection

Shuichiro Hashi®, Masaharu Toyoda!, Shin Yabukami?, Kazushi Ishiyamaz, Yasuo Okazaki®, and Ken Ichi Arai®
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A wireless multi-motion capture system using five LC resonant magnetic markers has been developed and is demonstrated. Each
marker has an individual resonant frequency, 157, 201, 273, 323, and 440 kHz, respectively. A new measuring technique is applied in
order fo reduce the acquisition time. In this new technique the markers are excited by a superposed wave corresponding to the all
resonant frequencies, while the voltage signals induced through pick-up coils are separated in a frequency spectrum by FFT analysis.
Regardless of the number of markers, the voltage amplitude for each resonant frequency can be easily obtained simultaneously and
thus the proposed system can detect mu]tlple markers. The positional accuracy for five markers is less than 2 mm within 100 mm of the

pick-up coil array.

Index Terms—FFT analysis, LC resonant magneﬁc marker, multi-marker, wireless motion capture system.

1. INTRODUCTION

IRELESS motion capture for multi-point detection at

close range is a candidate technique for virtual input
devices or medical treatment applications. In such applications,
particularly for measurements of the motion of fingers, the
markers used must be small and free -from electric wiring to
. allow normal motion. In addition, the location and orientation
of the inarkers must be known exactly during the measurement.
Furthermore, if a dead angle is likely to occur, an optical method
is unfavorable. There have been several investigations into de-
termining the position of a magnetic object by measuring its

magnetic field [1]-[6]. However, conventional systems require .

a comparatively large magnetic object as a marker or the marker
must contain electric wiring, in order to obtain a high SN ratio
for the magnetic signal from the marker. To address this, we
have proposed and developed a wireless magnetic motion cap-
ture system using a magnetically-coupled LC resonant marker
[71, [8]. The small sized marker uses a soft ferrite core with a
coil, representing a minimal LC circuit with no battery, driven
wirelessly by electromagnetic induction. The magnetic signal
of the marker is detected by a matrix-designed pick-up coil
array. Our proposed system allows the approximate orientation
and the position of a single marker to be determined accurate
to within 1 mam in a space 150 mm from the pick-up coil array.
It also allows multi-point detection because the system allows
the use of several markers with individual frequencies. In this
paper, we extend our system to detect multiple markers and we
examine the accuracy of the system in detecting the positions
and orientations of the markers. '

II. COMPONENTS AND MEASURING METHOD OF THE SYSTEM

Fig. 1 shows a schematic diagram of the motion capture
system for multi-marker detection. The system is composed of
measurement instruments and a coil assembly, consisting of a
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Fig.1. Schematic diagram of the proposed wireless motion capture system for
multiple markers.

driving coil, I.C markers, and a pick-up coil array. The marker
consists of a Ni-Zn ferrite core (3 mm in diameter and 10-mm
long) with a wound coil and a chip capacitor, representing an
LC series circuit designed for resonant frequencies of 157,
201, 273, 323, and 440 kHz. The pick-up coil array consists
of 25 coils placed at intervals of 45 mm on an acryl board,
configuring a matrix layout. Each coil is made of 40 turns of
polyester enameled copper wire (PEW) around an acryl bobbin
25 mm in diameter. An excitation of 22 V is applied to the
driving coil (10 turns of PEW around the Teflon coil, 200 mm in
diameter) and the markers are strongly excited at their resonant
frequency by electromagnetic induction. However, the system
becomes slow with an increase in the number of markers,
owing to time required to switch frequencies and make multiple
measurements. In this paper, a new signal measurement method
is adopted to increase the system speed. All the markers are
excited simultaneously by a superposed wave corresponding to
all the resonant frequencies of the markers. As shown in Fig. 2,
the induced wave measured by the pick-up coil is analyzed
into a frequency spectrum by FFT analysis. First, the spectrum
is measured without the markers and then the spectrum is

0018-9464/$20.00 © 2006 IEEE
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Fig.2. Signal of LC marker acquisition technigue (superposed wave excitation
and FFT analysis).

measured with the markers. The induced voltages of the marker
contributions, Vik, can be obtained by subtracting as vectors
the amplitnde of the spectrum without the markers from the
amplitude of the spectrum with the markers. The amplitudes
Vi measured by each pick-up coil are different from each
other and proportional to the flux densities B that the markers
produce at the location of the pick-up coils. The position and
orientation of each marker is obtained by solving an inverse
problem. However, several values (25 values in our study) of
the flux density at a-known location specify the magnetic flux
source. To solve this problem, the generated flux density from
a marker is considered to be a magnetic dipole. field. Under
this assamption, the position and orientation of a marker are
calculated using the nonlinear method of least squares by the
Gauss—Newton method [9] .

" mp B0 2 ..
SH=3" 'ngas - B9®|" - Minimum (1)
=1

s@ L f M 3(M-F)-7
ﬁ:‘ (x7 y) z797¢7 M)‘ (3)

Here S(p) is an objective function (the least squares value), 4 is
the coil number, n is the total number of coils, éﬁ;&as is the.mea-
sured flux density, B 221 is the theoretical flux density that takes
into account the magnetic dipole field, § represents the param-
eters of the marker, M is the magnetic moment, (z,y,z) is the
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Fig.4. Evaluation results of detected position (displayed in three dimensions).

position of the marker, and 7 is an ideal dipole field expressed as
a function of position and orientation. As shown in Fig. 1, ¢ is
the angle between the z-axis and the direction vector when the
moment is projected on an xy-plane and 4 is the angle between
the direction of the moment and the z-axis.

Fig. 3 shows the frequency dependence of the induced voltage
from the markers. Sharp signals due to LC resonance of the
markers were observed and there is no influence on neighboring
signals from the skirts of the signals. In practice, the superposed
wave, which is composed of ten frequencies corresponding to
upper and lower peaks (f1 — fi0), shown in Fig. 3 was used for
excitation. :

-

III. RESULTS AND DISCUSSION

The position accuracy was verified experimentally for the
system. Fig. 4 shows the detected positions and Fig. 5 shows
the detected orientations when the five markers were lined up in
five ranks parallel to the y-axis at 20-mm intervals. The markers
were swept from y = 50 mm to 150 mm in 10-mum steps along
the y-axis in the zy-plane at z = 50 mm, 0 mm, —50 mm (refer -
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. Fig. 5. Evaluation results for ¢ and # (zy-plane at z = 0 mm).

to Fig. 1 for the coordinate system). As shown in Figs. 4 and
5, results can be distinguished to less than 1 mm and the posi-
tion accuracy for each marker is within 2 mm. Approximately
correct orientations were obtained when the markers were lo-
cated up. to 100 mm from the pick-up coil array. These results
show that the system is capable of simultaneously capturing the
motion of multi-markers wirelessly with a high accuracy. How-
ever, the detected positions were deflected toward the y-axis (the
center axis of the pick-up coil array) gradually as the marker po-
sition increases over 100 mm from the pick-up coil array. Ac-
cordingly, the deviation of the attitude angle ¢ increases gradu-
ally up to about 10 degrees. A maximum positional deviation of
around 6 mm was observed for markers located at (80, 150, 50),
(80, 150, 0), and (80, 150, —50), whereas, as shown in Fig. 6, the
intervals between adjacent markers were less than 3 mm in terms
of relative position accuracy. The relative error of the measured
position of all the points at intervals between adjacent markers
was evaluated and expressed as an averaged value with a stan-
dard deviation. The results are as follows: 19.03 =+ 0.88 mm at
Mk1-2 (interval between Marker 1 and Marker 2), 18.79£0.25
mm at Mk2-3, 19.88 + 0.65 mm at Mk3-4, and 20.55 & 0.41
mm at Mk4-5.

The increase in the detection error for large distances is
thought to be due to the relation between the size and arrange-
ment of the driving coil and the pick-up coil array, though the
exact cause of these deflects is not yet clear.

IV. CONCLUSION

The performance of a proposed wireless magnetic motion
capture system for multi-makers was evaluated for five LC res-
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Fig. 6. Intervals between adjacent markers.

onant magnetic markers with individual resonant frequencies.
The positional accuracy of the markers was found to be less than
2 mm and the approximate orientation of a marker could be de-
termined when the marker was located within 100 mm?, up to
100 mm from the pick-up coil array. However, the detected po-
sitions were deflected toward the y-axis (the center axis of the
pick-up coil array) gradually as the distance of the marker from
the pick-up coil array increased.
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