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TR VB EEET LR LS U NFT R 2RSS, #7-, 4-HNE (2 BACE1 M
ELRIETALOBHEARET S, E5ICASIZABAD ICEE LTI bav P 7 AES
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FiTHEMlEco d-HNE ER @A ML R
DHERKEBLIbODEZF LN S, DB,
ALDH2 iJEEME T LT % & 4-HNE O%H
WETEIHEARL, 2OERE LT AD BED
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S ParY P TERIFAF—EEONLEMI ANLST RS TH Y, UFEESR LIRS
aﬁ%ﬁsl}xﬂﬁ% ik, EEHmEE LSS, TH S, KBRS T I
ic&koT, & Y FUT7Ds RO DLST (d1 hydrolipoamide succinytransferase) 1% 7~
&,EFDVFUTAHMM?thkM*%W*%@M&%@/h/h@%W# TN
4R —HDERRT £ 725 2 L R AU 7z, DLST WHEI2I1E 2 D DOMB TN H b, Bl
JERLL 7= DLST BHAT-PEY MIRTD 1, & 70 A ¢ BLBEEO S T HEAICNE T2 2 L2
L7, ALDH2 LR L ZADHIHEREE LTlnoTwv 3 2 25 H 00 L, ALDH2 A
U f)a?/w/vr')—#m IO ERD I B L2 LT, HEICk->T, 73ug4 FB
AXT7F RO = Fay FY PRI vb(m TBIEMDMY, PAYNAL 2 =R

EIbhariky 7’@1&31"17’))[5&]1_”)@7‘ T

5X5Wkot,

F——R ¥ ool o iBLEEE DLST,

B7 U4 F, Gk

FUSIC—I POV RUPRESHEEEEAILT RS

Ay P TERIAAF M EE s ANT 2T
37; b HEBED ATy TR TR, R, 73

J RO EELL, NAD' & FAD 2507 5,
ZOWTEL AN K =% LR AF—E LT, oW
fhmv Lo TRHERICHRIG %D 2, T
CEoTHELE L Fay Py 7ABEOESLSY
mvzwi# ATP BN 3N F — L D,

fie

LT, ATP 12 Na-K-ATPase {2 & - T Na* &)y
A A TEICRRISHEB SN S, BT EEZLS
FAU BRI E NS Z Lic k- T, M

BHEO—MITH B A—s{—=74 F > F (super oxide) 237
U5, a2y FY7EEKRDIGEH:FEE (reactive
oxygen species : ROS) fHIRTH % (Ohta, 2003),

:r:yFU7;L$w¥—ﬁ%wM@ﬁwﬁ$i
l‘l % < m_nuicéﬂ" ?7’"7.‘)‘ Tfﬁ }‘—¢/7\®’;¥]ﬂf?y

7+w,mmWf,ﬁMWf#=F:yFUT'Wi
S5NTEY, PTRF—CADBIZI Fary Ry 755
M ihEng, ¥4, S rav Ry 7iihny

D LDBERTH D, AN LOWERETE L CH
A2 L v 5, D30 F—pEd o T iaillam
DFEAFZG > AEFHEZWEL, 270—2 R0k
AN EFERT B, T b ay FY PREELRFTET
M4 L HEFEL T2, ZR2LF—PEEET
ROSICE 2L A M LA, PEF—Y A L34
e, AT Ak BHMEEEE, S har FY TR
e A TANEAIIEGE & %3 B L T v B (Ohta,
2003),
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DFEHET

TV A 2 —IRIEERTIE 2 32— 201D
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11»%—&%@@*@?»7A47~M®mw>w
34D, LA OFGE L THEL TEL
WEWEHITHD, TPy FUTHERBET VLS &
TH, R /%7macﬁwW4(umM,HWMI

IBUHT 2 & J/ B & 41 T v 72 (Maurer et al, 2000 5
Cottrell et al 2001)., COX &, i f{’\,‘l—r\@ilw’( 3
MEH TR RNERITT HEEETH S, ¥

Moy 722y b, Thay Ry
i A4 7=y b OEESETH
Ty oA v —Ji i

b HCE, W trtaryFyTHE
ek, fhMED 2 Far FY7PTL COXintEds

JEFLTwBI DS, KIMEERE LT
COX fI§ Fi2# A & 4174 > (Parker et al, 1994 ; Mancuso
et al, 2003 : Cardoso et al, 2004), % 7-, COX DHEH]
TH DT ULbEYIC TV A e — i)
WRERT I LT E 2004) ,

W7 5 2

X »T,

% (Szabados et al,

1. DLST @zF &Y M OLBMLBEROESRIE
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4 114"{"2}]93/]<#f’%b‘ri0)bk m‘% Yo
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k(/)/

DLST {1zl L 72 & o0l }L’ £, DLST g 123
GEEYE T L s 'f 2 — i ])\])'Ll"f,\ T & [nj el bl
ELCwuB I LRSS % (Nakano et
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AREE F17- (Nakano et al, 1997), L4 L, ZH/7a
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Sheu et al, 1999), AW AR L HEHIRE 2 Tw
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al, 2003),
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UJ‘ DRI EFEDOBE, TAYAL RS

%2 DLST JB{ET- 4T Cid MIRTD DFBAMET L
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Abstract

Contribution of dysfunction of mitochondria and oxidative stress in the pathogenesis
of Alzheimer’s disease

Shigeo Ohta
from

Department of Biochemistry and Cell Biology, Institute of Development and Aging Sciences,
Graduate School of Medicine, Nippon Medical School, 1-396 Kosugi-cho,
Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan.

Mitochondrion is a multifunctional organelle. Apoptosis as well as necrosis is closely related with mitochondrial
functions. Damage to mitochondria causes a decline in ATP synthesis and an increase in the generation of reac-
tive oxygen species (ROS). ROS damage various molecules including DNA, protein and lipid and induce apoptosis.
Evidence has recently emerged that oxidative stress is involved in the pathogenesis of Alzheimer’s disease (AD).
Moreover, it has been shown that amyloid 8 peptide is involved in enhancing oxidative stress.

Here, the author focus on the involvement of dysfunction in mitochondria with AD and review recent ap-
proaches to the molecular pathogenesis of AD.

First, the author would like to describe the involvement of deficiency of molecular assembly of cytochrome ¢
oxidase (COX). Dihydrolipoamide succinyltransferase (DLST) is a subunit-enzyme of the & ~ketoglutarate dehy-
drogenase complex of the Krebs cycle. While studying how the DLST genotype contributes to the pathogenesis of
AD, we found a novel mRNA that is transcribed starting from intron 7 in the DLST gene. The novel mRNA level
in the brain of AD patients was significantly lower than that of controls. The truncated gene product (designated
MIRTD) localized to the intermembrane space of mitochondria. To investigate the function of MIRTD, we estab-
lished human neuroblastoma SH-SY5Y cells expressing a maxizyme, a kind of ribozyme, that specifically digests
the MIRTD mRNA. The expression of the maxizyme specifically eliminated the MIRTD protein and the resultant
MIRTD~deficient cells exhibited a marked decrease in the amounts of subunits of the COX complex of the mito-
chondrial respiratory chain, resulting in a decline of activity. A pulse-label experiment revealed that the loss of
the subunits is a post—translational event. Thus, the DLST gene is bifunctional and MIRTD transcribed from the
gene contributes to molecular assembly of the mitochondrial respiratory complex, including COX.

Second, the author review on oxidative stress caused by a deficiency of mitochondrial algehyde dehydrogenase 2
(ALDH2). ALDH2 is involved in ethanol metabolism by playing a major role in acetaldehyde detoxification. A
polymorphism of the ALDH2 gene is specific to north Asians. Sensitivity to ethanol is highly associated with this
polymorphism (ALDH2*2 allele), which is responsible for a deficiency of ALDH2 activity. We at first show that
this deficiency influences the risk for late—onset Alzheimer’s disease (LOAD) by a case-control study in a Japa-
nese population. In a comparison of 447 patients with sex, age and region~matched non-demented controls, the
genotype frequency for carrying the ALDH22 allele was significantly higher in the patients than in the controls
(p=0.001). Next, we examined the combined effect of the ALDH2*2 and apolipoprotein E 4 allele (APOE- € 4),
which has been confirmed to be a risk factor for LOAD. The ALDH2*2 allele more significantly affected frequency
and onset-age in patients with APOE- & 4 than without. These results indicate that the ALDH2 deficiency is a
risk factor for LOAD, acting synergistically with the APOE- ¢ allele. Next, to elucidate the molecular mechanism
involved, we obtained ALDH2-deficient cell lines by introducing mouse mutant Aldh2 cDNA into PC12 cells. We
speculate that ALDH2 may function to oxidize toxic aldehyde derivatives. Then, we found that the ALDH2-defi-
cient transfectants were highly vulnerable to exogenous 4-hydroxy—2-nonenal, an aldehyde derivative generated
from peroxidized fatty acids. In addition, the ALDH2-deficient transfectants were sensitive to oxidative insult in-
duced by antimycin A, accompanied by an accumulation of proteins modified with 4-hydroxy-2-nonenal. Mito-
chondrial ALDH2 functions as a protector against oxidative stress.

Finally, the author would like to review on the direct involvement of A with mitochondrial dysfunctions,
through inhibition of COX activity and enhancement of oxidative stress via A S ~hinding alcohol dehydrogenase
(ABAD) which is located in mitochondria.

(Received = April 4, 2005)

Shinkei Kenkyu no Shinpo (Advances in Neurological Sciences), Vol. 49, No. 3, pp357-366, 2005.
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Abstract The Japanese have a polymorphism in the
alcohol dehydrogenase 2 gene (ADH2). The alleles of
ADH?2 (ADH2*1 and ADH?2*2) encode more active and
less active forms for ethanol metabolism, respectively.
We examined whether liver damage and the insulin—
glucose axis vary according to ADHZ2 genotype in the
Japanese. The 2,232 subjects (1,126 men and 1,106
women) were recruited from a population-based pro-
spective cohort study. Clinical evaluations including
alcohol consumption, percentage of alcohol drinkers,
plasma glucose, HbAlc, insulin, AST, ALT, y-GTP, and
prevalence of diabetes were compared among the ADH2
genotypes. The percentage of drinkers, alcohol con-
sumption, AST, ALT, and y-GTP were higher in group
ADH?2*1/1 than in group ADH2*1/2 or ADH2%*2/2 (all
P <0.05). Hence, ADH2*1/1 is associated with excess
alcohol intake and liver disorders. However, the preva-
lence of diabetes did not differ among the three groups.
For the glucose—insulin axis, we examined subjects who
did not receive insulin therapy or oral anti-diabetes
medication. While amounts of alcohol consumed and
glucose levels were nearly the same between ADH*1/2
and ADH2*2/2, insulin concentrations were lower in
ADH?2*2/1 than in ADH2*2/2 (P<0.05 in men). This
finding suggests that the 4ADH2*] allele is associated
with a lower insulin concentration when alcohol intake
is light or moderate. It also suggests that the genetic
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effect of ADH2*] plays an important role in alcohol
drinking behavior and in the occurrence of liver injury,
but the effect is so mild that it does not influence the
glucose—insulin axis or prevalence of diabetes.
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Introduction

A reduced incidence of type 2 diabetes has been
observed among drinkers in several large prospective
studies. Conigrave et al (2001) reported a 12-year pro-
spective study in a cohort of 46,892 US male health
professionals, in which 1,571 new cases of type 2 dia-
betes were reported. The frequency of alcohol con-
sumption was inversely associated with diabetes. Hu
et al (2001) reported a large cohort study of 84,941 fe-
male nurses from 1980 to 1996, in which abstinence from
alcohol use was associated with a significantly increased
risk of diabetes. In contrast, other studies (Holbrook
et al 1990) have shown an increased risk of diabetes
among a proportion of subjects in the top alcohol con-
sumption category. In Japanese men, Tsumura et al
(1999) reported that heavy drinking is associated with an
increased risk of type 2 diabetes, while moderate
drinking is associated with a decreased risk of type 2
diabetes, showing a U-shaped relationship.

The genotypes involved in ethanol metabolism are
now known to be associated not only with drinking, but
also with longevity and oxidative stress parameters
(Ohsawa et al 2003). In Japanese, the pharmacokinetics
of alcohol metabolism have been well studied. Alcohol
dehydrogenase (ADH) is one of the key enzymes in
alcohol metabolism. Class I ADH isoenzymes, encoded
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by ADHI, ADH?2 and ADH3, form dimers among the
isoenzymes and oxidize ethanol and other small ali-
phatic alcohols (Borson et al 1988). About 85% of the
Japanese population are carriers of the f2-subunit en-
coded by the ADH2*2 allele, while isoenzymes with the
B2-subunit have been found in only 5% or less of
Europeans and white Americans. The f1- and f(2-su-
bunits differ by only one amino acid residue: Arg-47 in
the NAD(H) pyrophosphate-binding site is substituted
with His-47 in the f2-subunit. ADH2 functions as a
dimer and the 22 dimer exhibits about 100 times more
catalytic activity for ethanol oxidation than the p1p1
dimer at physiological pH (Borson et al 1988), whereas
the 152 heterodimer exhibits nearly the same activity as
the 151 homodimer. Thus, relative enzymatic activities
of ADH2*1/1:ADH2*1/2: ADH2%*2/2 can be estimated as
1:26:100 if a dimer were to form between the subunits of
ADH2*1 and ADH2*2 (Borson et al 1988; Yoshida et al
1981).

Several studies (Higuchi et al 1996; Yamauchi et al
2001) have reported that the 4 DH?2 genotype is associated
with excess alcohol intake and alcohol-related disorders in
the Japanese population. We have previously reported
that the ADH?2 genotype affected LDL-cholesterol levels
and the occurrence of cerebral infarction in a community-
dwelling Japanese population (Suzuki et al 2004). We
therefore examined whether the glucose—insulin axis or
prevalence of diabetes is associated with the ADH?2
genotype in the same Japanese population.

Research design and methods

The National Institute for Longevity Sciences—Longi-
tudinal Study of Aging (NILS-LSA), a population-
based prospective cohort study of aging and age-related
diseases, was begun in 1997 (Ohsawa et al 2003; Shim-
okata et al 2000; Yamada et al 2002). All participants
were independent residents of the Aichi prefecture in
Japan. Residents aged 40-79 years old were randomly
selected from the register in co-operation with the local
government.

The area of study is located in the south of Nagoya
City. It is a commuter town and contains an industrial
area belonging to the Toyota group, but it has many
orchards and farms, so it has both urban and rural char-
acteristics. This area is geographically located in the cen-
ter of Japan, and its climate is average for Japan. We
examined a representative sample of the area’s population
via a national postal questionnaire of prefecture-stratified
random samples of 3,000 households from all prefectures
in Japan, and previously showed that the lifestyle of
people in this area was the most typical of all areas in
Japan.

The sample consisted of 2,232 subjects (1,126 men
and 1,106 women) who were randomly recruited. We
refer to them as “‘subjects-1.” Subjects-1 was stratified
by both age and sex. Randomly selected men and
women were invited, by mail, to attend an explanatory

meeting. At the meeting, the procedures for each
examination and follow-up schedule were fully
explained. Written informed consent to the entire pro-
cedure was obtained from each participant. Participants
in the present study were recruited from subjects
examined in 1997-1999. The study protocol was
approved by the Committee on the Ethics of Human
Research of National Chubu Hospital and the National
Institute for Longevity Sciences.

Descriptions of the physical examinations performed
have been published before (Ohsawa et al 2003;
Shimokata et al 2000; Yamada et al 2002). In brief,
lifestyle, medical history and prescribed drugs were
examined by questionnaire. Anthropometric measure-
ments were taken by a physician. A drinker is defined
as a subject who has drunk more than 5 g of alcohol
on average per day during the past year. Amounts of
alcohol consumed were carefully examined by taking
pictures before and after drinking as well as with
questionnaires. The percentage of non-smokers to
smokers was also noted.

Venous blood was collected early in the morning
after at least 12 h fasting. The mean of two determi-
nations of blood chemistry data was obtained for each
participant. Clinical evaluations included gender, age,
height, body-mass index, smoker status, alcohol con-
sumption, percentage of alcohol drinkers, and blood
chemistry (fasting plasma glucose (FPG), HbAlc,
insulin, AST, ALT, and y-GTP levels). Diagnosis of
diabetes was based on medical records, or it was
defined as a FPG concentration greater than 126 mg/dl
or an HbAlc of more than 6.5%, and/or if medication
was taken to lower the blood glucose level. Namely,
not all subjects whose FPG level was greater than
110 mg/dl did not receive the 75 g oral glucose toler-
ance test according to the criteria of the Japan Diabetes
Society. In the analysis of glucose—insulin associated
parameters, to exclude the effect of medications, the
diabetic patients who received insulin therapy or oral
medications for diabetes were excluded from subjects-1,
and the remaining subjects were defined as the
“subjects-2”" group.

Genotyping of ADH?

Samples of DNA were isolated from peripheral blood
cells. Genotypes were determined with a fluorescence-
based allele-specific DNA primer-probe assay system
(Toyobo Gene Analysis, Tsuruga, Japan). To determine
the genotype with the G214A substitution (Arg-47-His),
the polymorphic region of ADH2 was amplified by
polymerase chain reaction (PCR) with an antisense
primer labeled at the 5 end with biotin (5-GAT-
GGTGGCTGTAGGAATCTG-3) and a G allele-spe-
cific sense primer labeled with FITC (5-CCACGTGGT-
CATCTGTNCG-3") or A allele-specific sense primer
labeled with Texas red (5-AACCACGTGGTCATCT-
GTNTG-3).
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Table 1 Comparison of parameters among three groups of men (subjects-1), divided according to ADH2 genotype. Right columns

indicate P-values of statistical differences between two groups

Variables Men P-value

ADH genotype 2/2 1/2 1/1 2/2 vs. 1/2 2/2 vs. 1/1 1/2 vs. 1/1
Subjects-1 n= 689 378 59

Age (years) 59.5+0.4 58.9+0.6 58.0+1.4 n.s. n.s. n.s.
Height (cm) 164.44+0.2 164.7+0.3 164.6+0.8 n.s. n.s. n.s.
BMI 23.0+0.1 22.8+0.1 22.9+04 n.s. n.s. n.s.
Smoking (%) 61/39 63/37 63/37 n.s. n.s. n.s.
Alcohol (g/day) 28.8+1.4 29.5+1.9 44.5+4.8 n.s. 0.0049** 0.0102%*
Drinkers (%) 67.0 67.1 85.5 (P<0.0175)

AST (1U/]) 26.6+0.7 26.6+£0.9 33.6+2.3 n.s. 0.0038** 0.0049**
ALT U/ 27.1+0.9 26.8+1.2 343+3.0 n.s. 0.02* 0.02*
y-GTP (1U/1) 58.2+3.1 57.3+4.1 80.3+£10.5 n.s. 0.04* 0.04*
Diabetics (%) 13.3 13:3 13.6 n.s. n.s. n.s.

AST 2/2+1/2 vs. 1/1, P<0.0033; ALT 2/2+1/2 vs. 1/1, P<0.02; y-GTP 2/2+£1/2 vs. 1/1, P<0.04; drinkers 2/2+1/2 vs. 1/1, P<0.005;

alcohol 2/2+1/2 vs. 1/1, P<0.005
*P<0.05
**P<0.01

Statistical analysis

Data are presented as means=SE. The statistical sig-
nificance of any difference in mean values and frequen-
cies was determined with the Student’s r-test or the
Tukey-Kramer test. We used a one-way analysis of
variance to test for overall differences among multiple
groups, and the Fisher LSD post hoc test to identify
which group differences accounted for the significant P-
value. The significance of deviation from Hardy—Wein-
berg equilibrium was analyzed using the chi-square test.
A P-value of <0.05 was considered statistically signifi-
cant.

Results

Influence of ADH?2 genotypes on drinking behavior
and liver function

Among the 2,232 subjects, 1,355 (men 689, women 666)
had the ADH2%2/2 genotype, 759 (men 378, women 381)
had the ADH2*2/1 genotype, and 118 (men 59,

Fig. 1a,b Correlation of ADH2
genotype with alcohol drinking
behavior. a Percentage of
drinkers in three groups based
on ADH?2 genotype. Values in
parentheses indicate the total
number of subjects (white bars
men, gray bars women, and
black bars total subjects). b
Average amounts of alcohol
consumed per day. Subjects in
the ADH2*1/1 group drink
more alcohol than those in the
ADH?2*2/2 and ADH2*1/2
groups
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women 59) had the ADH2*1/1 genotype. The ADH2*2/
2, ADH2*2/], and ADH2*1/1 genotypes were in Hardy—
Weinberg equilibrium. There was no gender difference.

First, we compared the percentage of drinkers
dependent upon ADH2 genotype. The percentage of
drinkers was significantly higher in both men and
women in the ADH2¥1/1 group, showing overall dif-
ferences among the groups (Table | and Fig. 1a). The
difference was statistically significant according to
the Fisher LSD post hoc test in men (P<0.0175),
women (P <0.0166), and total subjects-1 (P<0.0033)
(Table 1). Moreover, amounts of alcohol consumed
were much higher in the ADH2*1/1 group than the other
ADH?2 groups in men and total subjects-1 (P<0.01 in
ADH?2*2/2 vs. ADH2*1/1 and P<0.05in ADH2%1/2 vs.
ADH2*]/I) (Tables 1,3 and Fig. 1b). On the other
hand, no significant difference in alcohol consumption
among ADH2*]/1 and the other groups was found in
women, probably because much less alcohol was con-
sumed by women than men (Table 2 and Fig. 1b). For
smoking (percentage of non-smokers to smokers), there
was no difference according A DH?2 genotype in men and
in women.
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Table 2 Comparison of parameters among three groups of women (in subjects-1), divided according to the three ADH2 genotypes. Right
columns indicate P-value of statistical difference between each two group

Variables Women P-value

ADH genotype 2/2 1/2 /1 2/2 vs. 1)2 2/2 vs. 1/1 1/2 vs. 1/1
Subjects-1 n= 666 381 59

Age (years) 59.4+0.4 59.1+0.6 60.0+1.4 n.s. n.s. n.s.
Height (cm) 151.3+0.2 151.1+0.3 151.1+0.8 n.s. n.s. n.s.
BMI 23.0+0.1 22.7+0.2 23.1+£04 n.s. n.s. n.s.
Smoking (%) 93/7 93/7 92/8 n.s. n.s. ns.
Alcohol (g/day) 52406 54+£0.8 6420 n.s. n.s. n.s.
Drinkers (%) 22.9 25.5 39.7 <0.0166

AST (IU/D) 24.5+£0.6 23.5+£0.7 23.3+1.8 n.s. n.s. n.s.
ALT U/ 21.2+0.8 20.1+1.0 18.94+2.5 n.s. n.s. n.s.
y-GTP (IU/) 27.9+1.1 285+1.4 29.4+3.6 1n.s. n.s. n.s.
Diabetics (%) 9.16 10.5 6.78 n.s. n.s. n.s.

Drinkers 2/2:+1/2 vs. 1/1, P<0.01

Next, we compared blood parameters of liver func-
tion, namely AST, ALT, and y-GTP activities. In men,
levels were significantly higher in the ADH2*1/1 group
than the other two ADHZ2 groups (Table I, AST;
P<0.01 in ADH2%2/2 vs. ADH2¥1]] and P<0.01 in
ADH2*1|2 vs. ADH2*1/1. ALT; P<0.05 in ADH2%2/2
vs. ADH2%1/1 and P<0.05in ADH2*1/2vs. ADH2*1/1.
v-GTP; P<0.05 in ADH2%2{2 vs. ADH2*]/] and
P<0.05in ADH2*1/2 vs. ADH?2*1/I), indicating that
more alcohol intake in the ADHZ2*1/1 group causes
damage to the liver. On the other hand, no significant
difference was found in women (Table 2); nevertheless
the ADH2*]]/] group consumed more alcohol than the
other groups, probably because women drink less than
men.

In subjects-1, the percentage of those with diabetes
was compared among the three ADH2 genotypic
groups. However, there was no statistical difference
in the prevalence of diabetes among the three groups
(men; ADHZ2%2/2:13.3%, ADH2*¥1/2:13.3%, and
ADH2*1/1:13.6%, women; ADH2%2/2:9.2%, ADH2*1]
2:10.5%, and ADH2*1/1:6.8%, total subjects-1;

ADH2%2{2:11.2%, ADH2%1/2:11.9%, and ADH2*]]
1:10.2%) (Tables 1, 2, 3).

Influence of ADH?2 genotype on fasting insulin
concentration

We tried to clarify the correlation of insulin concentra-
tion with ADH2 genotype. To exclude the effect of
medication, subjects were limited to those (subjects-2)
not treated with insulin therapy and/or with oral medi-
cations for diabetes. Although habits or behaviors gen-
erally depend upon genetic factors, we would like to
distinguish the genetic effects from the secondary results
of alcohol consumption. Since the frequency of drinking
and the amountsof alcohol consumed were the same in
the ADH2*]/2 and ADH2%2/2 groups (Fig. | and Ta-
bles I, 2, 3), we compared fasting insulin concentrations
between these two groups. Insulin levels were lower in
the ADH2*1/2 than ADH2*2/2 group in total subjects-2
(P<0.02). In men, insulin levels were lower in the
ADH2*1/2 than ADH2*2/2 group (P <0.05), while in

Table 3 Comparison of parameters among three groups of total subjects-1 divided according to ADH2 genotype. Right columns indicate

P-values of statistical differences between two groups

Variables Total {men + women) P-value

ADH genotype 2/2 1/2 /1 2/2 vs. 1/2 2/2 vs. 1/1 1/2 vs. 1/1
Subjects-1 n= 1,352 756 118

Age (years) 59.4+0.3 59.0+£0.4 59.0+1.0 n.s. n.s. n.s.
Height (cm) 158.24+0.2 158.14£0.3 156.8+£0.8 n.s. n.s. n.s.
BMI 23.0+0.1 22.740.1 23.1+£0.3 n.s. n.s. n.s.
Smoking (%) 77/23 78/22 78/22 n.s. n.s. ..
Alcohol (g/day) 17.2+0.9 17.6+1.1 249+28 n.s. 0.0089** 0.0158%*
Drinkers (%) 454 45.6 62.0 <0.0033

AST (IU/h) 25.6+04 25.0+0.6 28.3%+1.4 n.s. n.s. 0.0383*%*
ALT (IU/DH 24240.6 234408 26.5%£2.0 n.s. n.s. n.s.
y-GTP (IU/) 433+1.7 429+23 544457 n.s. n.s. n.s.
Diabetics (%) 11.2% 11.9% 10.2% n.s. 1n.8. n.s.

Drinkers 2/241/2 vs. 1/1, P<0.001; alcohol 2/24+1/2 vs. 1/1, P<0.01

*P<0.05
**p<0.01
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Fig. 2 Correlation of ADH2 genotype with fasting insulin concen-
tration in subject-2 group. Fasting insulin concentration (xU/ml): a
significant difference was found between ADH2*2/2 and ADH2*1/
2 in men (8.56+0.24 vs. 7.77+£0.32, P<0.05), and between
ADH?2*2/2 and ADH2*1/2 in total subjects-2 (8.44+0.15 vs.
7.84+0.20, P<0.02). A significant difference was found between
ADH2*1/2 and ADH2*]/I in total subjects-2 (7.84%0.20 vs.
8.92+£0.50, P<0.05)

women, the ADH2*[/2 group tended to have lower
insulin concentrations (Fig. 2 and Table 4). This sug-
gests that the ADH2*] allele has a lowering effect on the
concentration of insulin.

Next, we compared the concentration of insulin be-
tween ADH2*]/2 and ADH2*1/1. The concentration
tended to be higher in the ADH2*¥1/1 group than the
ADH?2*1/2 group in men, women and total subjects-2,
but a significant difference was only found in total
subjects-2  (insulin, ADH2*1/2: 7.84+0.20 pU/ml,
ADH2*][I: 8.92+0.50 pU/ml, P<0.05, Table 3 and
Fig. 2). Because the ADH2*1/1 group is small, the dif-
ference may have become statistically insignificant in
men or in women.

In subjects-2, while the difference was statistically
insignificant, the average level of HbAlc tended to be
lower in the ADH2*1/2 group than the ADH2*1/1 or
ADH?2*2/2 group (Fig. 3 and Table 4). For instance, in
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total subjects-2, HbAlc was 5.20£0.02%, 5.17 £0.02%,
and 5.23+0.05%, respectively, in the ADH2%*2/2,
ADH2*]/2, and ADH2*I/1 groups. Therefore, low
insulin levels in the ADH2*1/2 group seem to parallel
low HbAlc levels, showing a U-shaped relationship with
ADH?2 genotype as in Figs. 2 and 3.

Discussion

By examining the correlation between 4DH2 genotype
and drinking behavior, we confirmed the previous
observation that ADH?2 genotype influences the amount
of alcohol consumed in a Japanese population (Higuchi
et al 1996). In addition to alcohol consumption and
percentage of drinkers, men from the ADH2*1/1 group
had the highest levels of AST, ALT, and y-GTP, sug-
gesting that they drink so much alcohol that their livers
become damaged. This coincides with the observation of
Tanaka et al (1996), supporting the idea that 4DH?2
polymorphisms play an important role in alcoholic liver
diseases.

In terms of the mechanism involved, since carriers of
ADH?2*]/1 have less enzymatic activity for ethanol than
carriers of ADH2*2/] or ADH2*2/2, the slow rate of
ethanol clearance could damage the liver, but this is
unlikely because ethanol is less toxic than acetaldehyde.
Alternatively, it is possible that the slow rate of ethanol
clearance protects the subjects from the uncomfortable
feeling caused by acetaldehyde, thereby causing them to
drink too much alcohol and leading to liver damage.

Interestingly, concentrations of insulin were higher in
the ADH2*]/1 than the ADH2*1/2 group. Onishi et al
(2003) reported that excess alcohol intake can induce
insulin resistance with enhanced PI3-kinase activation.
Therefore, in the ADH2*1/1 group, excess alcohol in-
take may cause insulin resistance, resulting in hyperin-
sulinemia. Otherwise, some liver dysfunction caused by
excess alcohol intake may cause a high glucose output
from liver, thereby inducing hyperinsulinemia.

Table 4 Comparison of glucose-insulin axis parameters among three groups of subjects-2 divided according to the three ADH2 genotypes

Variables P-value

ADH genotype 22 1/2 1/1 2/2vs. 1/2 2/2 vs. 1/1 1/2 vs. 1/1
Men n= 640 346 57

FPG (mg/dl) 103.3+0.7 102.6+£0.9 103.3+£2.2 n.s. n.s. n.s.
HbAlc (%) 5.24+0.02 5.22+0.03 5.27+0.08 n.s. n.s. n.s.
Insulin (¢U/ml) 8.46+0.22 7.69+0.31 8.47+0.75 0.0452* n.s. n.s.
Women n= 623 354 57

FPG (mg/dl) 98.6+£0.6 99.3+0.8 99.2+2.1 n.s. n.s. n.s.
HbAlc (%) 5.15+0.02 5.11+£0.03 5.17£0.06 n.s. n.s. n.s.
Insulin (¢U/ml) 8.42+0.19 8.00+£0.26 9.36+0.65 n.s. n.s. n.s.
Total n= 1,263 700 114

FPG (mg/dl) 101.0+£0.46 101.0+0.6 101.2£1.5 n.s. n.s. n.s.
HbAlc (%) 5.20+0.02 5.17+0.02 5.234+0.05 n.s. n.s. n.s.
Insulin (¢U/ml) 8.44+0.15 7.844+0.20 8.92+£0.50 0.018* n.s. 0.045*

*P=10.05
**pP<0.01
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Fig. 3 Correlation of ADH?2 genotype with HbAlc level in subject-
2. A significant difference was not found between the three groups.
However, the HbAlc level showed a U-shaped relationship as if
correlated to the insulin level

Next, we tried to focus on the ADH2’s genetic effects
on the insulin—glucose axis. Because alcohol produces
complicated effects, it is generally difficult to distinguish
the genetic effects from the influence of alcohol drinking
behavior. Interestingly, alcohol consumption or per-
centage of drinkers did not differ between the ADH2%¥1/2
and ADH?2*2/2 groups (Tables 1, 2, 3 and Fig. la, b).
This enabled us to compare the insulin concentration,
dependent upon the difference in ADH2 activity itself,
based on the ADH2 polymorphism, almost indepen-
dently from alcohol intake. Among subjects-2, we found
that fasting insulin concentrations were signifi-
cantly lower in the men and total subjects-2 with the
ADH?2*1/2 genotype than those with the ADH2*2/2
genotype (Table 4 and Fig. 2). A similar trend was seen
in women, suggesting that this trend is reproducible
irrespective of gender.

Thus, this study suggests that ADH2*] has a biphasic
effect on the insulin concentration, a lowering effect with
ADH2*1/2, and a raising effect with ADH2*1/] on
excess alcohol intake. Interestingly, the average levels
of HbAlc in subjects-2 tended to be lower in the
ADH?2*1/2 group than the ADH2*1/1 or ADH2*2/2
groups. These two parameters seem to exhibit a
U-shaped relationship (Figs. 2, 3). In nondiabetic
subjects, a low insulin concentration together with a low
HbAlc level usually coincides with low insulin resis-
tance. Therefore, the above relationship suggests that
light-to-moderate drinkers with the ADH2*] allele are
likely to have reduced insulin resistance. Interestingly,
this coincides with numerous other observations (Coni-
grave et al 2001; Hu et al 2001; Tsumura et al 1999) in
terms of the notion that light drinking could benefit
glucose tolerance.

Alcohol dehydrogenase catalyzed the first step in the
metabolism of ethanol but has a wide range of sub-
strates, including both aliphatic and aromatic alcohols,
aldehydes, sterols, and w-hydroxy fatty acids. We pre-
viously reported that, in the same population study, the
ADH?2*] allele is associated with increased levels of

LDL-cholesterol and high blood pressure, and an
increased risk of cerebral infarction (Suzuki et al 2004).
The concentration of insulin or resistance to insulin
could be affected by sex hormones, sex hormone-binding
globulin or obesity (Falkner et al 1999; Collison et al
2000). Therefore, as another possibility, the interaction
of the ADH2*1 allele with several hormones associated
with sex or lipids may decrease the insulin resistance in
target tissues (Harada et al 1998).

However, in this study, the prevalence of diabetes
did not differ among the three 4DH2 genotypes in
subjects-1. Therefore, the effect of ADH2 genotype on
insulin resistance may be so mild or complex that it did
not influence the prevalence of diabetes in the commu-
nity-dwelling Japanese population. Alternatively, since
all of the subjects whose FPG levels were higher than
110 mg/dl were not confirmed by the oral glucose tol-
erance test, if the subjects who had postprandial
hyperglycemia had been included in subject-1, the result
could have been different. To clarify this, a further study
will be needed.

It 1s well known that drinking behavior is influenced
more by ALDH?2 (aldehyde dehydrogenase 2) genotype
than ADH2 genotype (Higuchi et al 1996). However,
although a similar investigation was performed on the
correlation between ALDH?2 genotypes and their phe-
notype, no genetic effect of ALDH2 was found in
insulin—glucose axis and liver dysfunction (Ohsawa et al
2003). Thus, amounts of alcohol consumed would not
simply depend upon insulin level.

In conclusion, this is the first paper to propose an effect
of ADH?2 genotype on insulin concentrations in the Jap-
anese. The effect seems small, although it was statistically
significant due to the large number of subjects. The effect
is possibly too small to have a significant bearing on the
prevalence of diabetes. However, this finding provides
several insights into the complex relationship between
alcohol metabolism, genetic background, change in
alcohol drinking behavior, the insulin—glucose axis, and
the prevalence of diabetes and liver dysfunction.
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