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alternative pathway from PGC-1 because MIDAS did not
enhance mitochondrial transcription (Fig. 7C).

As mitochondria dynamically repeat fusion and fission, it is
difficult to clarify their number (Griparic and van der Bliek,
2001; Westermann, 2002). In this study, we thus paid attention
to the total mass of mitochondria. Three-dimensional imaging
revealed a change in the total mass of mitochondria. The
increase was 1.6-fold, which agrees with the increase in
strength of the fluorescence of MitoTracker Red and
MitoTracker Green in MIDAS-expressing transfectants. This
increase is not so small because mitochondria occupy more
than 20% of the total volume of the cytoplasm in HeLa cells.
When the downregulation and upregulation of MIDAS were
compared, the total mass was found to vary more than 2.3-fold
from 15% to 35% of the total cytoplasm of HeLa cells. Thus,
MIDAS dramatically regulates the total mitochondrial mass.

Mitochondria are often swollen pathogenically or by an
increase of cytosolic Ca®*. It may be that the mitochondria are
simply swollen owing to the expression of MIDAS. However,
this is unlikely for the following reasons. First, the ratio of the
intensity in red to the intensity in green was the same in all the
cells examined, indicating that MIDAS does not exert any
influence on membrane potential (Fig. 6C). Although MIDAS-
expressing cells have lower concentrations of mitochondrial
protein per volume than controls (Fig. 7C), the levels seem
high enough for membrane potential. Second, the
downregulation of MIDAS conversely decreased the total mass
of mitochondria. Third, mitochondria appear intact
morphologically, being independent of the up- or
downregulation of MIDAS (Fig. 5C). Finally, it is crucial that
the amount of cardiolipin varied depending upon the amount
of MIDAS and that the extent of the change was well correlated
with the total mass of mitochondria that was revealed by three-
dimensional imaging. Cardiolipin is a mitochondrion-specific
lipid but accounts for only 20% of mitochondrial lipids. This
suggests that not only the amount of cardiolipin but also the
total amount of mitochondrial lipids is changed by MIDAS.
Taken together, it is concluded that total mitochondrial mass is
regulated by MIDAS through the biogenesis of mitochondrial
lipids.

The molecular mechanism by which the MIDAS protein
increases production of cardiolipin is unknown. A detailed
analysis of the MIDAS gene and the function of MIDAS should
provide insight into the molecular mechanism by which
mitochondrial dysfunction is sensed to increase mitochondria.
The fact that MIDAS is colocalized with both mitochondria
and the Golgi apparatus may be a key to answering the question
of how lipids contribute to mitochondrial accumulation.

We thank K. Mihara of Kyushu University for the gift of anti-
Tom20 and anti-Tom40 antibodies, I. Ohsawa and T. Kanamori for
helpful advice and K. Yamagata for technical assistance.
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Abstract

Protection of cells from necrosis would be important for many
medical applications. Here, we show protein transduction
domain (PTD)-FNK therapeutics based on protein transduc-
tion to prevent necrosis and acute hepatic injury with zonal
death induced by carbon tetrachloride (CCl;). PTD-FNK is a
fusion protein comprising the HIV/Tat PTD and FNK, a gain-of-
function mutant of anti-apoptotic Bel-x.. PTD-FNK protected
hepatoma HepG2 from necrotic death induced by CCl,, and
additionally, increased the apoptotic population among cells
treated with CCl;. A concomitant treatment with a pan-
caspase inhibitor Z-VAD-FMK (N-benzyloxycarbonyi-Val-Ala-
Asp-fluoromethylketone), which alone could not prevent the
necrosis, protected these cells from the apoptosis. When pre-
injected intraperitoneally, PTD-FNK markedly reduced zonal
liver necrosis caused by CCl;. Moreover, injection of PTD-
FNK accompanied by Z-VAD-FMK suppressed necrotic injury
even after CCl, administration. These results suggest that
PTD-FNK has great potential for clinical applications to
prevent cell death, whether from apoptosis or necrosis, and
organ failure.

Cell Death and Differentiation advance online publication, 4
February 2005; doi:10.1038/s|.cdd.4401569

Keywords: necrosis; apoptosis; protein transduction domain;
carbon tetrachloride; HepG2; liver; Bcl-x; protein therapeutics

Abbreviations: Ac-DEVD-AMC, N-acetyl-Asp-Glu-Val-Asp-7-
amino-4-methylcoumarin; Ac-DEVD-CHO, N-acetyl-Asp-Glu-
Val-Asp-CHO (aldehyde); ALT, alanine amino transferase; AST,
aspartate amino transferase; CCly, carbon tetrachloride; DMEM,
Dulbecco’s modified Eagle’s medium; ER, endoplasmic reticulum;
ip., intraperitoneally; s.c., subcutaneously; DEX, dexametha-
sone; TNFz, tumor necrosis factor «; CHX, cycloheximide; PARP-
1, poly(ADP-ribose) polymerase; PI, propidium iodide; PTD,
protein transduction domain; STS, staurosporine; Z-VAD-FMK,

N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone;  TUNEL,
terminal deoxynucleotidyl transferase-mediated dUTP nick-end
labeling

Introduction

Necrosis is morphologically distinct from apoptosis and
defined as cell death accompanied by a rapid efflux of cell
constituents to the extracellular space due to a loss of
cytoplasmic membrane integrity.” Necrosis usually takes
place under extremely harmful environmental conditions such
as exposure to toxic chemicals, physical insults, and microbial
pathogens and causes inflammation, which in turn gives rise
to serious damage to surrounding cells.? Inflammatory
responses can be controlled with anti-inflammatory agents,
but necrosis itself cannot.®~® Therefore, it is very important to
reduce or prevent necrosis as a primary cause.
Anti-apoptotic proteins would provide novel means for
therapeutic intervention to prevent massive cell death
accompanying cell toxic injuries. In fact, a great number of
studies have shown that anti-apoptotic members of the Bcl-2
family, Bcl-2 and Bcl-x,, inhibit apoptosis of cultured cells
induced by various death stimuli.>"*! On the other hand, a few
in vitro studies'®'® showed that the proteins prevent necrotic
cell death caused by a limited kind of death stimulus such as
hyposia, where necrosis coexists with apoptosis. In these
cases, necrosis appeared to be initiated by apoptosis-
inducing reagents, and then ATP depletion resulted in a
necrotic morphology. Thus, the anti-apoptotic proteins seem
to exhibit anti-cell death activity against some forms of
necrosis, which involve apoptotic machinery to some extent.
FNK (originally designated Bcl-xFNK in Asoh ef al.'*) was
constructed from Bel-x,_ by the site-directed mutagenesis of
three amino acids (Y22F/ Q26N R165K) to strengthen
cytoprotective activity. FNK is the sole mutant with a gain-
of-function phenotype among the mammalian anti-apoptotic
factors, as FNK exhibited the stronger anti-apoptotic activity
than Bel-x, to protect cultured cells from death induced by
various death stimuli including oxidative stress, a calcium
ionophore (A23187) and withdrawal of growth factors. It has
been shown that proteins are directly and readily introduced
into cells regardless of their molecular size when fused with
the PTD (protein transduction domain) of HIV/Tat protein.'®
PTD-fused proteins can be delivered to several tissues,
including the brain, when injected into mice systemically.'® In
addition, PTD-FNK, a fusion protein of the PTD and FNK,
penetrates the dense matrix of cartilage to reach chondro-
cytes.” In a previous study, PTD-FNK was demonstrated to
reduce ischemic injury to hippocampal CA1 neurons after a
transient forebrain ischemia,'® which involves slow progres-
sive neuronal degeneration, and an apoptotic pathway is
suggested to contribute to the ischemic degeneration, to
some extent.’®
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The enhanced cytoprotective activity of FNK against
oxidative stress and a calcium ionophore give rise to the
possibility that FNK effectively protects cells from necrosis as
well as apoptosis, because oxidative stress®®2? and a
disruption of calcium homeostasis®*2° are known to induce
necrosis. Carbon tetrachloride (CCl,) has been used to induce
necrosis in control experiments for studies on apoptosis?®~2°
and is one of most typical model agents for studying the
pathogenesis of liver injury. The hepatotoxicity of CCly in vivo
has been well studied, indicating the importance of the
reductive dehalogenation of CCl, catalyzed by cytochrome
P450 in the endoplasmic reticulum (ER) as the initial event of
the toxic cascades,®®** and it is widely accepted that CCl,
causes hepatic centrilobular necrosis.

Here, we show that the treatment of mice with PTD-FNK
mitigated liver injury, including zonal necrosis, induced by
CCly.

Results

Necrosis in HepG2 induced by CCl,

We used a cell line HepG2 derived from hepatocyte cells as in
in vitro experiments. HepG2 started to die in Dulbecco’s
modified Eagle’s medium (DMEM) containing 80% saturation
of CCl, in the absence of serum at 4 h and the survival rate at
8hwas 5.5% (Figure 1a). Thus, the CCls-induced death is not
due to an immediate damage by CCl, as reported.®® Nuclear
staining with propidium iodide (Pl)/Hoechst 33342 showed
that Pl-positive cells increased in number with time and that a
majority of dead cells had a round nucleus uniformly stained
with PI (Figure 1e). Their nuclear morphology is different from
that of the cells killed by staurosporine (STS), which clearly
caused nuclear fragmentation, one of the typical features of
apoptosis (Figure 2c, top left panel). To characterize
biochemically the death form of HepG2 cells treated with
CCl,, caspase-3/caspase-3-like activity, DNA fragmentation
(laddering) and cleavage pattern of poly(ADP-ribose) poly-
merase-1 (PARP-1) were compared among the cells treated
with CCly, STS and tumor necrosis factor o (TNFa). STS
induced caspase-3-like activity at 4 h, with a plateau reached
at 6 h, but CCl, had no effect even at 8h (Figure 1b). DNA
fragmentation was detected at 6 h and clearly observed at 8 h
in STS-treated, but not CCl,-treated cells (Figure 1c). TNFo
with cycloheximide (CHX) is known to induce apoptosis in
HepG2.%537 PARP-1, a target of caspase-3, was cleaved into
apoptotic fragments including the 85 kDa polypeptide in cells
treated with TNFo/CHX (Figure 1d, indicated by an asterisk).
In contrast, a fragment of 50kDa, derived from PARP-1,
clearly appeared in the CCl,-treated cells at 4 h and decreased
at 8 h (Figure 1d, indicated by an arrow). The 50 kDa fragment
was designated as a major necrotic fragment.*¢° From these
results, we confirmed that the death of HepG2 cells induced by
CCly is predominantly due to necrosis.

Protection of HepG2 from TNF«/CHX-induced
apoptotic death by FNK transduction

PTD-FNK was shown to readily enter cultured cells of a
neuroblastoma, SH-SY5Y, in 30min to 1h in a previous
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Figure 1  CCl, induces necrotic death of HepG2. (a) Cells were incubated with
DMEM lacking FBS in the presence (closed circle) or absence (open circle) of
80%-saturated CCl, for the indicated time periods. The cells were stained with
Hoechst 33342 and PI to calculate survival (%); 100 x Hoechst-stained cells/
(Hoechst-stained cells + Pl-stained cells). The mean of four independent wells
(four fields of view per well) is shown with the S.D. (vertical bars). (b) Cells were
incubated with the complete medium in the presence (open circle) or absence
(closed circle) of STS, or with DMEM lacking FBS in the presence (open square)
or absence (closed square) of 80%-saturated CCl, for the indicated time periods.
The cells were harvested to prepare cell lysates for the caspase-3/caspase-3-like
activity assay. The enzyme activity (mean with S.D.) is shown as arbitrary units/
mg protein/h. (c) Cells were treated with CCl, or STS as described in (b). The
harvested cells were treated with Triton X-100, and then centrifuged to remove
intact nuclei. After propanol precipitation, fragmented DNAs were subjected to
agarose gel electrophoresis. The STS-treated cells (8 h) showed a clear DNA
ladder (marked with stars). (d) Westem blot analysis of PARP. Total proteins
were prepared from cells treated with CCl, for 4, 6 and 8 h, cells treated with
DMEM for 8 h and cells treated with TNFe: (10 ng/ml) and CHX (10 wg/ml) for 7 h,
as described in Materials and methods. The total protein (30 1.g) was subjected to
Westem blot analysis using an anti-body against PARP. Jurkat control lysate (BD
Biosciences Pharmingen) and HL-60 cell extract (induced by etoposide)
(Calbiochem), were also used for controls of the 116 kDa intact and the 85 kDa
fragment of human PARP, respectively. The 85kDa fragment appeared in the
cells treated with TNFo (marked with*). An arrow indicates a 50 kDa fragment
derived from PARP. (e) Representative images of cells incubated with DMEM
lacking FBS in the presence of 80%-saturated CCl, for the indicated time periods.
The cells were stained with Hoechst 33342 and PI. Scale bars: 50 um

study.'® A pleiotropic cytokine, TNFx, has been shown to
induce apoptosis and be involved in acute CCls-induced
hepatic injury.*'™*® We investigated whether PTD-FNK pre-
vents HepG2 from TNF«/CHX-induced apoptosis. Cells were
pretreated with PTD-FNK and incubated with TNFo/CHX in
the presence of PTD-FNK. PTD-FNK significantly protected
HepG2 against the cytotoxicity of TNFo (Figure 2).
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Figure 2 PTD-FNK protects HepG2 against TNFa-induced apoptosis. Cells
were washed with FBS-free DMEM, and treated with various concentrations of
PTD-FNK in FBS-free DMEM for 1h, followed by incubation with DMEM
containing FBS (10%) and CHX (10 pg/mi) for 30 min. The cels were cultured
with TNFz (1 or 10 ng/ml) for 12 h, and cells surviving were enumerated under a
microscope by the trypan blue exclusion method. Means of three independent
wells are shown with the S.D. Statistical analysis was performed using one-way
ANOVA: *, P<0.05; **, P<<0.01, versus control

Survival (%)
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o
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Protection of HepG2 from CCl-induced necrotic
death by FNK transduction

Next, to examine the cytoprotective effect of PTD-FNK on
CCl,-induced cell death in HepG2, PTD-FNK-pretreated cells
were incubated with CCl, in the presence of PTD-FNK.
Survival rates of the cells treated with PTD-FNK significantly
increased up to 3nM in a concentration-dependent manner
and slightly decreased at the higher concentrations (Figure 3a
(open bars) and c), indicating that PTD-FNK alone sup-
presses cell death induced by CCl;. Comparison of the
cytoprotective activity between PTD-FNK and PTD-Bel-x_
showed that the activity of the former is stronger (Figure 3a
and ¢).

Conversion of necrotic features into apoptotic
ones forced by PTD-FNK

During this experiment, we noticed that a substantial popula-
tion of dying cells treated with PTD-FNK had fragmented
nuclei whose morphology was observed when treated with
STS (Figure 3c, arrowheads and insets). The population of
dead cell carrying a fragmented nucleus increased with the
concentration of PTD-FNK, varying from 2.0 to 10% among
cells with PTD-FNK treatment (Figure 3a, gray bars).

To confirm whether the dead cells with fragmented nuclei
underwent apoptosis, HepG2 cells were exposed to CCly in
the presence of Z-VAD-FMK, a cell-permeable pan-caspase
inhibitor. Z-VAD-FMK fully inhibited the STS-induced apop-
tosis of HepG2 (Figure 3c, leftmost panels). Importantly, the
survival rate of cells co-treated with PTD-FNK and Z-VAD-
FMK was significantly higher than that of cells treated with Z-
VAD-FMK alone (Figure 3b). More interestingly, much more of
the cells treated with a combination of PTD-FNK or PTD-Bcl-
x. and Z-VAD-FMK were survived than the cells treated with
PTD-FNK or PTD-Bcl-x. alone, and the combination treat-
ment significantly decreased the number of dying cells
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carrying fragmented nuclei (Figure 3b). These findings
strongly suggest that PTD-FNK can protect a majority of
HepG2 cells from necrotic death caused by CCly, and that
PTD-FNK forced the cells in a necrotic pathway into an
apoptotic pathway and then Z-VAD-FMK inhibited cell death
in the apoptotic pathway.

Furthermore, we tried to detect an early stage of apoptosis
by examining the binding of Annexin V to the surface of cells.
Cells were exposed to CCl, in the absence or presence of
PTD-FNK. Some celis were clearly stained with Annexin-V-
FLUOS but not with Pl (Figure 3e, arrowheads in the lower
middle panel). Such Annexin-V-positive and Pl-negative cells
markedly increased depending upon the addition of PTD-FNK
(Figure 3d). In contrast, the Annexin-V-positive and PI-
negative population among the cells treated only with CCl,
was very low and equivalent with that among the cells
untreated with CCl, (Figure 3d), suggesting that the small
population of apoptotic cells was due to the depletion of serum
but not by the exposure to CCl,. Taken together, these results
strongly suggest that PTD-FNK leads cells to an apoptotic
pathway from the necrotic process induced by CCl,.

PTD-FNK retains the mitochondrial membrane
potential and intracellular ATP level

After entering cells, PTD-FNK localizes to miochondria.
We examined the levels of intracellular ATP and the
mitochondrial membrane potential to reveal the role of PTD-
FNK on mitochondrial functions during the protection against
necrosis. Exposure against CCly decreased the intracellular
ATP and PTD-FNK slightly but significantly suppressed the
decrease (Figure 4a). Then, we examined the mitochondria
membrane potential in CCls-treated cells in the presence or
absence of PTD-FNK at 4h, using mitochondria-specific
fluorescent dyes, MitoTracker Red CMXRos and MitoTracker
Green FM. MitoTracker Red stains mitochondria, depending
upon the membrane potential, while MitoTracker Green FM
depends upon the mitochondrial mass in a membrane
potential-independent manner. Thus, the relative mitochon-
drial potential level was estimated by normalizing the red
fluorescence with the green one. CCl; decreased the
membrane potential to 68% of the initial level, and PTD-FNK
completely inhibited the decrease (Figure 4b). It is noted that
pre-incubation with PTD-FNK did not affect the intracellular
ATP levels and the mitochondria membrane potential (Figure
4a and b at 0 time).

17,18

Delivery of PTD-FNK into the liver

The tissue delivery of the fused protein, PTD-FNK, injected
intraperitoneally (i.p.} into 7-week-old male mice was exam-
ined by immunohistochemical staining. At 12h after the
injection, exogenous PTD-FNK was detected in the liver by
using monocional anti-Bel-x antibody, which recognizes the
FNK protein as well as Bcl-x_ (Figure 5a). The protein
appeared to be distributed ubiquitously. Next, we tested the
delivery of the PTD-FNK protein into liver by injecting
subcutaneously (s.c.) PTD-FNK. At 1, 3, 5 and 12h after
injection, livers were removed for staining with the monoclonal

@
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Figure3 PTD-FNK prevents necrotic death of HepG2. (a) Cells were incubated with PTD-FNK (FNK) or PTD-Bcl-x, (Bcl-x,) at the indicated concentrations in FBS-free
DMEM for 1 h, after washed with FBS-free DMEM. The cells were then treated with 80%-saturated CCl, for 8 h in the presence of PTD-FNK (FNK) or PTD-Bcl-x,_ (Bcl-x,)
at the indicated concentrations. The cells were stained with Hoechst 33342 and P! to calculate the survival rate (open bar) and apoptotic rate (Pl-stained cells with a
fragmented nucleus; gray bar) as described in Figure 1a. The mean of four independent wells (four fields of view per well) is shown with the S.D. (vertical bars). Statistical
analysis was performed for the suvival rate by one-way ANOVA. *, P<0.05; **, P<0.01; ***, P<0.001, compared with FNK 0nM.*, P<0.05; ¥ P<0.01; ¥
P<0.001, compared with Bcl-xL 3 nM. (b) Cells were pre-incubated with vehicle, 3nM PTD-FNK (FNK) or 3nM PTD-Bcl-x, (Bcl-x,) in FBS-free DMEM in the presence
or absence of Z-VAD-FMK (VAD, 50 uM) for 1 h, after washed with FBS-free DMEM. The cells were then treated with 80%-saturated CCl, for 8 h in the presence or
absence of 3nM PTD-FNK (FNK), 3nM PTD-Bcl-x_ (Bcl-x,) or 50 uM Z-VAD-FMK as indicated. The cells were stained with Hoechst 33342 and P! to calculate the
survival rate (open bar) and apoptotic rate (gray bar) as described in Figure 2a. The mean of four independent wells (four fields of view per well) is shown with the
S.D.(vertical bars). Statistical analysis was performed for the survival rate using one-way ANOVA: *, P<0.05; **, P <0.001. (c) Representative images of cells
described in Figure 2b and cells treated with STS (10 M) in the presence or absence of Z-VAD-FMK (50 M) for 12 h. For the cells treated with STS and Z-VAD-FMK, Z-
VAD-FMK was added 1 h before the STS treatment. Pl-stained cells with a fragmented nucleus are shown by arrowheads and enlarged (insets). Scale bars: 50 um. (d)
Cells were pre-incubated with 3nM PTD-FNK ( + ) or vehicle (—) in FBS-free DMEM for 1 h, after washed with FBS-free DMEM. The cells pre-treated with PTD-FNK or
vehicle were incubated with 80%-saturated CCl, containing 3nM PTD-FNK or vehicle, respectively, for 3 h. Cells without any pre-treatment were also incubated with
DMEM lacking FBS (no CCly) for 3 h. The cells were stained with Annexin-V-FLUOS and P! to calculate the rate of Annexin-V-positive and Pl-negative cells (%); 100 x

Annexin-V-positive and Pl-negative cells/total cells in a bright field of view. The mean of three independent wells (three to four fields of view per well) is shown with the
S.D. (vertical bars). **, P< 0.0001 by the Student's ttest. (e) Representative images of cells described in Figure 2d are shown. Bright, bright field; Annexin V, Annexin-V-
FLUOS staining (green); PI, Pl staining (red); arrowheads, apoptotic cells; arrows, necrotic or dead cells. Scale bars: 25 um

anti-Bcl-x antibody. Immunoreactivity was found in the
centrilobular region at 1h and extensive intracellular accu-
mulation of PTD-FNK was observed at 3h (Figure 5b). The
reactivity peaked at 3h after injection and gradually de-
creased but clearly remained until 12 h, compared with vehicle
injection (Figure 5b and c). Thus, these results indicate that
PTD-FNK is promptly delivered to liver by s.c. injection as well
as i.p. administration.

Cell Death and Differentiation

Pre-treatment with PTD-FNK prevents acute liver
injury induced by CCl,

To assess the activity of FNK delivered into the liver to inhibit
acute and chronic CCly-induced injuries, mice injected with
the PTD-FNK protein were treated with CCly. Injection of CCl,4
caused a variety of toxic changes such as zonal necrosis,
hydropic degeneration of cytoplasm or pyknosis/loss of
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Figure 4 PTD-FNK retains the levels of cellular ATP and the mitochondrial
membrane potential in the presence of CCly. (a) Cells were pre-incubated with
3nM PTD-FNK (closed circle) or vehicle (open circle) in FBS-free DMEM for 1 h,
and continued to culture with 80%-saturated CCl, containing 3nM PTD-FNK or
vehicle for the periods indicated. The level of Intracellular ATP per cell was
determined using luminescence as described in Materials and methods. Mean
values of three independent wells are shown with the S.D.(vertical bars).
Statistical analysis was performed using one-way ANOVA: *, P< 0.05, compared
with vehicle. (b) Cells were pre-incubated with 3 nM PTD-FNK (closed circle) or
vehicle (open circle) in FBS-free DMEM for 1 h and cultured with 80%-saturated
CCly in the presence of 3nM PTD-FNK or vehicle for the periods indicated,
followed by being stained with MitoTracker Red and MitoTracker Green FM in
fresh DMEM for 30 min. The intensity of fluorescence from each cell was imaged
by confocal scanning laser microscopy, and analyzed by using the NIH IMAGE
program. Values are expressed as a ratio of the intensity in red divided by that in
green of each cell. The mean of the cells examined (PTD-FNK at time 0 and 4 h,
415 and 442 cells, respectively; vehicle at time 0 and 4h, 425 and 372 cells,
respectively) is shown with the S.E. (vertical bars). Statistical analysis was
performed using one-way ANOVA: **, P<0.001, compared with a vehicle control

nucleus in hepatic cells at both acute and chronic phases
(Figures 6¢ and 7b). A pathologist blindly performed the semi-
quantitative histopathological analysis (Table 1).

Pre-injection of PTD-FNK (300 pg/kg) markedly amelio-
rated this zonal necrosis (Figure 6d and Table 1). Hydropic
degeneration of the cytoplasm and pyknosis or loss of nuclei
were observed to a small extent in the hepatic cells of mice
injected with PTD-FNK, compared to control mice. Serum
transaminases, releasing enzymes alanine amino transferase
(ALT) and aspartate amino transferase (AST), were mea-
sured to evaluate the severity of acute liver injury as a whole
(Figure 6a and b). PTD-FNK (300 ug/kg) markedly decreased
both activities by two-thirds, compared to vehicle injection.
The lower dose of PTD-FNK (75 png/kg) suppressed the
release from liver by one-third compared with the vehicle
injection, although the effect was statistically insignificant. The
ALT activity decreased at day 2 and was close to a normal
level (Figure 7a) on day 3 (data not shown). PTD-Bcl-x,
(300 g/kg) did not exhibit activity to suppress the release of
the enzymes, indicating that PTD-FNK has the stronger
activity to protect hepatocytes from cell death induced by CCl,
in vivo as well as in vitro.

Post-treatment with PTD-FNK improves acute
hepatic injury with a caspase inhibitor
Post-injection of PTD-FNK seemed to only slightly reduce
ALT and AST activities in serum (Figure 6a and b), although
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Figure 5 The PTD-FNK protein can be transduced into liver. Male mice (7
weeks old) were injected i.p. or s.c. with vehicle or PTD-FNK (50 mg/kg). After the
indicated periods, the mice were transcardially perfused with cold heparinized
physiological saline followed by 4% paraformaldehyde in phosphate-buffered
saline (PBS, 0.1 M, pH 7.4), dehydrated and embedded in paraffin. Sections of
liver were prepared and subjected to immunohistochemical staining (brown)
using anti rat Bel-x serum. (a) /.p. injection of PTD-FNK (left) and vehicle (right).
Livers were removed at 12 h after i.p. These sections were counterstained with
hematoxylin (purple) after immunohistochemical staining. Scale bars: 50 um. (b)
S.c. injection of PTD-FNK. Livers were removed at 1, 3, 5 and 12 h after s.c.
injection. The immunostained image of liver removed at 12 h after s.c. injection of
vehicle is also shown. Scale bars; 50 um. (c) Quantitative evaluation of the PTD-
FNK remaining in liver after s.c. injection. Low-magnification digital images (a
half-magnification of (b)) of five fields in liver at each time point were analyzed to
determine relative areas occupied by Bcl-x immunoreactivity with NIH IMAGE
software. The value for liver sections of mice injected with vehicle was used as a
background to be subtracted from that for mice injected with the protein. After
statistical analysis by one-way ANOVA, the data are shown as means with S.D.
(vertical bars). Following the peak at 3h, PTD-FNK in the liver tissue decreased
with a half-span of 3.5h

zonal necrosis was apparently inhibited (Figure 6e and
Table 1). The in vitro results described above led us to post-
inject PTD-FNK with Z-VAD-FMK. The combined post-
injection significantly suppressed the elevation of serum
ALT and AST, while injection of Z-VAD-FMK alone did not
(Figure 6a and b). Histopathological examination also showed
that the combined injection profoundly inhibited zonal
necrosis (Figure 6f and Table 1). However, no typical
apoptotic hepatocyte was found by the TUNEL assay
regardless of the injection of PTD-FNK (data not shown).

Cell Death and Differentiation
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Figure 6 PTD-FNK prevents acute liver injury caused by CCly. (a and b)
Animals were i.p. injected with vehicle (n= 6), PTD-FNK (FNK; 75 ug/kg, n=5;
300 uglkg, n=16) or PTD-Bcl-x_ (Bcl-x; n=6) 3h before the administration of
CCl, (pre-treatment), or injected with PTD-FNK (FNK; n= 6), Z-VAD-FMK (VAD;
n=6) or a combination of PTD-FNK and Z-VAD-FMK (FNK + VAD; n=6)
30 min after the administration of CCl, (post-treatment). After 20 h, serum (a) ALT
and (b) AST activities were examined and the mean is shown with the S.D.
(vertical bars). Statistical analysis was performed using one-way ANOVA. (cf)
H&E-stained liver tissue sections in the acute phase. Animals pre-injected with
(c) vehicle or (d) PTD-FNK (300 p:g/kg), or post-injected with (e) PTD-FNK or (f) a
combination of PTD-FNK and Z-VAD-FMK, were treated with CCl,. After 20 h,
animals were transcardially perfused with 4% paraformaldehyde to prepare
paraffin sections of the liver, which were stained with H&E. Scale bar; 100 um

Thus, post-injection of PTD-FNK with Z-VAD-FMK greatly
exhibited the protective effect for acute CCls-induced liver
injury to the same extent as pre-injection of PTD-FNK.

PTD-FNK prevents chronic liver injury caused by
CCl,

For chronic liver injury, mice were given CCl, twice a week for
1 month. On day 4 after the final administration, livers were
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Figure 7 PTD-FNK prevents chronic liver injury caused by CCl,. (a) Animals
were s.c. injected with vehicle (n=6) or PTD-FNK (FNK; 75 ug/kg, n=>5;
300 ug/kg, n=6; 1500 ug/kg, n=6) 3h before the subcutaneous injection of
CCly, twice a week for a month. On the 4th day after the final administration,
serum ALT activity was examined. Normal mice (Normal; n=6) without any
treatment were also examined. The mean is shown with the S.D. (vertical bars).
Statistical analysis was performed using one-way ANOVA. (b-e) H&E-stained
liver tissue sections in the chronic phase. Animals described in (a) were sacrificed
on the 4th day after the final administration. Livers were taken out to be fixed with
4% paraformaldehyde and embedded in paraffin. The paraffin sections were
stained with H&E. (b) vehicle, (¢) 75 ug/kg, (d) 300 ug/kg and (e) 1500 pg/kg.
Scale bar; 100 um

histopathologically examined and the ALT activity in serum
was measured. Histopathological analysis showed that
subcutaneous injection of PTD-FNK (75—1500 ng/kg) exhib-
ited marked protective effects on the toxic changes caused by
CCl,, compared with control mice (Table 1). The serum ALT
activity of vehicle-injected mice was five to six times higher
than the normal level (normal mice without any treatment)
(Figure 7a). In mice injected with PTD-FNK, at 75—1500 ug/kg,
the activity of serum ALT was markedly lower than that in
vehicle-injected mice. Zonal necrosis in the liver of PTD-FNK-
treated mice was clearly reduced (Figure 7b—e and Table 1).
Taken together, PTD-FNK mitigated chronic liver injury
caused by CCl,.
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Table 1 Histopathological analysis of CCl,-induced liver injury by a semi-quantitative procedure
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—, no pathological findings; +, mild; ++, moderate; +++, severe

PTD-FNK also prevents liver injury induced by
ethanol and dexamethasone (DEX)

Next, we examined whether PTD-FNK is applicable to the
other models of hepatic injury. EtOH was injected to generate
an experimental model of alcoholic hepatic injury. In fact, it
caused many lipid deposits (fatty degeneration) to form in the
cytoplasm of hepatic cells and also pyknosis in some cells at
12h (Figure 8a). Injection of PTD-FNK (20 mg/kg, ip.)
inhibited the nuclear degeneration but not the fatty degenera-
tion (Figure 8b and Table 2).

A synthetic soluble glucocorticoid, DEX, is an anti-inflam-
matory drug but affects some hepatotoxicity.** The adverse
effect by DEX on the liver was evident (Figure 8c). The DEX
treatment markedly resulted in the loss of the eosinophilic
compartment from the cytoplasm of hepatic cells, which
appeared to represent zonal necrosis, but no cholestasis was
observed (Figure 8c). Injection of PTD-FNK (5mg/kg, i.p.)
clearly ameliorated the zonal necrosis (Figure 8d) and
cytoplasmic and nuclear degeneration (Table 2). As DEX
induces apoptosis at high doses, liver sections were stained
using the TUNEL assay. In vehicle-injected liver sections,
DEX induced many TUNEL-positive cells (Figure 8e), while
PTD-FNK reduced the number of TUNEL-positive cells by
half, indicating that PTD-FNK prevents DEX-induced hepatic
injury. Thus, PTD-FNK seemed to protect hepatocytes
against various injuries regardless of apoptosis or necrosis.

Discussion

We addressed the question of whether FNK can protect cells
from necrotic death via protein transduction technology using
the PTD of HIV/Tat.

Under in vitro experimental conditions, the addition of 80%-
saturated CCl/DMEM lacking serum caused death of HepG2
cells with no activation of caspase-3/caspase-3-like activity,
no nuclear fragmentation, no ladder formation of DNA in 8h,
and no binding to Annexin V in the early stage. Detection of a
50 kDa fragment derived from PARP-1 in CCl4-treated cells is
strong evidence for necrosis, because the apoptotic PARP-1
fragment of 85 kDa induced with TNFo/CHX is distinct from
the 50kDa fragment®®3° (Figure 1d). These results clearly
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Figure 8 PTD-FNK prevents liver injury induced by ethanol or dexamethasone.
Mice were intraperitoneally injected with vehicle or PTD-FNK 3h before the
administration of drugs. (a and b) Ethanol-induced injury. Mice pre-injected with
vehicle (a) or PTD-FNK (20 mg/kg) (b) were treated with ethanol. After 12h,
animals were transcardially perfused and liver sections were stained with H&E.
Arrows and arrowheads indicate pyknosis and lipid deposits, respectively, and
have been enlarged in the insets. (¢ and d) DEX-induced injury. Mice pre-injected
with vehicle (¢) and PTD-FNK (5 mg/kg) (d) were treated with DEX. After 24 h,
animals were transcardially perfused and liver sections were stained with H&E.
Scale bars: (a-d), 100 um. (e) The number of TUNEL-positive cells per high-
powered field of view (FOV) in the liver sections prepared from the DEX-treated
mice injected with vehicle or PTD-FNK (FNK). TUNEL-positive cells were
counted in five non-overlapping fields per slide from each liver (n=20
microscopic fields). The vertical bars show the S.D. and statistical analysis was
performed using the Student's #test

Cell Death and Differentiation
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Table 2 Histopathological analysis of ethanol (EtOH)- or dexamethasone (DEX)-induced liver injury by a semi-quantitative procedure

Zonal necrosis Cytoplasm Nucleus
Hydropic degeneration Fatty degeneration Pyknosis Loss
PTD-FNK (mg/kg) Animalno. —~ + ++ +++ — + ++ ++4 T = R = = S R e I =
EtOH 0 4 4 0 O 0 4 0 0 4] 0 0 4 0 040 0 400 O
20 4 4 0 O 4] 4 4] 0 0 0 0 4 0 400 0 400 O
DEX 0 ) 4 0O 0 O 4 0 0 1 3 4 0 0 0 001 3 004 O
5 4 0 4 0 0 0 0 4 0 4 0 0 0 220 0 400 O

—, no pathological findings; +, mild; ++, moderate; +++, severe

indicated that a majority of HepG2 cells exposed to CCl, died
in a necrotic manner, with a good agreement with previous
results.*® The results of the application of PTD-FNK and PTD-
Bel-x, have two implications. The first is that PTD-FNK
significantly protected the cells from necrotic death induced by
CCly, compared with PTD-Bcl-x.. The second is that PTD-
FNK clearly increased the apoptotic population among cells
treated with CCly. The result may imply that the necrotic
pathway activated by CCl, uses apoptotic mediator(s) in some
steps, as discussed below. In fact, PTD-FNK with Z-VAD-
FMK protected around 60% of cells from CCls-induced
necrotic death. A plausible explanation for these results is
that treatment with PTD-FNK or -Bcl-x_ caused a switch from
a necrotic to apoptotic pathway and that, in turn, Z-VAD-FMK
protects these cells from the apoptosis. On the other hand, a
small population among the HepG2 cells treated with CCl,
had fragmented nuclei even in the absence of PTD-FNK
(Figure 3a). However, the apoptotic morphology seems to be
caused by the withdrawal of serum but not by the addition of
CCl,4 because the Annexin-V-positive and Pl-negative popu-
lation was equivalent between celis treated and untreated with
CCl, (Figure 3d). In double-positive cells with Annexin V and
Pl, Annexin V may have entered into cells and bound to
phosphatidylserine remaining at inner side of the plasma
membrane.*®

Apoptosis has been distinguished from necrosis by
morphological and biochemical characteristics including
activation of caspases. Recent evidences showed that some
biochemical and morphological characteristics of both modes
of cell death can be found in the same cell.” It is also argued
that physiological cell deaths exist that do not appear to be
typical apoptosis or dependent on the caspase activation.*’
Appearance of these complex death forms can be explained
by interception of active cellular death processes by, for
example, oxygen-radical scavengers and inhibition of cas-
pase or PARP.*8% Our results support the hypothesis that
necrosis and typical apoptosis are two extremes of a spectrum
of death programs varying with the strength of the death
stimulus." It is noted that mitochondria play an important role
in necrosis as well as apoptosis.’*” As PTD-FNK was shown
to localize in the mitochondria,’'® further studies on the
function of PTD-FNK would provide insight into the correlation
between apoptosis and necrosis. Since FNK exhibited clearer
results than Bel-x, FNK will be useful for investigating this
issue in future.

Cell Death and Differentiation

How does PTD-FNK protect celis from CCls-induced
necrosis? The hepatic cell death caused by CCl, is clearly
due to necrosis (oncosis), although a careful study demon-
sirated that a small population of hepatocytes undergoes
apoptosis in acute CCls-induced liver injury.®' It is generally
accepted that CCl, is metabolized to the trichloromethyl free
radical by the monooxidase system of the ER, where
cytochrome P450, mainly isozyme CYP2E1, is thought to
play an important role in the pathogenesis.®® Following
production of toxic reactive intermediates, autocatalytic lipid
peroxidation is suggested to damage cellular macromole-
cules, but the cellular mechanisms responsible for CCly-
induced hepatic cell death are poorly understood.®® The
HepG2 cells used here do not express significant amounts of
the enzyme.®* Since PTD-FNK retained the intracellular level
of ATP and mitochondrial membrane potential, the protein
seems to preserve functional mitochondria to protect cells.

Another evidence is emerging that calcium ions are
involved in the CCls-induced cytotoxicity. 556 CCl, affects
intracellular Ca®™ content and seems to inhibit differently
calcium transport systems on the cytoplasmic, mitochondrial
and ER membranes.®® Calcium ions activate lytic enzymes
such as phospholipase A2 that may cause disintegrity of the
organelle membrane, including the cytoplasmic membrane.>”
Thus, cytoplasmic Ca®" seems generally to play a key role in
necrosis. Interestingly, many studies indicate alterations in
the intracellular Ca®* homeostasis to control apoptosis.®®
Bcl-2 inhibits a release of Ca®™* from the ER induced by the
pro-apoptotic Bel-2 family members Bax or Bak.%° PTD-FNK
likely inhibits the disruption of Ca®" homeostasis induced by
CCl, because PTD-FNK affects the cytosolic movement of
Ca21+8 and protects neuronal cells from glutamate excitotoxi-
city.

PTD-FNK injected into mice was successfully delivered to
the liver and prevented the acute and chronic death of
hepatocytes caused by CCl,. On post-injection of PTD-FNK,
an injection of Z-VAD-FMK significantly reduced the acute
liver injury, as expected from the in vitro studies, indicating
that the therapeutic window for combined injections extends
after the administration of CCl,. PTD-FNK injection also
prevented alchohol- and DEX-induced liver injury. Ethanol
was recently shown to generate free radicals in mice and
rats,®>®" increasing the frequency of DNA-strand breaks in
the liver.%° PTD-FNK probably inhibited pyknosis caused by
free radicals, while it did not affect fatty accumulation as a



product of the EtOH metabolism. DEX treatment decreases
the glutathione concentration in liver** and, at a high dose,
causes reversible hepatomegaly with hepatopathy.®2 It is also
reported that DEX co-administered with methotrexate induced
liver damage during a treatment for brain tumor.®3

This study strongly suggests that PTD-FNK is a potent
therapeutic protein to prevent necrotic and apoptotic cell
death for emergency care and will allow the development of a
novel therapy to prevent cell death by preventing necrosis.

Materials and Methods

Preparation of PTD-FNK

PTD-FNK and PTD-Bcl-x_ were prepared as described previously.™ In
brief, the proteins were recovered as inclusion bodies from Escherichia colf
cells after treatment with isopropy! 1-thio-f-D-galactoside. The proteins
were solubilized in a buffer (7 M urea, 2% SDS, 1 mM DTT, 62.5 mM Tris-
HC! (pH 6.8) and 150 mM NaCl), and then subjected to SDS-PAGE to
remove contaminating proteins and endotoxin. The gel was treated with
1M KCl and the transparent band corresponding to PTD-FNK or PTD-Bal-
X was cut out. The proteins were electrophoretically extracted from the gel
slice in an extraction buffer {25 mM Tris, 0.2 M glycine and 0.1% SDS) for
in vitro and in vivo experiments. The extraction buffer was used as a
control (vehicle). The concentration of PTD-FNK or PTD-Bcl-x_ extracted
ranged from 1 to 2.5 mg/ml.

Chemicals

CCly and STS were purchased from Wako Pure Chemical Industries Ltd
(Osaka, Japan) and Sigma (Sigma-Aldrich Japan, Tokyo, Japan),
respectively. Caspase inhibitor |, Z-VAD-FMK, was obtained from
Calbiochem (Merck Japan Ltd, Tokyo, Japan). Human recombinant TNFa
was purchased from Sigma. Olive oil (Sigma) was used as a solvent of
CCly for injection.

Cell culture and drug-inducing cell death

The human hepatoma cell line HepG2 was cultured in DMEM (Life
Technologies, Invitrogen, Tokyo, Japan) containing 10% fetal bovine
serum (FBS). Cells were plated at 5 x 10° {or 1 x 10%) cells/well in a 48-
well (or 24-well) IWAKI EZView™ culture plate (Asahi Techno Glass,
Tokyo, Japan), which had been coated with collagen type | (Cellmatrix I-P,
Nitta Gelatin Inc., Osaka, Japan). After 2 days, the cells were treated with
drugs. For CCl, treatment, cells were washed with FBS-free DMEM twice
and treated with 80%-saturated CCl, in DMEM without FBS. FBS-free
DMEM was brought to 80% CCl, saturation by adding CCls-saturated
DMEM, where the CCl,-saturated DMEM was prepared as follows: excess
amounts of CCl, were added to FBS-free DMEM in a glass bottle and
incubated for 15-18 h at 37°C. Hoechst 33342 and P, 5 uM each, were
added to the cells after various incubation periods. To detect cells in the
early stage of apoptosis, the cells were stained with Annexin-V-FLUOS
(green dye) and Pl using a Annexin-V-FLUOS Staining Kit (Roche
Diagnostics GmbH, Mannheim, Germany). Annexin-V-positive and Pi-
negative cells were judged as apoptotic ones. For STS treatment, cells in
DMEM with FBS were treated with 10 uM STS. For TNFx treatment, cells
in DMEM with FBS were pretreated with CHX (10 ug/ml) for 30 min, and
then TNFa was added at the concentration of 1 and 10 ng/ml.
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Caspase-3/caspase-3-like activity assay and DNA
fragmentation

HepG2 (1 x 10%) cells were plated in a 60-mm glass dish coated with
collagen type 1. After 2 days, the cells were treated with CCl, or STS for
various periods as mentioned above. Harvested cells were lysed and a
caspase fluorescence assay was performed using Ac-DEVD-AMC (V-
acetyl-Asp-Glu-Val-Asp-7-amino-4-methylcoumarin), with or without the
inhibitor  Ac-DEVD-CHO  (N-acetyl-Asp-Glu-Val-Asp-CHO (aldehyde)),
and a Caspase Fluorescent (AMC) Substrate/Inhibitor QuantiPack™
(BIOMOL Research Laboratories Inc., PA, USA). Protein concentration
was determined with the BCA Protein Assay (Pierce, IL, USA) using BSA
as a standard. For the detection of DNA ladders, harvested cells were
lysed with 0.5% Triton X-100, and then centrifuged to remove intact nuclei
as reported previously.®* After digestion with proteinase K and RNase A,
fragmented DNA was precipitated with 2-propanol. DNA from 0.6 x 10°
cells was subjected to electrophoresis on a 2% agarose gel, stained with
SYBR Green (Molecular Probes Inc., OR, USA). With this method, DNA
from intact nuclei was excluded, and thus the intact DNA did not disturb the
pattern of electrophoresis.

Western blot analysis

Cells were harvested and washed. The total protein was solubilized in the
presence of 2% SDS by sonication. Protein concentration was determined
with the BCA Protein Assay (Pierce) using BSA as a standard. After
separated on a SDS-polyacrylamide gradient (4-20%) gel, the proteins
were fransferred onto a PolyScreen polyvinylidiene fluoride membrane
(NEN Life Science Product Inc., Boston, MA, USA). The membrane was
treated with anti-human PARP (clone 7D3-6; BD Biosciences Pharmin-
gen, San Diego CA, USA). The intact form and digested products of
PARP-1 were visualized with & fluoro bioimaging analyzer FLA-2000 (Fuiji
Photo Film, Tokyo) using the AttoPhos kit (Roche Diagnostics KK.,
Tokyo).

ATP measurement

Cells were plated at 5 x 10 cells/well in a 48-well INAKI EZView™ culture
plate coated with collagen type |. After 2 days, the cells were treated with
80%-saturated CCl/DMEM for 0 to 4 h. After the CCl/DMEM solution was
removed, 100 ul of DMEM without FBS was added to the wells and ATP
levels were determined using a ‘Cellno’ ATP Assay Kit Type N (TOYQ B-
Net Co., Ltd, Tokyo) as per the manufacturer’s instructions. Briefly, 100
of the lysis/assay solution provided by the manufacturer was added to the
wells. After shaking for 1min and incubating for 10min at 23°C,
luminescence of an aliquot of the solution was measured in a luminometer,
Lumat LB9507 (Berthold Technologies, Berthold Japan Co., Ltd, Tokyo).

Membrane potential measurement

Cells were plated at 1 x 10* cellsiwell in a 24-well INAKI EZView™ culture
plate coated with collagen type |. After 2 days, the cells were treated with
80%-saturated CCly/DMEM for 0 and 4 h. The CCl, solution was removed
and DMEM containing 100nM MitoTracker Red CMXRos (Molecular
Probes) and 200nM MitoTracker Green FM (Molecular Probes) was
added. After 30-min incubation, fluorescence was imaged by confocal
scanning laser microscopy (Fluoview FV/300; Olympus, Tokyo). The
Images were analyzed by using the NIH IMAGE program to obtain a ratio
of mean intensity in red divided by mean intensity in green of each cell,
where the ratio reflects mitochondrial membrane potential of each cell.

O
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Drug-induced liver injury

Male, 4- to 5-week-old C57BL/6N mice (Seac Yoshitomi Ltd, Yoshitomi-
cho, Fukuoka, Japan) were used. For acute liver injury induced by CCl,,
mice were ip. injected with CCl, (25mglkg). After 20h, blood was
obtained for biochemical examinations and mice were perfused
transcardially and livers fixed with 4% paraformaldehyde in 0.1M
phosphate buffer (pH 7.4), dehydrated and embedded in paraffin. For
acute liver injury induced by ethanol and DEX (Sigma), ethanol {5 g/kg) or
DEX (25 mg/kg) was i.p. administered. After specified periods, mice were
transcardially perfused and livers fixed with 4% paraformaldehyde,
dehydrated and embedded in paraffin as described above. For chronic
liver injury caused by CCl;, mice were subcutaneously injected with
vehicle or PTD-FNK 3 h before the subcutaneous injection of CCl, (25 mg/
kg), twice a week for a month. On the 4th day after the final administration,
blood was obtained for biochemical examinations and mice were killed.
Livers were removed for fixation with 4% paraformaldehyde in 0.1M
phosphate buffer (pH 7.4), dehydrated and embedded in paraffin. Tissues
were sectioned (4 um), and stained with H&E for histopathological
analysis. Activities of serum AST and ALT were evaluated using a
Transaminase Cll Testwako kit (Wako Pure Chemical Industries Ltd).
Animal protocols were approved by the Animal Care and Use Committee
of Nippon Medical School.

Immunohistochemical staining

The delivery of PTD-FNK into the liver was examined according to the
manufacturer's protocol using a Vectastain ABC elite kit (Vector
Laboratories, Burlingame, CA, USA) coupled to a diaminobenzidine
(DAB) reaction. Rabbit polyclonal anti rat Bel-x serum (diluted 1:250 at
4°G overnight) was used as a primary antibody. In addition, phosphate-
buffered saline (PBS) was utilized instead of primary antibody and/or ABC
reagent as a negative control.

Terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labeling (TUNEL)

Separate sections were used for TUNEL staining using an ApopTag
peroxidase /n situ Apoptosis Detection Kit {Intergen Company, Purchase,
New York, USA), and visualized with DAB. For negative controls, terminal
deoxynucleotidy! transferase was omitted. In each section, TUNEL-
positive cells were counted in five non-overlapping microscopic fields
{ x 100 magnification).
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