270 S Tsuchiya et al

Perspective

It has been established that miRNAs play critical
roles in cell differentiation, proliferation, and apoptosis,
and the abnormalities of specific miRNA expression
contribute to the initiation and progression of tumor.
However, identification of target mRNAs negatively
regulated by miRNAs remain largely to be explored.
Although up to hundreds of target genes toward a single
miRNA were predicted by bioinformatics approaches
(4), there is no comprehensive assay to biologically
validate the prediction algorithm. Therefore, establish-
ment of a method to comprehensively and rapidly
identify target mRNAs for the miRNA is necessary for
understanding biological and functional mechanisms of
miRNA.
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ABSTRACT

G-protein coupled receptors (GPCRs) represent one
of the most important families of drug targets in phar-
maceutical development. GPCR-Ligand DAtabase
(GLIDA) is a novel public GPCR-related chemical
genomic database that is primarily focused on the
correlation of information between GPCRs and their
ligands. It provides correlation data between GPCRs
and their ligands, along with chemical information on
the ligands, as well as access information to the vari-
ous web databases regarding GPCRs, These data are
connected with each other in a relational database,
allowing users in the field of GPCR-related drug
discovery to easily retrieve such information from
either biological or chemical starting points. GLIDA
includes structure similarity search functions for the
GPCRs and for their ligands. Thus, GLIDA can provide
cotrelation maps linking the searched homeologous
GPCRs (or ligands) with their ligands (or GPCRs). By
analyzing the correlation patterns between GPCRs
and ligands, we can gain more detailed knowledge
about their interactions and improve drug design
efforts by focusing on inferred candidates for GPCR-
specific drugs. GLIDA is publicly available at http://
gdds.pharm.kyoto-u.ac.jp:8081/glida. We hope that it
will prove very useful for chemical genomic research
and GPCR-related drug discovery.

INTRODUCTION

The superfamily of G-protein coupled receptors (GPCRs)
forms the largest class of cell surface receptors. These
molecules regulate various cellular functions responsible for
physiological responses (1). GPCRs represent one of the most
important families of drug targets in pharmaceuvtical develop-
ment (2). A large majority of human-derived GPCRs still

remain ‘orphans’ with no identified natural ligands or func-
tions, and thus a key goal of GPCR research related to drug
design is to identify new ligands for such orphan GPCRs.

With the unprecedented accumulation of the genomic
information, databases and bioinformatics have become essen-
tial tools to guide GPCR research. The GPCRDB (http://www.,
gper.org/7tm/y (2) and [UPHAR (http:/iuphar-db.org/iuphar-
rd/index.html) (3) receptor databases are representatives of
widely used public databases covering GPCRs. These data-
bases, which provide substantial data on the GPCR proteins
and pharmacological information on receptor proteins contain-
ing GPCRs, are mainly focused on biological aspects of the
gene products or proteins. In spite of the significance of ligand
compounds as drug leads, the relationships between GPCRs
and their ligands and/or chemical information on the ligands
themselves are not yet fully covered.

On the other hand, there is increasing interest in collecting
and applying chemical information in the post-genome era.
This new trend is called ‘chemical genomics’, in which bio-
logical information and chemical information are integrated
on the genome scale (4.5). PubChem (http://pubchem.ncbi.
nlm.nih.gov/) (6), KEGG/LIGAND (http:/www.genome.jp/
kegg/ligand.html) (7) and ChEBI (http://www.ebi.ac.uk/
chebi/) (8) have been developed as databases related to chem-
ical genomics. KEGG/LIGAND and ChEBI contain primarily
biochemical information on reported enzymatic reactions.
Recently, NIH (the National Institutes of Health) opened Pub-
Chem, a public database providing information on the chem-
ical structures of small molecules. However, one cannot
retrieve direct information relating these chemical structures
to gene or protein entdes. Although chemical genomic
approaches have thrown new light on relationships between
receptor sequences and compounds that interact with particu-
lar receptors, the GPCR-ligand information is not well
represented in these large-scale databases for chemical
genomics.

There are still very few publicly available databases or tools
for GPCR-specialized drug discovery from the viewpoint of
chemical genomics. Herein, we have developed a novel
relational database, GLIDA (GPCR-LIlgand DAtabase) (9).
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Table 1. The current numbers of GLIDA ligands and GPCRs and their
respective links

Information item Number of entries

GPCR entries 3738
Links to Entrez Gene 3073
Links to GPCRDB 3738
Links to UniProt 3738
Links to IUPHAR 389
Links to KEGG 595

Ligand entries 649
Cas registry number 320
Lolecular structure 364
Links to PubChem 242
Links to ChEBI 28
Links to KEGG 109

GPCR-ligand pair entries 1989
GPCR entries 281
Ligand cotries 632

GLIDA contains biological information on GPCRs and chem-
ical information on their ligand compounds. Furthermore, it
provides various analytical data on GPCR-ligand correlations
by incorporating bioinformatics and chemoinformatics meth-
ods, and thus it should prove very useful for chemical genomic
research in GPCR-related drug discovery.

DATA CONTENTS

GLIDA contains three types of primary data: biological
information on GPCRs, chemical information on their ligands
and information on binding of specific GPCR-ligand pairs.
The GPCR entries were acquired from the deposits of
human, mouse and rat entries in the GPCRDB because
these three species include sufficient information regarding
ligands, and rats and mice are representative model animals
for drug discovery. The ligand information was manually col-
lected and curated using various public web sites and com-
mercial DBs, such as the IUPHAR Receptor Database,
PubMed, PubChem and MDL ISIS/Base 2.5. Table 1 indicates
the size and scope of the GLIDA database.

GPCR and ligand data

The database lists general information on GPCR and ligand
data, respectively. The general information table of GPCR
contains gene names, family names, protein sequences and
links to other biological databases, such as GPCRDB, UniProt,
IUPHAR, Entrez Gene and KEGG. The ligand result page
provides a general information table containing names,
molecular structures, CAS registry numbers, formulas,
molecular weights, MOLfiles and links to the other chemical
databases KEGG, PubChem and ChEBL

Information on hinding of GPCR-ligand pairs

The correlation information relating GPCRs to particular lig-
ands, a key issue for GPCR-related drug discovery, is stored in
a relational database. GLIDA allows users to retrieve GPCR-
ligand binding information dynamically and continuously.
When users retrieve a GPCR (or ligand) entry, its result
page displays all entries showing the corresponding ligands
(or GPCR entries) with their binding activity types, as well as

Nucleic Acids Research, 2006, Vol. 34, Database issue

references. The references are hyperlinked with the corres-
ponding PubMed literature or the IUPHAR pages that were
used to collect the information regarding GPCR-ligand bind-
ing. The activity types include agonist, inverse agonist, ant-
agonist and so on. An agonist will bind to and activate the
corresponding GPCRs, whereas an antagonist will bind to and
block the activity of the corresponding GPCRs. An inverse
agonist binds to GPCRs and reduces the fraction of them that
are in an active conformation, and a partial agonist is an
agonist that in a given tissue, under specified conditions, can-
not elicit as large an effect as another agonist acting through
the same GPCRs in the same tissue can.

WEB INTERFACE AND APPLICATION

GLIDA was constructed on the LAMP (Linux, Apache,
MySQL and PHP) platform. GLIDA is available at http:/
gdds.pharm kyoto-w.ac.jp:8081/glida. The web interface of
GLIDA includes a GPCR search page (Figure la) and a ligand
search page (Figure 1b). Each page consists of a classification
table and a keyword search box. The user can search a GPCR
(or ligand) manually from the suide-tree of the classification
table, or automatically by using the keyword search function
of MySQL. Every GPCR (or ligand) has its own result page
(Figure lc or d) containing a general information table for a
GPCR (or ligand), a table of its correlated ligands (or GPCRS)
and a button to carry out a similarity search and correlation
analysis. Clicking the button starts the calculation, and an
analytical report page (Figure le) then appears with a list
of the top 25 entries that are most similar to the GPCR (or
ligand) and a correlation map of the 25 GPCRs (or ligands) and
their corresponding binding pairs. A scarch starting from lig-
and retrieval proceeds in the same way.

Hierarchical classification

The GPCR classification table on the search page was adapted
from the phylogenetic tree of the GPCRDB information sys-
tem (hitp://'www.gper.org/7tm/phylo/phylo.itml). As for the
ligand classification table, GLIDA offers an original one
(Figure 1b) that is based on a cluster analysis of the ligand
structures as follows. We converted the structural images of
the ligands into computational MDL Mol files using ISIS/
Draw software. Next, we calculated distance mefrics among
all of the ligands using the frequency profiles of the atoms and
the bonds of the KEGG atom types (10), and carried out
complete-linkage clustering. We manually defined sub-
clusters based on their common structural skeletons. Both
the GPCR and ligand classification tables display the entries
of the corresponding GPCRs or ligands at the end of the tree,
and these are hyperlinked with their respective result pages.

Similarity search and GPCR-LIGAND correlation maps

GLIDA has a structure similarity search function on its result
pages. Alignment scores of protein sequences generated by the
BLAST algorithm provide similarity measures for GPCRs.
Ligand similarity is defined by the dissimilarity (distance)
of frequency profile patterns generated from the constitutive
atoms and bonds of the chemical structure, using the KEGG
atom types (10,11). From this similarity search, the 25 most
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Figure 1. A screenshot of GLIDA showing its linked relations among search pages (a. b). result pages (¢, d) and an analytical report page (e).

similar GPCRs (or 40 ligands) are retrieved and listed with
their similarity scores on an analytical report page.

As the similarity search calculation is proceeding, GLIDA
illustrates the correlation map (Figure 2¢) showing the homo-
logous GPCRs (or ligands) and their ligands (or GPCRs) that
are retrieved. This map shows spots that match the GPCRs and
their ligands in a two-dimensional matrix. The ordering along
the x-axis and the y-axis are calculated respectively by

two-way clustering of the GPCRs and the ligands based on
their similarities. In particular, the ordering along the x- and
y-axis allows users to evaluate information regarding similar-
ities and correlations between GPCRs and ligands simultan-
eously. By analyzing the correlation patterns between GPCRs
and ligands that are illustrated by these maps, we can gain
detailed knowledge about their interactions and utilize this
information to infer possible candidates for development
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Figure 2. A schematic example of the search and analysis process showing GPCR-ligand correlations produced from a GPCR query using GLIDA. (a) If GPCR A is
selected using a keyword search or a guide-tree search on the GPCR search page, its retrieved data will be displayed in its result page, (b) By clicking an analysis
button on the resalt page, a list of the top 25 GPCRs that are most similar in sequence, including GPCR A, are obtained by the BLASTP calculation. (¢) The server

retrieves a list of corre:

ponding ligands, which are respectively correlated with the 25 GPCRs. (d) Finally, a map is displayed to help visualize the matching spots

linking GPCRs with particular ligands. The v-axis and y-axis respectively indicate the clustering results for GPCRS and ligands. caleulaled using sequence alignment

scores among the GPCRs and structural profile distances among the ligands.

of GPCR-specific drugs. Figure 2 shows an example of the
GPCR-ligand search and analysis process starting from a
GPCR query using GLIDA.

DISCUSSION AND FUTURE DIRECTIONS

GLIDA provides a unique database for GPCR-related chem-
ical genomic research and drug discovery. GLIDA is distinct
from other public chemical genomic databases because it con-
tains original, GPCR-specific chemical entries, although the
total scale of its contents is not yet large (Table 1). GLIDA
provides several advantages over other databases, in that a
search can be started either from a GPCR or from a ligand.
Thus, searches may be carried out in a dynamic and user-
friendly way. GLIDA’s coverage of chemical and biological
information simultaneously also provides an advantage to
users by saving them the time and labor required to search
multiple databases. The ligand search page is another distinct
characteristic of GLIDA in that it displays the structural
distribution of ligands, and thereby facilitates research on

GPCR-related drugs by incorporating structural aspects of
the ligand compounds. The analytical report pages resulting
from the calculated structural similarities of GPCRs and lig-
ands can give the user deep ingsights into the GPCR-ligand
relationships. The lists of neighboring ligands (or GPCRs) and
the correlation maps are useful visualizing tools for analyzing
correlations among their structural features and their GPCR-
ligand binding properties. Because the GLIDA algorithms can
be applied to proteins other than the GPCR family, it may also
be considered as a promising database for chemical genomics
research.

GLIDA will be updated continuously. In particular, we are
planning to computationally extract GPCR-ligand information
from the literature and from patents using a text-mining tool,
and to increase the number of ligand entries immediately.
Further information on ligands from various computable
chemical descriptors is cwrently being incorporated, and
GLIDA will be combined with a system for predicting
novel ligands of orphan GPCRs in the future. Furthermore,
we also plan to carry out XML publication of GLIDA.
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