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Figure 3. Cluster analysis and gene expression profiles in effusion and solid lymphomas. (A) Cluster analysis. The analysis was
based on the expression profile of 105 genes identified as showing differences in expression between effusion and solid lymphomas
by DNA microarray analyses. All 105 genes are shown and each row indicates the expression ratios of an individual gene in various
samples. Red and blue colours indicate high and low expression, respectively, compared with the human common reference RNA
sample. The sample numbers at the top correspond to the numbers in Figure 1B. The blue lines at the top and on the right indicate
clusters. A violet line indicates a cluster including LFA-I. The raw data of the DNA microarray are available as supplementary
Table 3 at http://www.interscience.wiley.com/jpages/0022-341 7/suppmat/path.2012.html. (B) A cluster including LFA-1. Six genes

are listed
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Figure 4. Expression of LFA-l, coronin IA, and KSHV-encoded genes/proteins in effusion and solid lymphomas. (A, B)
Immunohistochemistry of LFA-1. LFA-1 is expressed in solid lymphoma (B), but not in effusion lymphoma (A). (C) Western
blotting. LFA-I, coronin |A, KSHV-encoded vIL-6, and ORF59 were detected. Lyn was examined as an internal control.
LCL = lymphoblastoid cell line. (D) Northern blotting. Coronin | A and KSHV-encoded viL-6 were detected. 28S ribosomal RNA
is shown at the bottom. (E—G) Real-time reverse transcriptase (RT)-PCR for the KSHV-encoded ORF50, vIL-6, and ORF73 genes.
The y-axis shows the copy numbers per cell. Effusion and solid lymphomas in the 3rd (sample Nos #004 and #005 in Figure 1B),
Sth (#009 and #011), 6th (#012 and #014), and 7th (#015 and #017) passages were examined. The ratios to GAPDH mRNA are
shown. The error bars indicate the standard deviations. (H) Real-time PCR for virus ORF26 DNA. The ratios to GAPDH DNA are

shown. The y-axis shows the copy numbers per cell

model show a similar protein expression pattern to
KSHV-associated solid lymphoma in humans [10], the
results suggest that KSHV-associated solid lymphoma
may also be categorized as a different disease entity
from PEL in humans. Further studies of human cases
are required to clarify the distinctive profiles. In addi-
tion, the genes and proteins with different expression
profiles between effusion and solid lymphomas may be
associated with the formation of effusion lymphoma or
invasive features of solid lymphoma. Although some
of the genes and proteins are categorized as adhesion
molecules, many others have different or unknown
functions (Table 1). The list of genes with different
expression profiles identified in the present study will
be useful for future analyses.

Signal transduction involving LFA-1 activation has
been extensively investigated in T cells [15-~17,37,38].
Activation of LFA-1 on the cell surface plays roles
in various lymphocyte functions, especially adhesion.
However, activation is different from expression. PEL
cells do rot express LFA-1 at all. LFA-1 expression
is common among subtypes of lymphoma, but its
down-regulation is rare and has only been reported
in a few cases of lymphoma. For example, a few cell
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lines derived from adult T cell leukaemia/lymphoma
do not express LFA-1, but do express other adhesion
molecules, such as LFA-3 and intercellular adhesion
molecule-1 (ICAM-1) [22,23]. Although some adhe-
sion molecules are expressed by PEL cells [39], low
expression of LFA-1 seems to be common in PEL
cells, and such a restricted expression of LFA-1 may
be important for the formation of effusion lymphoma
[11,24-26]. Our mouse model of effusion and solid
lymphomas was established by inoculating a single
cell line originating from a single clone, implying that
the origins of the two types of lymphoma were identi-
cal. Therefore, what factor could alter gene expression
in this model? Endogenous factors, such as autocrine
stimulation of cytokines, and exogenous factors, such
as viral infection, can be considered. Cytokines and
chemokines are known to be associated with the
expression of adhesion molecules in cells {38], and to
have various effects on adhesion molecules, including
their induction and suppression. In our animal model,
effusion lymphoma cells grew as peritoneal effusions
that should have contained abundant cytokines. For
the solid lymphoma inoculated into subcutaneous sites
of SCID mice, different kinds of cytokines should
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be present between the peritoneal cavity and subcuta-
neous tissue. In addition, the cells inoculated into the
skin attached and stimulated each other in the sub-
cutaneous space, which may induce the expression
of adhesion molecules and structural proteins. Viral
infection sometimes alters the expression of adhesion
molecules [20,21]. Our results indicated that vIL-6
was expressed at a higher level in effusion lymphoma
than in solid lymphoma. vIL-6 plays an important
role in the pathogenesis of PEL and Kaposi’s sar-
coma [40-42]. Although the relationships between
vIL-6 and adhesion molecules remain unknown, our
data clearly demonstrate reciprocal expression patterns
for vIL-6 and LFA-1. Further studies are required to
clarify the association of vIL-6 expression with down-
regulation of LFA-1.

Coronin was first identified as an actin-binding
protein in Dictyostelium discoideum [43]. It has a
WD-repeat motif that is involved in cell migration,
cytokinesis, and phagocytosis [44]. Coronin 1A, a
mammalian homologue of coronin, is expressed in
haematopoietic tissues [43]. It contains five consec-
utive WD-repeat motifs within. its N-terminal region
and a leucine zipper domain at the C-terminus. In
mouse T lymphocytes, coronin is involved in the
dynamics of the actin cytoskeleton in response to T
cell receptor stimulation and cell activation [45]. Our
data demonstrated a much higher coronin 1A expres-
sion level in solid lymphoma than in effusion lym-
phoma, and its expression pattern was similar to that
of LFA-1. To investigate the expression of coronin
1A in human clinical samples of solid lymphoma, we
performed immunohistochemistry on solid lymphoma
samples from 12 cases. Coronin 1A was found to
be expressed in all samples (data not shown), sug-
gesting that its expression is common in solid lym-
phoma. Since LFA-1 is also activated by T cell recep-
tor stimulation [37], coronin 1A may be activated
by a similar signal transduction mechanism to LFA-1
in solid lymphoma. Interestingly, coronin 1A expres-
sion was elevated in BCBL-1 cells, regardless of 12-
O -tetradecanoylphorbol-13-acetate (TPA) stimulation,
but not in TY-1 cells (Figure 4). However, TY-1 cells
expressed coronin 1A in the form of a solid lymphoma,
suggesting that coronin 1A expression is not strictly
associated with TPA stimulation. Furthermore, LFA-1
was not induced in BCBL-1 and TY-1 cells by TPA.
Therefore, these data suggest the presence of a spe-
cific signal transduction mechanism that induces both
LFA-1 and coronin 1A.

Proteomics and DNA microarray analyses are use-
ful tools for comparing gene and protein expression
profiles, respectively. However, few studies have used
both methods to investigate differences in the gene
and protein expression profiles of the same samples
[46—-48]. The combination of proteomics and DNA
microarrayanalyses of the same samples provided us
with new insights into the relationship between mRNA
production and protein synthesis. Although coronin
1A was identified by both methods, other molecules
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were only identified by one method. However, when
compared precisely, the results of the proteomics and
DNA microarray analyses appeared to correlate with
each other well (supplementary Table 1, available at
http://www.interscience.wiley.com/jpages/0022-3417/
suppmat/path.2012.html). Both methods detected sim-
ilar trends of expression between effusion and solid
lymphomas for 12 of 13 molecules (supplementary
Table 1). These data imply that protein synthesis partly
reflects, but does not correlate strictly with, mRNA
production. Therefore, the combination of proteomics
and DNA microarray analyses will provide useful
information for elucidating accurate expression pro-
files of molecules.
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