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Based on our results, we believe that the production of gastric lesions in HSFi—
null mice is due to their inability to express protective HSPs, leading to apoptosis of the
gastric mucosal cells. Although oral administration of ethanol led to the production of
gastric lesions, there was a concomitant up-regulation of HSPs (Figs. 2 and 3), with
significantly fewer apoptotic cells being recorded in wild-type mice than in HSFI-null
mice (Fig. 4). Induction of necrosis by ethanol may also be stimulated in HSFI-null
mice, because up-regulation of HSPs made gastric mucosal cells resistant to ethanol-
induced necrosis (Tomisato et al., 2001). Other factors that are believed to be involved
in the production of gastric lesions, including gastric acid secretion, GMBF and PGE,
levels, were similgr in both wild-type and HSF1-null mice (Fig. 6).  Artificial pre-
induction of HSPs renders cultured gastric mucosal cells resistant to ethanol-induced
apoptosis (Mizushima et al., 1999). Among the various HSPs tested, oral administration
of ethanol up-regulated only HSP70 in terms of protein level (Fig. 2B). Furthermore,
HSP70 is thought to be the major anti-apoptotic HSP; either HSP70 binds to Apaf-1,
thereby preventing éctivation of caspases, or HSP70 suppresses the apoptotic pathway

downstream of caspase-3 activation and apoptosis-inducing factor (AIF)-induced
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chromatin condensation (Beere et al., 2000; Jaattela et al., 1998; Ravagnan et al., 2001,
Saleh et al., 2000). However, despite the apparent significance of HSP70, it should still
be noted that loss of the Asfl gene also decreased the background level of other HSPs
| (Fig. 2B), which may play some role in the HSF1-dependent protection of the gastric
mucosa. It is also possible that the production of gastric lesions in HSFI-null mice
involves other mechanisms, suggested in recent papers (Fujimoto et al., 2005; Inouye et
4al., 2003). For example, HSF1-null mice display elevated levels of tumor necrosis
factor (TNF)- , a pro—inﬂammatory cytokine, and are susceptible to increased
mortality following endotoxic or inflammatory challenge (Wirth et al., 2004; Xiao etal,,
1999). Given that it is well known that pro-inflammatory cytokines, including TNF-
stimulate the production of gastric lesions, it remains possible that the development of
such lesions in HSF1-null mice involves elevated levels of TNF- . In addition,
involvement of iNOS is also possible, because it has been shown that iNOS is involved
in tissue damage and over-expression of HSP70 has been shown to inhibit iNOS and

ameliorate the damage (Kiang, 2004; Pittet et al., 2002).
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GGA has attracted considerable attention as an HSP-inducer, largely due to its
clinical value as an anti-ulcer drug and because it can induce HSPs without affecting
cell viability (Hirakawa et al., 1996). GGA has been suggested to play a protective role
through HSP-induction in a variety of disease states; oral administration of GGA up-
regulates HSPs in brain and heart and exerts a protective effect against spinal and bulbar
muscular atrophy, cerebral ischemia and ischemic heart disease (Katsuno et al., 2005;
Ooie et al,, 2001; Yasuda et al., 2005). However, no previous reports have shown that
the HSP-inducing activity of GGA contributes to these clinically beneficial outcomes,
including its anti-ulcer effects. In this study, using immunohistochemical analysis, we
have demonstrated that oral administration of GGA alone up-regulates gastric mucosal
HSP70, and that pre-administration of GGA stimulates the ethanol-induced up-
regulation of HSP70. Furthermore, we have revealed that pre-administration of GGA
suppresses gastric lesions in wild-type mice but not in HSF1-null mice. These results
argue strongly in favour of the HSP-inducing activity of GGA contributing to its anti-
ulcer effects, providing the first direct genetic link between the pharmacological

behaviour of the drug and the resultant clinical outcome.
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In summary, this study provides direct genetic evidence suggesting that HSPs,
following their HSFl—depehdent up-regulation, confer protection against the

development of gastric lesions.
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FIGURE LEGENDS

Fig. 1.

Production of gastric lesions in wild-type and HSF1-null mice. Wild-type (A-C) aﬁd
HSF1-null mice (B-C) were orally administered the indicated doses of ethanol (A-B) or
hydrochloric acid (C). After 4 h, the stomach was removed and scored for

hemorrhagic damage. Values are mean + SEM. (n=4-6). **P<0.0l.

Fig. 2.

HSFI1-dependent up-regulation of ’gastri;: mucosal HSPs induced by ethanol. Wild-type
and HSF!-null mice were dmlly administered the indicated doses of ethanol (A, B).
After 4 h, the gastric mucosa was removed and total RNA was extracted. Samples were
subjected to realtime RT-PCR, using a specific primer for each gene. Values
normalized to the GAPDH gene, and expressed relative to the control sample (i.é. x.vild-
type mice not exposed to ethanol), are given as the mean + S.EM. (0=3). *%* P<0.001,

#%P0.01, ¥*P<0.05 (A). After 4 h, the gastric mucosa was removed, and protein
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extracts were prepared and analysed by immuno-blotting with an antibody against
HSP25, HSP60, HSP70, HSP90, or actin. The band intensity of each HSP was
determined by densitometric scanning, normalized with its respective actin intensity and
the value of the ratio of band intensity between each HSP and the actin was shown

under the band (B).

Fig. 3.

Ethanol-induced HSF1-dependent up-regulation of HSP70 in gastric mucosa. Wild-
type (A) and HSFI-null mice (B) were orally administered the indicated doses of
ethanol. After 4 h, ’sections of gastric tissues were prepared and subjected to
histological examination (HE)‘ and immunohistochemical analysis with an antibody

against HSP70.

Fig. 4.
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Induction of apoptosis by ethanol in gastric mucosa. Wild-type and HSF1-null mice
were orally administered the indicated doses of ethanol.  After 4 h, sections of gastric

tissues were prepared and subjected to TUNEL assay.

Fig. 5.

Effect of increase or decrease in the expression of HSP70 on ethanol-induced cell death.
AGS cells were transfected with plasmid with the hsp70 gene (A, B) or siRNA for the
hsp70 gene (siHSP70) or non-silencing siRNA (ns) (C, D). After 24 h, cells were
incubated with or without 7% ethanol for 1 h. The levels of HSP70 and actin were
estimafed_ by immuno-blotting with an antibody against HSP70 or actin (A, C). Cell
viability was determined by MTT method. Values shown are mean = S.D. (n=3).

*%% P .001; *P<0.05. n.s., not significant.

Fig. 6.
Gastric acid secretion, GMBF and PGE; levels in HSF1-null mice. The pylorus-ligated

wild-type mice were administered 20 mg/kg histamine (s.c.) (A). Wild-type and HSF1-
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null mice were orally administered 40% ethanol, and 2 h later the pylorus was ligated
B). A further two hours after the pylorus ligation, the acidity of the gastric contents
was measured, as described in materials and methods (A, B) (n=34). After exposixre
of the stomach and GMBF stabilization, PGE, (0.03 mg/kg) was administered
intravenously via the tail vein of wild-type and HSFI-null mice and changes in GMBF
were monitored (C) (n=6).  Wild-type and HSF1-null mice were orally administered
40% ethanol. After 4 h, the gastric mucosal PGE, level Wé‘ls determined by ELISA (D)

(n=3-4). n.s., not significant.

Fig. 7.

Effect of ethanol and/or GGA on expression of HSP70 and productibn of gastric lesions.
Wild-type (A, C) and HSFl-nul"l (B, ©) mice were orally pre-administered 200 mg/kg
GGA (10 ml/kg as emulsion with 5% gum arabic), 1 h after which they were orally
administered with the indicated doses of ethanol.  After 4 h, sectio:;s of gastric tissues
were prepared and subjected to  histological examination (HE) and

immunohistochemical analysis with an antibody against HSP70 (A, B). After 4‘ h, the
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stomach was removed and scored for hemorrhagic damage. ~ Values are mean + SEM.

(n=3-6). *P<0.05. n.s., not significant ).
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