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Abstract— We demonstrated a biological sensing application using thin metallic mesh — a two-dimensional
array of sub-wavelength holes. The band-pass filter property of the thin metal mesh depends not only on its
geometrical parameters, but also on the refractive index of the medium in the vicinity of the mesh openings. In
order to demonstrate the applicability of this principle in THz biosensing, we used electrospray deposition for
realizing a uniform and controllable layer of avidin on a metal mesh substrate. We found out that a quantity of
200 ng/mm? electrosprayed avidin produced a distinct shift in the mesh transmission spectrum towards lower
frequencies. This observation suggests that it is possible to achieve label-free sensors in the THz range using

thin metal mesh sample substrates.

1. Introduction

Many researchers have been investigating various methods for analyzing biomolecules using terahertz (THz)
waves [1-6]. This interest is explained by the fact that large molecules exhibiting complex structures have
absorption peaks lying in the THz band; for example, the hybridization of DNA and the antigen-antibody
reaction can be distinguished without labeling them with fluorescent agents. At present, the THz time-domain
spectroscopy (THz-TDS) technique is used for most of the research on biomolecules in the terahertz region.
Although THz-TDS is a sensitive detection method, it involves building complex and expensive systems.

Consequently, a simpler and cheaper analysis method would be very beneficial.

In parallel, research in the far—infrared using metallic meshes to build band-pass filters has started from
around the 1960s. It became clear that the frequency characteristics are determined by geometrical parameters
such as the grid’s spatial period and aperture size, and application in spectroscopic analysis was suggested [7,
8.

We have been developing a novel sensing method which uses the band-pass characteristics of a thin
conductive metal mesh. This sensing method relies on the change in the transmittance of the THz radiation
through a metal mesh when a sample substance is inserted in its openings; the transmittance changes not as
much because of the absorption in the sample, but mostly because of the different refractive index of the
propagation medium near the openings. Our target is to develop a simple and cheap label-free biochip by

using a monochromatic light source and a metal mesh.
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2. Characteristics of thin metal mesh

Figure 1 shows pattern diagrams of a thin metal mesh (also called an inductive two-dimensional grid) and the
equivalent electrical circuit to illustrate its transmission properties. The circuit parameters are determined as
functions of the grid geometric parameters [7] and can be calculated approximately from the grating period (g),
its thickness (t) and the wire strip width (2a).

Figure 1. Schematic of the thin metal mesh and the equivalent circuit.

Ulrich’s theory shows that at long wavelengths (g/4 < 1) and for very small thickness (# << 1) the optical
properties of the thin metal mesh are conveniently represented as an equivalent electrical circuit by a single
admittance (Y) shunting the input. The complex amplitude reflection coefficient of this circuit is
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In our experiment, the material of metal mesh is electroformed nickel. The thickness of this metal mesh is
5 um, the grating constant (mesh period) is 63.5 um, and the side of the square apertures is 45 pm. The
transmission spectrum, shown in Figure 2, was measured by FTIR spectroscopy. Figure 2 also shows the
calculated transmission spectrum resulting from the geometric parameters of thin metal mesh, based on

Ulrich’s theory.

This metal mesh behaves as a high-pass filter and the transmittance is approximately 7% at 1 THz. The
difference between the experimental curve and the calculated values are relatively small at low frequencies,
approximately up to where g/1 is 0.6. Large differences around the peak transmittance are explained by the

propagation of diffracted modes [9].
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3. Electrosprayed protein sample

Considering the results presented in the previous section, it is natural to infer that the transmission of the thin
metal mesh is also sensitive to biomolecular samples, such as avidin and biotin. The affinity between biotin
and avidin is nearly as strong as covalent bonding. To disrupt the complex, extreme denaturing conditions are
required. The highly specific and strong binding of the avidin-biotin system has led to its wide usage in a
variety of biotechnological applications [4].

In order to apply an avidin sample uniformly and in a controllable quantity, we used the electrospray
deposition (ESD) technique [10]. ESD is a versatile method for forming thin films, applicable for solute
molecules with a wide range of molecular weights, such as DNA, proteins, and polymers. In the ESD
technique, solutions of these materials are transformed into droplet jets; charged electrospray products are
deposited onto specific areas of a conductive substrate under control of electrostatic forces. One major
advantage of the ESD is that it preserves the functional properties of the electrosprayed biological molecules,
such as antigenic and catalytic properties of proteins and hybridization ability of DNA molecules.

In our experiments, electrospraying was carried out using an electrospray deposition device (Esprayer, Fuence
Co., Ltd., Japan); the sprayed area was 8§ mm in diameter, and the surface density of avidin was 200 ng/mm?’.
We investigated the basic sensor property of a thin metal mesh made of nickel (thickness: 6 um, grid period:
76.2 pm, aperture size: 58 pm). Figure 4 shows the result of transmittance measurements of the thin metal
mesh with and without avidin, obtained using an FTIR spectrometer.
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Figure 4. Measured transmission spectra of the thin metal mash without any sample () and with avidin (A).
Expanded parts of the plot are shown in (A) and (B).
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Figure 2. A measured transmission spectrum of the thin metal mesh () and its theoretical version calculated
using Ulrich’s theory (solid line). The dashed line indicates where g/A = 0.6.

We first investigated the transmission characteristics of this metal mesh and the way they change depending
on the refractive medium in the vicinity of the mesh. For this purpose we coated the mesh with vegetable oil
(n=1.5, k=0.01) as a sample. The sample quantity was about 1.0 mg/cm2 on the mesh. The oil extended

uniformly so that its thickness was approximately the same as the metallic mesh, that is, 5 pm.
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Figure 3. Measured transmission spectra of the thin metal mesh without sample (&) and with vegetable oil as
sample (D).

The amplitude of the transmission peak in the spectrum decreases by about 10% when the oil covers the mesh
apertures; at the same time the peak frequency drops from 4.1 THz to 3.3 THz. This result demonstrates that
the thin metal mesh is sensitive to the refractive index of the sample. Noting that in the frequency range below
the peak of the thin metal mesh without sample the transmittance of the thin metal mesh with sample is higher,
we conclude that it should also be possible to perform an imaging of the refractive index change at a single
frequency.

2A4
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The transmission spectrum of the avidin-sprayed mesh was found to shift towards lower frequencies relative
to the bare mesh. As a result, at 2 THz the transmission of the mesh with avidin is approximately 0.8% higher
than without avidin. Simultaneously, the resonance absorption peak at 2.82 THz was shifted to 2.79 THz. This
shift is believed to be caused by the different refractive index in the vicinity if the metal mesh surface when
the small amount of avidin is sprayed on the mesh [11].

4. Conclusion

We demonstrated a sensor application using thin metal mesh, based on the change in the transmission
characteristics produced by a variation of the refractive index near the mesh. This result suggests the
possibility of realizing a label-free biosensor that may be used, for example, in investigating the biological
affinity, such as DNA hybridization and protein interaction. In this report, we will present some detailed
results of a sensitivity evaluation of the mesh sensor. Additionally, to confirm the feasibility of biochip

sensors, we performed a series of imaging experiments using a monochromatic source at 1 THz.
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Abstract-We report on a novel sensing method in the
terahertz (THz) range using thin metallic mesh (TMM).
Conventionally, the filter property of a TMM can be changed
by the geometrical parameters of the TMM. Considering that it
is also change when the medium in the vicinity of the mesh
openings has a different refractive index, we inspected this
principle. For the biomaterial measurements, we deposited the
avidin solution uniformly on the TMM. We observed the
change of the transmission characteristics

1. INTRODUCTION

Many researchers have been investigating various methods
for analyzing biomolecules using terahertz (THz) waves (see,
for example, Ref. [1]). This interest is explained by the fact
that large molecules exhibiting complex structures have
absorption spectra lying in the THz band. We considered a
sensor application using thin metallic mesh (TMM), which is
a metallic membrane with a two-dimensional array of sub-
wavelength holes. Such TMM is conventionally used as a
quasi-optical component. The transmission characteristic of a
TMM can be determined by the geometric parameters of the
mesh [2]. Since the band-pass properties are also affected
when the refractive index of the medium near the mesh
openings changes, we can infer that the transmission peak
will shift [3]. Consequently, the TMM could work as a
simple sensor, sensitive to the refractive index of a sample
attached to its surface.

II. EXPERIMENTS

In order to demonstrate that the TMM has sensitivity to
biomolecules, we chose avidin for the sample that has led to
its wide usage in a variety of biotechnological applications
[4]. To deposit an avidin solution uniformly and in a
controllable quantity, we used the electrospray deposition
(ESD) technique [5]. In the ESD technique, solution of the
sample is transformed into micro droplets with positive
charge; the droplets are deposited by electrostatic force onto
specific areas of a conductive substrate (TMM). One major
advantage of the ESD is that it preserves the functional
properties of the electrosprayed biological molecules. In our
experiments, we used the ESD equipment (Esprayer, Fuence
Co., Ltd. Japan); the sprayed area was 8mm in diameter and
the density of avidin was 200 ng/mm®. We used nickel TMM
with grid constant of 76.2 pm for the substrate.

1-4244-0400-2/06/$20.00 ©2006 IEEE
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Figure 1. Measured transmission spectra of the TMM without any
sample (=) and with avidin (o). The enlarged plot is shown in the
Inset.

Figure 1 shows the result of transmission measurements of
the TMM with and without avidin, obtained using an FTIR
spectrometer. The transmission spectrum of the avidin-
sprayed mesh was found to shift towards lower frequencies
relative to the bare mesh. The dip at 2.82 THz without avidin
was shifted to 2.79 THz with avidin. This shift is considered
to be caused by the different refractive index in the vicinity if
the metal mesh surface when the small amount of avidin is
sprayed on the mesh.

III. CoNCLUSION

We demonstrated a sensor application using TMM. This
result suggests the possibility of realizing a label-free
biosensor that may be used, for example, in investigating the
biological affinity.
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Abstract: We developed two new kinds of terahertz-wave parametric generators (TPG) by using compact pump
sources. One TPG generates high energy and broadband THz-waves with high stability, the other has a potential to be
a narrow-linewidth injection-seeded TPG.

1. Introduction

In recent years, Terahertz (THz) wave sources have received considerable attention for use in many applications.
Especially, recent researches using THz-waves, transparency and fingerprint spectra have had an important
contribution in the Bioengineering or Security fields. As you know, the subject of research decides the source
specifications. For example, to study the environment or living plants, experiments must be performed outside the
laboratory. Then, you need high energy, portable sources and detectors. In spectroscopic studies, you need widely
tunable sources. Analyzing or detecting gasses requires a narrow linewidth. Consequently, the goal is to have
customized sources for each application. In this paper, we introduce two compact THz-wave parametric sources with
different characteristics. One generates high energy, broadband and stabilized THz-wave, the other has a potential of
widely tunability and narrow linewidth. The characteristics of there sources depend on its pump source. The former
is for transmitting detection of samples with high absorption coefficient or diffuse detection. The later is for on site
spectroscopic measurement of samples.

2. Principle of the THz-wave Parametric Generation

In a TPG, generation of the THz-waves is achieved through an efficient parametric scattering of laser light via a
polariton - stimulated polariton scattering. The scattering process involves both second- and third-order nonlinear
processes. Thus, strong interaction occurs among the pump, the idler, and the polariton (THz) waves.

The principle of THz-wave generation is as follows. Polaritons exhibit phonon-like behaviour in the resonant
frequency region. However, they behave like photons in the off-resonant low-frequency region, where a signal
photon at THz frequency (wy) and a near-infrared idler photon (w;) are parametrically created from a near-infrared
pump photon (w,), according to the energy conservation law w, = wr + «; (p: pump; T: THz; i: idler). In the
stimulated scattering process, the momentum conservation law &, = k; + k7 (noncolinear phase-matching condition;
see the inset in Fig. 1) also holds. This leads to angle-dispersive characteristics of the idler- and THz-waves. The
bandwidth of the TPG depends on the parametric gain and the absorption coefficients in the THz region. More
details about TPG are given in Refs, [1].

3. Experimental setup

The experimental apparatus, shown in Fig. 1, consists of a pump source and two nonlinear crystals. About energy
enhancement version, we used compact Q-sw. Nd:YAG laser as a pump source. All components, except for the
detector, can be mounted on a 12 x 22 c¢cm breadboard. The

pump beam is collimated by a lens at the output of the source Pyroeslle:t(;ilgl::tt:;tg: O
and reflected by mirrors for downsizing of a source. It has a &
top-hat profile with a beam diameter of 1.3 mm (FWHM) on noneelinesr phase-maiehing condion &

the first crystal. We used two 65-mm-long nonlinear - ) & -
MgO:LiNbO; crystals. A Si-prism array placed on the y surface Si-::’i S;;m;*" I——

of the second crystal acts as an efficient output coupler for the . aip aseror
THz-waves to avoid the total internal reflection of the THz- Qoo NG:YAG hwser
waves on the crystal output side. For an efficient THz-wave

emission, the pumped region within the second crystal must be

as close as possible to the Si-prism array, because of the large Fig. 1: Schematic of the experimental setup.
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absorption coefficient of the MgO:LiNbO; crystal in the 1 ~ 3 THz range (10 ~ 100 em™). A top-hat beam profile is
suitable for this purpose, since the high intensity region of the pump beam is closer to the y surface than in the case
of a Gaussian beam. The distance between the y surface and the beam center was precisely adjusted to obtain a
maximum THz-wave output, and it was approximately equal to the pump beam radius. The THz-wave output
extracted through the Si-prism array was measured using a 4.2 K Si bolometer, while the idler-wave energy was
measured using a pyroelectric detector.

About another source for narrow linewidth, we replace pump source to microchip laser [2]. All components except
for the detector can be mounted within an area of 25 x 5 cm®. This pump source is a diode end-pumped single-mode
microchip Nd**:YAG laser passively Q-sw. by Cr**:YAG saturable absorber. This microchip configuration enables
the low order axial and transverse mode laser oscillation, which linewidth is below 0.009 nm. The laser delivers
1.8 MW peak power pulses (750 pJ/pulse) with 420 ps pulse width at 100 Hz repetition rate with a M factor of 1.09.
This laser is free from the electric noise compared with active Q-sw. lasers. Additionally, this kind fixed passively Q-
switching allows us the stabilized peak power, less than +/- 2% power jitter [2]. The pump beam diameter on the first
crystal is 0.3 mm (FWMH). We used a pyroelectric sensor to detect both the THz-wave and the idler-wave.

4. Experimental results

First, we show experimental results of high energy TPG. The output energy of the THz-wave reached 105 pJ/pulse
(62 mW at the peak) when the pump energy is 66 mJ/pulse (820 MW/em?) [3]. In our previous TPG research, the
damage threshold of the crystal was under 200 MW/em? of pump beam when using multimode pump source. With
this report, the damage threshold is increased about 4 times. We generated 100 times more output energy by higher
energy pumping and lower absorption due to the short pulsed, top-hat distribution of the pump beam. Fig. 2 shows
the stability of the THz-wave pumped by this pump source. We
measured the pulse-to-pulse energy stability and found that it is
3.8 %rms. This value shows that its stability is about ten times 20001
better than other THz-wave parametric sources.

Second, we show some results about narrow linewidth TPG.
The characteristics of the generated THz-wave is depends on
that of pump beam. To generate narrow linewidth THz-wave,
narrow linewidth pump beam is required. We replaced above
pump source to microchip laser. As the pump energy is
increased above the generation threshold, the energy of the idler 500
wave increases linearly. The maximum energy of the idler wave
is 110 pJ/pulse, obtained at a pump energy of 750 pJ/pulse (2.9 0 . . . :
GW/cm?). When using the previous singlemode pump laser 00 ol 02 Outpﬂfofmg; - 05 0607
with 15 ns p\;lse whldth,‘the dan}age threshold of .the crystal was Fig. 2: Stability of the THz-wave generated by the TPG.
450 MW/cm’, but in this experiment the crystal is not damaged
even when pumped by 2.9 GW/cm® [4]. The short pulse width of the microchip laser allows the pumping power to be
about 5 times higher. We observed an output energy of the THz-wave of about 0.1 pJ/pulse (1 mW at the peak) when
the pump intensity is 2.9 GW/em® [3].

1500 ~

1000 -

Number of Sample

A

e

72

e

=

5. Conclusion

We demonstrated two new kinds of palmtop TPG by using compact pump sources. We showed the output power
enhancement, high stability and the downsizing of the TPG pumped by multimode Nd:YAG laser with tophat beam
profile. We expect its broadband, high energy, stability and palm-top size offer good advantages for many
applications. We also observed THz-wave output pumped by single-mode microchip Nd:YAG laser. This TPG has a
potential of narrow linewidth THz-wave by injection seeding for the idler wave.
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Abstract- We developed injection-seeded terahertz wave parametric
generator pumped by microlaser. Microlaser is the half palm-sized, LD-
pumped single-mode microchip Nd:YAG laser, delivers 1.1 MW peak
power pulses (530 pJ/pulse) with 430 ps pulse width at 100 Hz repetition
rate. This THz-wave source generated narrow-linewidth THz-wave by
injection seeding for the idler-wave. We observed its peak output power
of more than 20 mW (2 pJ/pulse) at 1.6 THz and its palm size, portable
source offer good advantages for many applications.

I.  INTRODUCTION

In recent years, Terahertz (THz) wave sources have received
considerable attention for use in many applications. Especially,
recent researches using THz-waves, transparency and fingerprint
spectra have had an important contribution in the bioengineering or
security fields. As you know, the subject of research decides the
source specifications. For example, to study the environment or

living plants, experiments must be performed outside the laboratory.

Then, you need high energy, portable sources and detectors. In
spectroscopic studies, you need widely tunable sources. Analyzing
or detecting gasses requires a narrow linewidth. Consequently, the
goal is to have customized sources for each application. In this
paper, we introduce compact, tunable and narrow linewidth THz-
wave parametric source.

II.  PRINCIPLE OF THE THZ-WAVE PARAMETRIC GENERATION

In a THz-wave parametric generation, generation of the THz-
waves is achieved through an efficient parametric scattering of laser
light via a polariton - stimulated polariton scattering. The scattering
process involves both second- and third-order nonlinear processes.
Thus, strong interaction occurs among the pump, the idler, and the
polariton (THz) waves. Polaritons exhibit phonon-like behavior in
the resonant frequency region. However, they behave like photons
in the off-resonant low-frequency region, where a signal photon at
THz frequency (w7s;-wave) and a near-infrared idler photon (c;g:)
are parametrically created from a near-infrared pump photon
(@punp), according to the energy conservation law w, = wry, + ;.
In the stimulated scattering process, the momentum conservation
law k, = k; + kr (noncolinear phase-matching condition) also holds.
This leads to angle-dispersive characteristics of the idler- and THz-
waves. More details about TPG are given in Refs. [1].

III. EXPERIMENTAL SETUP

The experimental setup consists of a pump source, seeding
source and nonlinear crystal. This pump source is a diode end-
pumped single-mode microchip Nd*:YAG laser passively Q-sw.
by Cr*":YAG saturable absorber. This microchip configuration
enables the low order axial and transverse mode laser oscillation,
which linewidth is below 0.009 nm. The laser delivers 1.1 MW
peak power pulses (530 pJ/pulse) with 430 ps pulse width at

1-4244-0400-2/06/$20.00 ©2006 IEEE

100 Hz repetition rate with a M’ factor of 1.09. This laser is free
from the electric noise compared with active Q-sw. lasers.
Additionally, this kind fixed passively Q-switching allows us the
stabilized peak power, less than +/- 2 % power jitter [2]. The pump
beam diameter on the first crystal is 0.3 mm (FWMH). We used a
4K Si-bolometer to the THz-wave.

IV. EXPERIMENTAL RESULTS

Figure 1 shows time dependent THz-wave output signals
measured by the 4K Si-bolometer. When we generate THz-wave
without injection seeding to the idler-wave, we observed broadband
THz-wave with power of about 1 mW at the peak (lower curve),
however, after injection seeding, we observed narrow linewidth
THz-wave with power of about 20 mW at the peak (upper curve).
This is about more than 100 times narrower and 20 times higher
than seeding laser is cut off. In addition, the pulse width of this
microlaser is the shortest in our parametric sources [3, 4].

With injection seeing ( 200 mW ) to the idler wave

~ 20 mW (peak) @ 1.6 THz

THz-wave output (arb. unit)

Without injection seeding

~1mW (peak) @1~ 27 THz

when 550 pJ/pulse,
~2 6W/cm? pumping
ot

Time

Fig. 1: Time dependent THz-wave output signals.
V. CONCLUSION

We demonstrated compact, tunable and narrow linewidth THz-
wave source. We observed THz-wave output pumped by single-
mode microchip Nd:YAG laser. This source generates narrow
linewidth THz-wave by injection seeding for the idler wave. We
expect this source offer good advantages for many applications.
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Abstract The applicable field of a terahertz wave has spread quickly in recent years.

study of the applications of terahertz wave to agricultural science.

component in food or a living body", "nondestructive measurement of agricultural products or plants" and "biosensor using a thin metallic

mesh" are reported.

In this presentation, we introduce our recent

In particular, "application to analysis of the sugar which is an important
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